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Introduction

In this paper we study the representation theory of the metaplectic group over a
p-adic field with p # 2, that is, the unique non-trivial two-fold central extension of the
p-adic symplectic group. Its importance among covering groups comes from the fact that
it appears, together with a classical group, as a member of a dual pair in the theory of
theta correspondence and the Weil representation, thus having applications in number
theory.

On the other hand, the structure of this metaplectic group is almost like the structure
of split classical groups [12], so that, in principle, the methods coming from representation
theory of classical groups can be adjusted, with more or less difficulty, to the metaplectic
group. In our case, the main technical tool is the theory of Jacquet modules, which we
adjust for the application to the metaplectic group from the paper of Muié [18] classifying
the unramified irreducible representations of split classical groups.

The reader should be aware that not all methods available for the study of represen-
tations of p-adic classical groups are extended to the metaplectic group. For example,
the theory of R groups [10] is still not available. The basic properties of the Aubert—
Schneider—Stuhler involution [1,2,20] are, at the time of writing this paper, under con-
sideration by Dubravka Ban and Chris Jantzen, and it seems they hold in the setting
of the metaplectic group. It is very likely that some of our proofs could be considerably
simplified once these techniques are proved for the metaplectic group. However, for in-
stance, the standard module conjecture [17,6] fails for the metaplectic group, because
the even Weil representation is generic and the associated standard module is reducible.

Hence, although we expect that most of the methods will eventually become available,
we carefully restrict our tools in this paper to those techniques that are applicable for
all I-groups countable at infinity (cf. [3,4,25]), such as Jacquet modules and induced
representations, and the Langlands quotient theorem [14]. Classical groups, but also the
metaplectic group, are examples of such groups.

The goal of the paper is to provide the Zelevinsky type classification (of isomorphism
classes) of unramified irreducible representations of the p-adic metaplectic group with
p # 2. This type of classification for split classical groups over a p-adic field is obtained
by Mui¢ in [18]. The unramified representations are important in number theory, in par-
ticular the theory of automorphic forms, because the local component of an automorphic
representation is unramified at all but finitely many places of the number field. For many
number theoretic applications it is sufficient to work only with such “unramified places”.
Hence, having a good classification of unramified representations for the metaplectic
group is of considerable interest, not only for the representation theory itself, but also
in view of number theoretic applications.

The Zelevinsky classification consists of three steps. The first step says that every un-
ramified representation is a fully parabolically induced representation from unramified
characters of general linear groups and a negative unramified representation of a smaller
metaplectic group. Then, negative unramified representations are described in terms of
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parabolic induction from unramified characters of general linear groups and a strongly
negative unramified representation of a smaller metaplectic group. Finally, strongly neg-
ative unramified representations are classified in terms of Jordan blocks. For definitions
of negative and strongly negative representations see the body of the paper.

The structure of the paper, after preliminary Sect. 1 on the metaplectic group and
Sect. 2 on its representations, follows basically the three steps of the classification. The
first two steps are made in Sect. 3, although the strong form of the first step cannot be
proved until the final Sect. 5, as it requires the classification of negative and strongly
negative representations. The third step is contained in Sect. 4. In Appendix A, to avoid
interrupting the flow of arguments in the proof of classification, we provide a quite long
proof of a certain technical lemma regarding reducibility of certain degenerate principal
series representation.

This paper grew out of the first author’s PhD thesis. We are grateful to Goran Mui¢ for
turning our attention to this problem, and for his useful comments and many discussions.
We are also grateful to Marcela Hanzer for useful discussions. The first named author
would also like to thank Dubravka Ban, Wee Teck Gan, Chris Jantzen, Gordan Savin,
Ivan Mati¢ and Marko Tadi¢. We are grateful to the referee for careful reading and
pointing out a mistake in an earlier version of the manuscript.

1. Metaplectic group
1.1. Two-sheeted central extension

Let F' be a p-adic field of residual characteristic p # 2 with the ring of integers O,
containing ¢ elements in its residue field. We denote by || the normalized absolute
value on F. For an integer n > 1, let Sp(n, F') be the group of F-points of the F-split
symplectic group of F-rank n defined over F'. When necessary, we always use the same
matrix realization of Sp(n, F') as in [13]. We fix, once for all, a maximal compact subgroup
Sp(n, O) of Sp(n, F).

Let Sm ) be the metaplectic group, that is, the unique non-trivial twofold central
extension of Sp(n, F'). It fits into an exact sequence

—_~—

1— pio = Sp(n, F) 2o Sp(n, F) — 1,

—~

where ps = {1} is the multiplicative group. As a set Sp(n, F') = Sp(n, F') X g, and the
maps ¢ and p are the obvious inclusion and projection. The multiplication is defined by

[h1,€1][h2, €2] = [hiho, €1€2 CRao(h1, h2)], hi € Sp(n, F), € € pa, i € {1,2},

where crq, is the Rao cocycle described in [13,19].
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For an integer n > 1, let GL(n, F) be the general linear group of n x n regular

matrices over F. We write v = | det |p. Consider the two-fold central extension GL(n, F)
of GL(n, F), given as the preimage, with respect to p, of the embedding of GL(n, F) into
Sp(n, F) as the stabilizer of a maximal polarization of the underlying symplectic space.
The multiplication is given by

[91561][92362] = [919276162 (detghdeth)F]a gi € GL(TL,F), € € U2, 1€ {L 2}a

where (, ) is the quadratic Hilbert symbol of F' [24].
By convention, for n = 0 all the covering groups are considered to be ps, and all
classical groups to be the trivial group.

1.2. Parabolic subgroups

We fix the Borel subgroup of Sp(n,F) as in [13, Chap. III]. Then, as in [13], the
standard parabolic subgroups of Sp(n,F) are parameterized by ordered partitions of
n into s = (ny,...,nk;n0), where n; > 1, ¢ = 1,...,k, and ng > 0 are integers. We
write Ps for the parabolic subgroup parameterized by s. In the case of s = (—;n), i.e.
k = 0, we have P; = Sp(n,F). For k = 1 we obtain maximal parabolic subgroups.
Partition s = (n;0), with ng = 0, gives the so-called Siegel parabolic subgroup, which
we sometimes denote Pg = F(,,,0y. There is a Levi decomposition Ps = M, N, where Mj
is the Levi factor and N4 the unipotent radical.

Let 13; and Z\Z be the preimages of P; and M in Sp(n, F') with respect to the projec-

tion p, and N = Ny x {1}. Then IA{ are the standard parabolic subgroups of Sp(n, F),
and there is a Levi decomposition P; = M;N!. For the Levi factor M, according to [12],
[11, p. 4], there is an epimorphism ¢ with finite kernel

GL(ny, F) % --- x GL(ng, F) x Sp(ng, F) — M,.

Similarly, fixing the Borel subgroup in GL(n, F'), the standard parabolic subgroups
P; of GL(n, F) are parameterized by ordered partitions s = (n1,...,nx) of n into pos-
itive integers. Let ]is_\_:/ M¢N; be the Levi decomposition. Then the standard parabolic
subgroups E of GL(n, F) are preimages of P; with respect to p. We have the Levi de-
composition 13; = Z\Z x N, where ]\Z is the preimage of My and N, = N, x {1}. There
is, again, an epimorphism with finite kernel

GL(ny,F) x -+ x GL(ny, F) -2 M, < GL(n, F).

1.8. Splitting of the cover

Recall that Sp(n, F') splits uniquely over Sp(n, Q) (cf. [16, Sect. 2.11.10]). We write
h i [h,in(h)], h € Sp(n, O), for the splitting. By [21, Lemma 2.1], the map 4,, is trivial on
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PsN Sp(n, O). Directly, or embedding GL(n, O) into Sp(n, O), where GL(n, O) is a fixed
maximal compact subgroup of GL(n, F'), we obtain the splitting g — [g,1], g € GL(n, O)
in GL(n,®). Thus, the splitting from GL(n,O) and from Sp(n, O) restricted to GL(n, Q)
match.

Lemma 1.1. Let G be either GL(n,F) or Sp(n,F), and K the fized mazimal compact
subgroup of G. Let K be the image of the splitting of K. In the notation as above, we

have
(1) G= P,K (Iwasawa decomposition)
2) P,nK = (M,nE)(N'NEK)
S — s
(3) if G = GL(n, F) then, GL(n1,0) x --- x GL(ng,0) 2 M;N K
- ¢ ~—
(4) if G = Sp(n, F) then, GL(ny,0) X --- X GL(ng, O) x Sp(ng,0) X M, N K.

Proof. Claim (1) directly follows from the Iwasawa decomposition G = P;K. Claim (2)
follows from the analogous decomposition for G and the fact that the splitting is trivial
over N,. Claim (3) is a direct computation using the formula for ¢ from [12] and the fact
that the Hilbert symbol is trivial on units when the residual characteristic p # 2.

For claim (4), we need to check that the image of ¢ restricted to the group on the
left-hand side really does lie in K. It is enough to check this on some set of generators.
Using the formula for ¢ from [12], we get

¢([gla1]a' cey [gkvl]v [Inoa]-]) = [(917"‘79167]710)71], i S GL(an)v 1= ]-7"'ak7
¢([In17 1]7 R [Inka 1]a [hvino(h)]) = [(Imv h)vino(h)}ﬂ h € Sp(n,0),

where I; is the j x j identity matrix, and m = n — ng. The image in the first formula
is in K, as we observed already that i,, is trivial on Pg N K. To show that the image in
the second formula is in K, it is sufficient to prove that i,,(h) = i, (I, h), that is, the
splitting on Sp(ng, O) should coincide with the splitting on Sp(ng, ©) coming from the
embedding in Sp(n, O) as a factor in a Levi subgroup. However, the splitting is unique,
so the claim follows. O

2. Preliminaries from representation theory
2.1. Parabolic induction and Jacquet modules

In this entire section, G is either Sp(n, F) or GL(n, F), and G its two-fold cover defined
in Sect. 1. In both cases we use the notation P; = M¢N, for the parabolic subgroup of G

attached to partition s. Since G is an l-group, we have the usual notions of smooth and
admissible representations [3]. Representations that do not act trivially by s are called
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genuine, and only such are considered. With our choice of the Borel group, functors of
the normalized parabolic induction and Jacquet module

ndS, : AlgM, — AlgG,

rs = Jacq, = Jacq% : Algé — Alg MS,

are defined as in [12,11], where Alg stands for the category of smooth representations.
For ¢ in AlgG and p in Alg M, we have the Frobenius reciprocity

Hom (O’, Ind% (p)) = Homy; (Jacq% (o’),p) . (2.1)

Moreover, as remarked in [16, p. 59], all results of [4, Sect. 2] remain valid for the meta-
plectic group. Recall that o is a cuspidal representation of G or G if the J acquet module
of o is trivial with respect to any proper parabolic subgroup. Every irreducible repre-
sentation can be embedded into a representation parabolically induced from a cuspidal
one.

For the group G = GL(n, F) the theory of genuine representations of G can be com-
pletely determined from the representation theory of G, as explained in [11, Sect. 4.1].
There is a bijection between smooth representations of finite length of G and é, pre-
serving irreducibility and commuting with the parabolic induction and Jacquet module.
This bijection is given by twisting by a fixed genuine character x, of G. Note that X
is not unique, and we now make our choice for it. Fix a non-trivial additive character
of F of even conductor. As in [12, p. 231], we define

xollo.d) = e (03) 7 (vaa) . 9 CLOLF), e o,

where ¢, () = ¥(ax), and v(n) is the Weil index.

Now let G = Sp(n, F). For s = (ni,...,ng;no) and p an irreducible genuine rep-
resentation of ]\Z, pulling back p with respect to ¢ enables us to think of it as
XyT1 Q- @ Xy @ T where m; are irreducible representations of GL(n;, F),i=1,...,k,

and 7 a genuine irreducible representation of Sp(ng, F'). We use the notation, as for
classical groups,

Ind 7 (p) = Ind§r (xym @ -+ @ Xy @ T) = Xyt X -+ X XyTp X T.
For G = GL(n, F') we have the same argument and use the same notation, just without 7.

Calculation of the Weyl group action [11, Sect. 3] shows that composition series for
G = GL(n, F) remains the same after permuting 7;’s. For G = Sp(n, F'), the composition
series also remains the same after taking contragredients of x,m;. Note that Xi =1, so

(Xypmi) = Xy (x?ﬁ) where x7(g,€) = (detg, —1)r, g € GL(n, F), € € p.
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—_—~

By convention, the genuine irreducible representation of Sp(0, F') = uo is denoted by

wo, while the genuine irreducible representation of GL(0, F') is written as x,1, where 1
denotes the irreducible representation of the trivial group.

2.2. Zelevinsky segment representation

The following lemma summarizes some results of (25| transferred to GL(n,F) by
twisting by x.;. Its purpose is also to fix the notation.

Lemma 2.1. Let x be a character of F* and o, € R such that a + 8+ 1 € Zyg.
Recall that v = | det |p. Representation waufﬁ X oo X XXV has a unique irreducible
subrepresentation (=3, a, xyX) and a unique irreducible quotient 6(—fB, «, xyX), so that

—B+4a

X (x o det)v = (=B, XeX) — XpV X X X X — 8(—B, a, Xy X)-

The representation ((—f,c, xpx) may be characterized as the unique subquotient such
that r(1,... 1) (C(=B, a, xyX)) = XV Px @ @xprx, while 5(—fB,a, xypX) as the unique
subquotient such that v(1,.. 1)(0(=8, a, xypX)) = XpV* X @ -+ @ o Px.

For the contragredient, we have ((—08,a, xyXx) = X?pC(—a,B,wa_l) and 6(—0, a,
XuX) = X50(—a, B, xyx ).

Representation ((—p1, a1, xepXx1) X ((—B2, az, xyXx2) reduces if and only if x1 = xe,
a1 —ag EZ and —01 < =By —1< a3 <ag or —fs < —01 —1 < as < a. In case of
reductbility, induced representation has two non-isomorphic irreducible subquotients and
for a1 < as we have:

C(_ﬁh a27X’L/JX) X C(_/627 a17X’L/JX) — C<_ﬁ17 al7X¢X1) X C(_ﬁ2aa25 XIZJXQ)

C(_627 a9, XTZJXQ) X C(_ﬁh al7X’¢X2) — C<_ﬂ17 a27X’L/JX) X C<_ﬂ27 a17X’L/JX)

In case Of ereduczbzlzty C(_ﬁla a17X’l/)X1) X C(_/62a a27X’l/)X2) = C(_ﬁ27a27X¢X2) X
C(=PB1, a1, xpx1)- Interchanging and reversing the arrows, the above statements are valid

for 6(=Pr1, a1, xpx1) X 0(—P2, a2, XyXx2)-

Representation ((—f, o, xyx) is called the Zelevinsky segment representation. It is
convenient to agree that if « + 8+ 1 ¢ Zso, then ((—8, o, xypX) and (=8, @, Xy X)
means Xy Xx1. We write x1, for the character x odet of GL(n, F'). We see that x,x1, =
C(=(n—1)/2,(n —1)/2,xyX)- Also, if xy = vy where x* is unitary and e(y) is a
real number, then we have a uniform notation

XoxXln ZC(=(n—1)/2+e(x), (n —1)/2 4+ e(x), xuX")-
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2.3. Groups R9*"™ and R{“"

Let n > 0 be an integer and Rgen(GL(n, F')) the Grothendieck group of the category

—~—

of smooth genuine representations of GL(n, F') of a finite length. It is a free Abelian
group with a basis of classes of irreducible smooth representations. Partial order < is
defined as m; < 7y if g — my is a Z>g linear combination of elements of the given basis.

Let R" = @D,,50 Rgen(GL(n, F')). We use s.s. to denote semisimplification. We have a
map m* : R9e" —s RI" © RIe",

n

m*(m) = ZS.S. (Jacq(kynfk) (7T)) , mE R,
k=0

where Jacqg ) (7) = xy1 ® m and Jacq, o) (7) = 7 @ xy1. We rewrite, for the case

—~—

of GL(n, F'), the results of Propositions 3.4 and 1.7 of [25], and Proposition 9.5 of [25],
which are originally stated for GL(n, F’), as follows:

a+p+1

m*(C(fﬂa «, XU)X)) = Z <(7ﬂ7 7ﬂ -1 + ia X¢X) b2 C(fﬁ + ia «, X¢X)7 (22)
=0

a+B+1
m* (5(_B7 a, Xd)X)) = Z (S(O[ —i+ ]-7 a, X’L/JX) ® 6(_57 a — 7;7 Xl/JX)v (23)
i=0
m*(my X m2) = (m@m)o (id ® k ® id) o (m*(m1) @ m*(m2)), (2.4)

where k(z @ y) = y @z, m(x ® y) = s.s.(x X y) = s.8.(y x x) and 4d is the identity.
Similarly,

R =D Rgen(Sp(n, F)),

n>0

and we have a map p* : R{*" — R9°" @ R{",

n
it () = Y s (Jacag i (o)) o € Y™,
k=0

where Jacqg.,)(0) = xy1 ® 0, o € R{*". Using Proposition 4.5 of [11] and (2.2) and
(2.3), we obtain

M*(C(_57 Q, XwX) A U)

a+p+1 4
= Z Z C(*O&,B - Z’7X1/1X71) X C(fﬂa 7& -1 +]7X1/1X) X C
(®o’'<p*(o) =0 j=0

@C(=B+4,—B—1+1i,xpx) xo. (2.5)
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©*(0(=5, o, xypx) x o)
a+p+1 4

= DD D st Boxex ) x dla— i+ 1,0, xux) X ¢

(®o'<p*(c) =0 j=0
®6(a—i+1l,a—7,xpx) X0 (2.6)

Note that because of the same composition series, we have in R{“"

C(=Ba, xpX) X 0 =((—a, B, xpX ") ¥ 0. (2.7)

§(=B,a, xpX) ¥ o = d(—a, B, xpx ") X 0. (2.8)

3. Unramified representations

3.1. Unramified representations of GL(n, F')

—~—

Representation of GL(n, F) is unramified if there exists a nontrivial vector fixed by
GL(n,O). For the character ¢ fixed in Sect. 2.1, twisting by x, provides a full corre-
spondence with the theory of unramified representations of GL(n, F'). This is because xy
is unramified, i.e., trivial on GL(n,O), for our choice of 1, by [21, Lemma 3.4]. Hence,

the following result of [25] and [5] is valid for the covering group.
Theorem 3.1. Let the notation be as above.

(1) The induced representation ((—fB1, a1, XepX1) X - -+ X (=B, g, X X&) reduces if and
only if C(—Bis i, Xuxs) X C(= By g XuX;) reduces for some i, j.

(2) Let x1,--., Xk be a sequence of unramified characters of F*. Representation x.,x1 X
<o X Xy Xk has a unique unramified irreducible subquotient.

(3) Let w be a genuine unramified irreducible representation of GL(n,F). Then there
exists a sequence of Zelevinsky segment representations, unique up to permutation,
such that:

e C(_ﬁ17a17X¢X1{) X X ((_6k704k,X¢X11$)a

where XY, ..., x¢ are unitary characters of F*.

3.2. Unramified representations of Sp(n, F)

Representation of Sp(n, F) is unramified if there exists a nontrivial vector fixed by

Sp(n, O). From [8, Sect. 2.6] (see also [9]), [12] and [11], using the uniqueness of the
cuspidal support, we have the following theorem.
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Theorem 3.2. Let the notation be as above.

(1) Let x1,...,Xxn be unramified characters of F*. Induced representation xypX1 X
<X XypXn X wo contains a unique unramified irreducible subquotient, denoted by
T (X X5 X0 Xn) "

(2) Let X1y---yXn ond Xi,--., X, be unramified characters of F*. Representations
T(xuxtrxwxn) AT xyx) are isomorphic if and only if there exists a permu-
tation h of {1,...,n} and a sequence (€1, ..., €n) € {£1}" such that xi = X}/, i =
1,...,n.

(3) Let o be a genuine irreducible representation of Sm) Then there exist unramified
characters x1,...,Xn of F* such thal 0 = oy, 1, ...xsxn)-

A representation is said to be spherical with respect to some compact subgroup, if
there exists nontrivial vector fixed by that subgroup. The following lemma shows that

parabolic induction preserves unramified representations.

Lemma 3.3. Let G be either GL(n,F) or Sp(n,F), and K its fivred mazimal compact
subgroup.

(1) Let o be a smooth M, N K-spherical representation of M,. Then Ind%/(a) is
K -spherical. ~
(2) Let o be a smooth representation of finite length of My such that Ind%:(a) contains

a K-spherical subquotient. Then o is J\Z N K -spherical.

(3) Let my,...,m be smooth genuine representations of finite length of GL(n;, F), i =
1,...,k, and p a smooth genuine representation of finite length of Sp?r—z\(;,/F). Then
T X -+ X T (Tesp., m X -+ X T X p) is unramified if and only if ;s (resp., w;’s
and p) are unramified.

Proof. For claim (1) define a function on G by f(mn'k) = dp, (m)zo(m)v, where m =
[m,e] € My,n' € N., k € K, §p, the modular character, and v # 0 an Msﬁf-ﬁxNed vector
of . It is easy to check that f is well-defined nontrivial K-fixed vector of Ind% (o).

Taking K-invariants is an exact functor, so the full induced representation Ind% (o)

is K-spherical. Choosing any nonzero K-invariant function f in that induced represen-
tation, followed by direct calculation, and using the definition of induced representations
shows that f(1) is a nontrivial M, N K-invariant vector for o. Thus, (2) holds.

Claim (3) follows from (1) and (2) and Lemma 1.1. O

We end this subsection with two lemmas that are repeatedly used in the paper.

Lemma 3.4. Let o be a genuine irreducible unramified representation of Sp(n,F), ¢’ a

genuine representation of finite length of Sp(n', F') with the unique unramified subquotient
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oy, and m;, ¢ = 1,...,1, genuine representations of finite length of GL(n;, F), such
that the induced representation m X --- X m; has a unique unramified subquotient © and
oc—=m X xmxXo. Then

0T X X T A O], o= m1xo and 0 T X 0.

Proof. Let (7;), i = 1,...,k, be a composition series of the m X - - xm and 0 < 73,41 X0’
the first possible embedding. Then o < (73,,, X ') /(Tiy, X 0") = (Tig,, [Tig) X0 Z WX,
where the last isomorphism follows from Lemma 3.3. Other claims can be proved in the
same way. 0O

Lemma 3.5. Let x be a character of F*, o, B € R such that a+f € Z>o, and 0 a genuine

—_~—

unramified representation of Sp(n, F') such that p*(o) > (=8, a, xyx)@0", where o’ is
an irreducible genuine representation of the metaplectic group of appropriate size. Then
there exists a unique genuine irreducible unramified representation o’ of the metaplectic
group such that pu*(o) > ((—B, o, xypx) @ 0’. Moreover, o' has the same cuspidal support
as o’ and 0 = ((—f,a, xypX) X 0’.

Proof. By Theorem 3.2, cuspidal support of ¢ consists of characters. Unless a+8+1 = n,
which is a trivial case, there are characters xi,...,Xn—a—g—1 of F'* such that 0" —
Xy X1 X *+* X XypXn—a—pB—1 X wg. By Frobenius reciprocity and transitivity of Jacquet
module, we have

Jacq, 1.0)(0) = xpxv P @ - @ Xy ® XupX1 © + ® XgpXn—a—pm1 ® Wo.

By [4, Thm. 2.4], a cuspidal subquotient of an admissible representation is a quotient.
Thus,

Jacq(r, 1.0)(0) = Xexv 7 @+ @ xpXV* @ XypX1 @+ @ Xy Xn-a—p-1 © wo.
Frobenius reciprocity gives
T XXV P X X XXV X XX X X X Xn—a—f—1 X Wo-
Now, by Lemma 3.4, 0 < ((—f, o, xyx) X ¢’, so that p*(c) > ((=f,a, xpXx) ®c’. O
3.3. Weak form of Zelevinsky classification

Using [11], we obtain a weak form of Zelevinsky classification for unramified repre-
sentations. We first define negative and strongly negative genuine irreducible unramified
representations of the metaplectic group. For a character x of F'*, let e(x) be the real
number such that y = v*®y*, where x* is a uIii_t\aLy character of F'*. Let o be a gen-

uine irreducible unramified representation of Sp(n, F'). We call o negative if for every
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embedding of form o < X1Xy X -+ X XnXy X wo, Where X1, ..., X are characters of F'*,
we have
e(x1) <0
e(x1) te(xz2) <0

e(x1) + -+ elxm) < 0.

If above inequalities are strict, o is said to be strongly negative. We classify genuine
irreducible unramified representations of the metaplectic group in terms of negative
ones.

Theorem 3.6. Let o be a genuine irreducible unramified representation of Sm) Then,
either o is negative, or there exist k € Z~q, «;,3; € R such that o; — B;, a; + B; +1 €
Z~q, unitary unramified characters x; of F*, i = 1,... k, and a genuine unramified
irreducible negative representation oneq of the metaplectic group such that

(1) 0= {(=PF1,00, XpX1) X - X C(—Br, Ok, XepXk) X OTneg S unique irreducible subrep-
resentation, and

(2) C(=Br, a1, xpx1) X -+ X (=B, e, X Xk) @5 irreducible.

Data (=1, 01, XpX1)s -+ C(—=Brs Qky Xy Xk) are unique up to permutation, while opeq
is unique up to isomorphism.

Proof. By Lemma 3.3, all representations that participate in Zelevinsky classification
(cf. [11, Thms. 4.6 and 4.7]) are unramified, and thus, described in Theorems 3.1 and 3.2.

Reducibility of the representation {(—/S1, a1, Xy X1) X - - - X {(—Bk, 0k, Xy X&) is not possi-
ble, because by Theorem 3.1 and Lemmas 3.4 and 2.1, Zelevinsky data would change. O

3.4. Negative representations

Having proved the weak form of Zelevinsky classification, we are ready to describe
negative representations in terms of strongly negative ones.

Theorem 3.7. Let o be a genuine irreducible unramified negative representation of

Sp(n, F). Then, either o is strongly negative, or there exist k € Z~g, unramified unitary
characters x1,...,xx of F*, B; € R such that 26; +1 € Z~g, i =1,...,k, and a genuine
irreducible unramified strongly negative representation og, of the metaplectic group such
that

o — C(_517517X1Z1X1) X X C(_ﬁkvﬁkaxd)X’n) X Ogn.-



I. Ciganovié, N. Grbac / Journal of Algebra 454 (2016) 357-399 369

Data (=1, b1, XeX1), - - > (=B, Br, X X&) are unique up to permutation and replacing
Xi with Xi_l, while o, s unique up to isomorphism.

Proof. Unless o is strongly negative, there exist unramified characters x1, ..., x, of F*
and an integer 1 < ¢ < n such that Jacq  1,0)(0) > xex1 ® -+ @ XyXn @ wo and
e(x1) + -+ e(xt) = 0. Since a cuspidal subquotient of an admissible representation
is a quotient, using Frobenius reciprocity we have o < xyXx1 X -+ X XyXn X wo. Let
oo be an irreducible unramified subquotient of XyXxt+1 X -+ X XyXn X wo if n > 2,
or else wyg. By Lemma 3.4, 0 — XxyX1 X -+ X XyX¢ ¥ 0g. Thus o9 must be negative.
Classifying unramified irreducible subquotient of xyx1 X -+ X xyXx¢ by Theorem 3.1 and
using Lemma 3.4, we obtain:

o — C(‘ﬁhOZl»szXif) X X C(_Bkvakvxdlxllé) X 0p.

Since (=B, i, xuxi') X (=B, aj, xyX;) commute for 4,7 = 1,...,k, o is negative and
e(x1) + -+ e(xe) =0, we must have o; = f;, ¢ = 1,...,k. Thus, using Lemma 3.4
the proof is obtained by induction, with uniqueness of the classifying data proven in the
next lemma. O

Lemma 3.8.

(1) Letl € %Zzo, X @ unitary unramified character of F* and o a genuine irreducible

—_~—

unramified negative representation of Sp(n, F'). Then, the irreducible unramified sub-
quotient of ((—=1,1, xyX) X 0 is negative.
(2) Letly,... .l € %Zzo, X1, -- -5 Xk Unitary unramified characters of F* and o a gen-

uine irreducible unramified strongly negative representation of S;(_?;_,/F) Then, the
irreducible unramified subquotient T of ((—l1,l1, xux1) X -+ X C(—lk, Ik, Xy Xk) X O
is a subrepresentation and negative. Given T, representations ((—li,l1, XypX1)s---,
C(=lk, lk, Xy xr) are determined up to permutation and replacing x; with Xi_l, while
o is determined up to isomorphism.

Proof.

(1) Let 7 be the unramified irreducible subquotient of ((—I,1, x4x) * o. Unless 7 is
negative, by Theorem 3.6 and Lemma 3.4, there exist a, 8 € R such that a + 3 €
Z>o, —f + o > 0, there exists a unitary unramified character x; of F*, and a
genuine irreducible unramified representation o’ of the metaplectic group, such that
T = ((=8,a,xyx1) x o’. Thus,

C(_6>a7 Xi/)Xl) ® OJ S M*(T> S M*(C<_l7 l7 Xd’x) X U)‘

By formula (2.5) there exist 0 < j <4 < 20+ 1 and an irreducible representation
(1 ® o1 < p*(o) such that
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(=B, xpx1) @ 0" < C(=11 =i, xpx ™) X (=1 =1 = Lxyx) X G
®C(J—1li—1—1,xpx) X 01.

We compare the cuspidal support to the left of ®. Since a cuspidal subquotient of
a Jacquet module is a quotient, as used in Theorem 3.7, and o is negative, sum of
exponents of v contained in ¢; cannot be positive, and the same for {(—1,1—1, wa_l)
and ((—I,j — 1 — 1, xyX). The sum of exponents of v in {(—f, o, xyx1) is positive.
We have a contradiction.

The first claim shows that 7 is negative, so by Theorem 3.7, there exist t1,...,t, €
Z>¢, unitary unramified characters xi,...,x,. of F* and o, a genuine, irreducible,
unramified and strongly negative representation, such that 7 < {(—t1,1, Xy X1) X
<o X C(=tp, tr, XpXy) X 0s. Thus

Cl=ta b, xpXh) X o X C(—tr tr, Xy Xr) @ 0
< Qs Las xpxa) X e X Q=L Ly XpXi) X 0).
By formula (2.5), there exist 0 < jp, < iy < 2L, +1,m =1,...,k, and an irreducible
representation (; ® o1 < p*(o) such that
C(=t1st1, Xpx1) X - X C(=tr by Xy X)) @ 05 <
(=l — i1, XX ") X C(=l, g1 =l = 1xgxa) X -+ X C(=li b = ik, XX )X
C(=lks gk — e = 1, xpxk) X C1

Q) = lyin — I = Lxwxa) X -+ X Gk — byt — Ik — 1, XopXk) ¥ 01
We compare the cuspidal support to the left of ®. Because o is negative and
the sum of exponents of v on the left hand side is 0, we must have ¢; = xy1,
im = Jm = 0o0r 20, +1,m=1,...,k Thus ((—t1,t1, XpX1) X - X {(—tp, tr, Xy X,) =
C(fll,ll,xdjxlﬂ) X e X C(*lk,lk,xlprl) and o = o. Comparing the largest seg-
ments yields the claim. O

Unramified strongly negative representations

In this section we classify genuine irreducible unramified strongly negative represen-

tations of the metaplectic group in terms of Jordan blocks.

4.1. Jordan blocks

Let xo = y™V=1/Inq he the unique unramified character of order two, and 1 the

trivial character of F*. Jordan block is a pair (m, xyX), where m is a positive integer
and x € {1,x0}. Jord is a set built of Jordan blocks. Given x € {1,x0} we denote
Jord(xypx) = {m | (m, xyx) € Jord}. Let k,l € Z>( and



I. Ciganovié, N. Grbac / Journal of Algebra 454 (2016) 357-399 371

1

Jord(xy) = {2m1 +1<2mo+1 < -+ < 2my + 1}, mi€§+ZZO7 1=1,...,1,
1

Jord(xyxo) ={2nm +1<2ny+1<--- < 2ny + 1}, nj€§+ZZO, j=1,...,k.

We denote by o(Jord) the unique unramified irreducible subquotient (cf. Theorem 3.2
and [8]) of the induced representation

Cl=my—1,my, X)) X C(=my—3,mM1_2, Xp) X -+ X {(—=Nk—1, M, X9X0)
XC(—=ng—3,Nk—2, Xy X0) X - X gg(Jord),

where og(Jord) is the unique unramified irreducible subquotient of

1 1 .
C(§7mlaX¢)xC(§7nl7XwX0)><10J0 if k,l € 2Z + 1,
1
C(5s 1, X)) X wo if ke2Z, | €27 +1,
1
C(5s M5 X X0) X wo ifke2Z+1, e 2Z,

wWo if k,l € 27.

When k = [ = 0, we have Jord = (), and o(Jord) = wp, which is by definition strongly
negative.
For n € Z>, we denote by Jord(n) set of all Jord, such that

Z m = 2n.

(m,xwx)€Jord

So, given Jord € Jord(n), o(Jord) is a representation of Sp(n, F')
4.2. Construction of unramified strongly negative representations

We begin with two simple cases of unramified strongly negative representations in the
following two lemmas.

Lemma 4.1. Let x € {1,x0}, a € % + Z>g. Let 0, be the unique irreducible unramified

subquotient of C(%:‘%quX) X wg, and put o_1 = wo. The representation o, is strongly

negative, and

M (Ua) = Z C(_aa _5 -1, XwX) ® Jifév (41)
1=0
1
Oaq C(_aa _§7X’¢X> X Wo, (42)

_ _ _1
(1,150 (0a) = XpV X @ Xpr “T @ @ xyr 2 @ uwy (4.3)
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Proof. We use induction on a. Case a = % follows from (2.5) and Theorem A.l. As
induction hypothesis, assume that claims are valid for o/ € %-’-Zzo such that % <d <a.
We must prove that they are valid for a. Compare x,v~*x X041 and C(%, QX X) X Wp.
As both are subquotients of Xd,uéxx- S XX VYT X X VX Xwp, the K-fixed subquotient
0, appears in both. In the minimal Jacquet module, using the induction hypothesis and
(2.5), one has

_ _ _ _1
5.5.7(1,...,1:0) XV~ X X Oac1) = Xp¥ XD Xy  TIX @ @ xypr T2 O wo

+ additional terms, all having qu_% X

and

1

_ _ _1
s:8701,.1:0) (C(F5 @ Xux) X wo) = Xy ™ X @ xur " TIX @ - @ Xy TX @ wo

+ additional terms, all having sz/% X
Thus 7(1,...,1,0)(0a) = XyV ™ *X@Xyr ™~

ly®-- -®xwu’%x®wo, that is, we proved (4.3).
Using Frobenius reciprocity, we have o, <= x¢V ™%X X XyV >

Ty X X X T2 X W
Now (4.2) is a consequence of Theorem 3.1 and Lemma 3.4. To prove (4.1), we use the
transitivity of the Jacquet module, (4.3) and Lemma 2.1. O

Lemma 4.2. Let a,a’ € f% + Z>q, let oa,or be the unramified irreducible subguo-
tient of C(%,a,xd,) X C(%,O/,Xw)(o) X wo, let o, be the unramified irreducible sub-
quotient of C(%,Q,Xw) X wo, and let ¢!, be the unramified irreducible subquotient of
C(, 0/, xpx0) X wo. Then oq0 < C(5,0,xy) ¥ 0l and 0a.0r < (3,0, XpX0) X 0.
The representation 04, 15 strongly negative, and

1 1
Oa,a! < C(_aa _57 Xl/i) X C(_O/a _57 XwXO) X wWo- (45)
Proof. Lemma 3.3 implies 04,0 < C(%, a, Xy) X o, and 04 o < C(%, o', Xy X0) X 0o We
prove by induction on a+«a’ that, for an irreducible representation o, if 0 < ¢ (%, Q, Xop) X
ol,and o < C(%’O/’szXO) X 0q, then 0 = 0, .
Claims are valid if « = —% or o/ = —% by Lemma 4.1. Let n € Z~o and assume that

the lemma holds for a + o/ < n. Let « + &' = n. From Lemma 4.1 and (2.5) we have

/41 1.
a'+5ats; 4

. L1 1 11
w(o) <p (C(g,oaxw) X o) = C(—a,—§ — i, Xy) X C(§,J — §,X¢)><
i'=0 i=0 j=0
/ 1 . . 1 . 1 ,
(=0’ —5 =i xux0) @CU + 5,8 = 55x0) X054
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./
a+2 « +2 i

N*<U) S M*(C<%7O/7X¢XO ><] Uoc Z Z Z C ’L XIZJXO)

=0 /=0 j'=0

1

1
<(§ a,_—_i,X¢)®C(j/+

- l7X1/1X0) X C<_ )

./
] 2

1, 1
5# —§7XwX0> XNo;_1.

2

Since in the first formula positive powers of v before ® appear with x,1, and in the
second with X X0, we should keep only terms with j = j' = 0. Thus,

04+2a+2 1 1
Z Z C OZ —=—1 7X1/1X0) X g( @, —= Z7X1ZJ) ®C(§7Z i,le) X O':/_%,
=0 7’
a+2a+2 1
<>y Z ¢(— — ', XyXo) X ((—a —5 Xy
=0 /=
1
®C(§,l - §7XwX0) No;_1.

Induction hypothesis implies

* 1 1.
1 (o) < xypl®o + > (e, =5 =i, xp) X ((=a's =5 =@, XpX0) ® 041 vy
0<i4i' <a4a’+1

We see that 7(,,0)(0) = ((—a, —%, Xy) X ((—d/, —%, XvXo) ® wo and it is easy to prove
that this appears with multiplicity one in p*({(—a, =3, Xy) X {(—&/, =%, Xy X0) X wp).
Hence, o is uniquely determined, and thus o = 0, o . Looking at the cuspidal support of
T'(n;0)(0), We see that 04 o is strongly negative. Let i =0,...,a+ 1,1 =0,...,0/ + 1.
Frobenius reciprocity and Lemma 3.4 imply

1 1
Oa,a! — C(-O@ _55)(1!1) X C(_O/7 _55)(1!1)(0) XN Wy —
1 1 1 1
C(_av _5 - 7/7X’¢') X <(§ -1, _§7X’L/J) X C(_O/a _5 - ZI7X1/JXO)X

1 1

C(i - i/a _§7X1/)X0) X Wwo =
1 1 1 1
C(_av _5 - ZvX’l[J) X C(_alv _5 - ile’l/JXO) X g(i - 7:7 _§7X’¢')X
1 1
C(i - i/’ 7§7X¢X0) X Wo,

and therefore
1 . 1,
Ta,ar = ((—a, 5 i, xy) X ((— 5 s X Xo) X Oi—3,i—1

1 (Canr) > G0 —2 — i, xy) X ((—a

Ly ) ®
—— —1 g, i
2 D) » X9 X0 i— 20—

proving (4.4) and (4.5). O
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The following lemma is crucial in showing that o(Jord) are strongly negative and that
they exhaust all such representations.

Lemma 4.3. Let o be a genuine irreducible unramified strongly negative representation of
Sp(n, F).

(1) Then there exists an unramified unitary character x of F*, there exist o, € R
such that o+ B € Z>q, and there exists an irreducible unramified representation o’
of the metaplectic group such that o — ((—f,a, xypX) X o'. Also a — < 0 and
C(=B, o, xyx) X o' reduces. If a is the largest possible for such embedding, then o’
is strongly negative.

(2) Let 8 be the mazimum of |e(x")| over all xyx' in the cuspidal support of o, achieved
for z/iﬂxd,x, where x 1s a unitary character of F*. Then there exist a € R such
that o+ 8 € Z>o, and there exists an irreducible unramified representation o’ of the
metaplectic group, such that

o — C(‘ﬂ;‘%Xﬂ/)X) X OJ'

Proof. We first prove (1). Write the cuspidal support so that o < vy, x1 x -+ x
v*n Xy Xn Xwo. Note that (K1, k1, xpx1) = v¥ xyx1. If n > 1, we use Lemma 3.4 to take
the unramified irreducible subquotient o’ of v*2 XypX2 X -+ X vhkn X Xn X Wo, and get an
embedding of the required form.

Strong negativity of ¢ and Frobenius reciprocity imply —8 4+ o < 0 and reducibil-
ity of ((—f,a,xyx) % o, since otherwise, by (2.7), ¢ — ((=8,a,xyx) ¥ 0/ =
C(—a, B, xypx 1) x o, contradicting strong negativity of o. Let a be the largest pos-
sible with such embedding. Assume that ¢’ is not strongly negative. By Theorems 3.6
and 3.7 and Lemma 3.4, there exists a unitary unramified character x’ of F*, there exist
o, 8 € R with o/ + ' € Z>p and o/ — ' > 0, and there exists an irreducible represen-
tation ¢”, such that o’ < ((—p5',a/, xyX’) X ¢”. There is a nontrivial intertwining

g — C(_Bvaa Xi/)X) X C(_B/ﬂ O/a X’LZ)X/) X U” — C(_ﬁl7a/7x1bx/) X C(_ﬁ7 Q, XT/)X) A OJ/'

Because o’ — 3’ > 0 and o is strongly negative, o must be in the kernel of the second map.
Thus, (=8, &, xyX) X (=8, ¢/, xyXx') reduces, and by Lemma 2.1, x = X/, a — o’ € Z.
Lemma 3.4 implies 0 < ((—f,a/, xyX) X (=8, o, xyx) x ¢’. But the maximality of
a and Lemma 3.4 imply —8' + o/ < —f + a < 0, a contradiction. Thus ¢’ is strongly
negative.

Now we prove (2). Write the cuspidal support of o so that o < xyX] X -+ X XX, ¥
wg. By Theorem 3.1, let ¢(—f1, a1, xyXx1) X -+ X (=B, ak, Xy Xk) be the irreducible
unramified subquotient of x,x} X -+ X Xy X5, Where k is an integer, oy, 8; € R with «; +
Bi € Z~¢ and x; are unitary unramified characters of F*, i =1,...,k. By Lemma 3.4,

o — C(_/Bth?X’LZJXl) X X C(_ﬁkvakaxka) X wo-
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Because Zelevinsky segment representations commute and ¢ is strongly negative,
Lemma 2.1 gives —3 € {—f1,...,—Bk}. Again, Lemma 3.4 finishes the proof. O

Now we are ready to prove that all o(Jord), defined in Sect. 4.1, are strongly negative.

Theorem 4.4. The representation o(Jord), attached to a set Jord of Jordan blocks, is
strongly negative, and we have

O'(JOI'd) — C(_mlvmlfla Xﬂ)) X C(_ml—2aml73,Xw)><

o X Q=g Me—1, X X0) X C(—Nk—2, Nk—3, XyX0) X - -+ X og(Jord). (4.6)

If x € {1,x0} and card(Jord(xyx)) > 2, let 284+ 1 > 2a + 1 be two largest elements
in Jord(xyX). Put Jord" = Jord\{(28 + 1, x¢X), (2a + 1, xyX)} and ¢’ = o(Jord’),o =
o(Jord). Then:

o= (=B, a,xpx) x o' (4.7)

Proof. We use induction on card(Jord). If (I, k) = (0,0), then wy is by definition strongly
negative. Lemmas 4.1 and 4.2 prove cases (0, 1), (1,0) and (1,1). Let ¢ > 2 be an integer.
Suppose that claims are valid for Jord with less than ¢ elements. Take Jord such that
l+k =t.Since (I, k) = (1,1) is settled, we may assume that there exists x € {1, xo} such
that card(Jord(xyx)) > 2. Let 0, 0/, a, 8 be as in the theorem. Comparing the cuspidal
support, and using the uniqueness of irreducible unramified subquotient, we have

0 < (=B, xyx) X .

By induction hypothesis ¢’ is strongly negative.

First, we shall prove that o is strongly negative. Assume that ¢ is negative but not
strongly negative. By Theorem 3.7 and Lemma 3.4 there exist 2m € Z>(, an unramified
unitary character x’ of F'*, and an irreducible unramified negative representation o’
such that o < ((—m, m, x4 Xx’)x0”. Frobenius reciprocity implies {(—m, m, x4 x')®0" <
w (o) < p*(C(=B,a,xyx) @ ¢'). By (2.5), there exist 0 < j <i < a++1 and an
irreducible representation ¢ ® of < p*(o’) such that

C(_m7m7X1[1X/) & UN S C(_aaﬁ - Zle[)X) X C(_ﬂa.] - B - 17X1/JX) X C
®C(J —Byi— B — L xpx) @ 0}

Cuspidal support of o does not contain Vj”)wx twice, for v € a 4+ Z~o. Hence 7 = 0.
Because ¢’ is strongly negative, if ¢ # X1, it has a negative sum of powers of v. Thus
we must have —-m = —a, m = 8 — 4, ( = xy1 and x = x’. Now ¢} = ¢’ and

UN < C(_Bv Q= 17X1[1X) A U/' (48)
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Let us show that the representation on the right hand side is irreducible. There exist an
integer h, characters x1,...,xn € {1,x0} and 71,...,7r, € R with |rg| < a if x5 = X,
s=1,...,h, such that

o' SV XX X X VT XX X wo.

By Lemma 2.1, representations ((—58, —a — 1, xyX) X v™*xpXs and ((a + 1,5, xyX) X
VT Xy Xs, S = 1,..., hare irreducible. By Theorems A.1 and A.7, ((—8, —a—1, x4 X) X wo
is also irreducible. Using Lemma 2.1 and (2.7), we have

Cla+1,8,xyx) ¥ 0 = Cla+1,8,xpx) X Y xpx1 X -+ X V™ Xy Xh X wy =
VIxp X1 X e X VT xgxn X (a1, B, X x) X wo =
VX X1 X e XV X xR X (=B, —a— 1, Xy X) X wo =

(=B, —a — 1, xpX) X VX1 X -+ X VX Xh X wo.

Now,

Cla+1,8,xpx) ¥ 0" = (=6, —a—1,xpx) X V" xpx1 X -+ X V™ XyXn X wo.  (4.9)

(=B, —a —1,xypx) X0 = (=B, —a— 1, xypX) X V" xpx1 X -+ X VX XR X wo.
(4.10)

By Theorem 3.2, the representations in (4.9) and (4.10) have the same unramified
irreducible subquotient, so images of embeddings have a nontrivial intersection. By
[11, Thm. 4.6], ¢(o + 1,5, xyX) * ¢’ has a unique irreducible subrepresentation and
it appears with multiplicity one, but at the same time, by [15, Lemma 3.1], it is a
quotient in ((—8,—a — 1,xyx) X ¢’. Thus ((a + 1,5, xyX) X ¢ is irreducible and
C(=B,—a — Lxyx) @ o' = {(a+ 1,8, xepx) X o' contradicts negativity of o”. Thus,
we have shown that o cannot be negative, but not strongly negative.

Now, assume that ¢ is not negative. By Theorem 3.6, there exist an irreducible neg-
ative representation o, an integer h and x; € {1,xo}, for ¢ = 1,...,h, and there
exist a;, 8; € R such that a; — f5; € Zso, o + B; € Z>0, and ((—f1, a1, XpX1) X -+ X
C(=Bhn, an, XypXn) is irreducible and

g — C(_Bla aq, Xd)Xl) X X C(_ﬁha Qp, Xth) X O neg- (411)
Frobenius reciprocity gives ((=f1, a1, xypX1) X+ =X (=B, Qs X Xn)@0neg < 1™ (((=F,
X¢X) o). By (2.5), there exist 0 < j < ¢ < o+ + 1 and an irreducible representation

¢ ® o} < p*(o’) for which

C(_6170417X1bX1) X X C(—ﬁhyameXh) ®0neg g
C<_O‘?B_ ZaXdJX) X C(_ij - B - LXlZJX) X <®C(] _ﬁai _B_ 17X’LPX) A 0/1
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Because of the cuspidal support of ¢’ and as — 85 >0, s =1,...,h, we have j = 0 and

C(_BlaathﬁXI) X X C(_Bhvaiuxw)(h) 0y O neg <

Since ¢’ is strongly negative, ¢ cannot have a positive sum of powers of v. Thus 8—1i > a.
But then i — f — 1 < —a — 1 and if ¢ > 0, exactly the same argument as after (4.8)
proves that ((—f3,7 — B — 1, xyx) % o} is irreducible, contradicting negativity of opeq.
Thus, 7 = 0.

Suppose ¢ # xy1. Then ¢ is unramified by Lemma 3.3, and by Theorem 3.1 there
exists an integer h’, and for s = 1,...,h/, there exist a unitary unramified charac-
ter x, of F*, and o, 3, € R with o} + 8, > 0, such that ( = {(—f1, 4, xuXi) X

- X C(=PB, &, XX}, ). Comparing cuspidal supports, by Theorem 3.1, we see that
¢(—a, B, xyx) % ¢ is irreducible. Since ¢ cannot produce positive sum of powers of v and
as —fBs >0, s=1,...,h, using the uniqueness of classification from Theorem 3.1, we
have a contradiction.

Thus i = j=h =0, ( = xy1, Oneg = 0] = 0’ and (4.11) becomes

o= ((—a, B, xypx) ¥ o' (4.12)

The argument just after (4.8) again shows that (=8, —a — 1, xyX) X o’ is irreducible,
SO

C(_O‘,ﬁv)(d)X) X U, — C(—avaanX) X C(Oé + LﬂdeJX) X U/ =
<(—OZ, Q, X%bX) X C(_ﬁv —a— ]-7X1/1X) X o—l»

which together with (4.12) and Lemma 3.4 implies

o — C(_ﬂa a7X¢X) X OJ' (413)

By [11, Thm. 4.6] and (4.12), o is the unique irreducible subrepresentation of
¢(—a, B, xyx) ¥ o' and appearing with multiplicity one, but at the same time it is
a quotient, due to (4.13) and [15, Lemma 3.1]. Thus, if we prove that {(—«, 3, xyX) X 0’
reduces, it will give a contradiction and finish the proof that o is strongly negative.

To show that {(—f, o, xyXx) X ¢ reduces, we assume that xy =1 and k — 2,1 > 3 are
odd. Otherwise, the proof goes in the same way, only the notation has to be changed.

It is easy to see that ((—a, a, xy) ® wo appears with multiplicity two in p*({(—a, «,
Xy) X wo), and since admissible unitarizable representations are completely reducible,
we can write

((—a, a, xy) ¥ wo = T & T, (4.14)

where 7, and 7, are irreducible and not isomorphic, and one of them must be unramified.
Using induction hypothesis, Lemmas 4.2, 4.1 and 2.1, we have
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C(_ﬂvaaxw) X CTI — C(_Ba —Qa— 17X111) X C(—Oéathw) X U/ —

1
C(fﬂv - — 1)X¢) X C(fml—Qaml—?nXﬂJ) X X C(fmla 7§’X¢)X
1
C(—=nk, nr—1, XpX0) X -+ X ((—n1, *§7Xon) X (m1 @ ).
Let us denote
- 1
p= <(7ﬂ7 —Q— 17X@/}) X C(fml—%ml—:iax?l)) X X C(fmla 7§7X1/1)X

1
C(=nk, k=1, XypX0) X =+ X C(—n17—§,szXo)-

It is irreducible, and we have

C(_Bvaaxw) XUIHPNTﬁ@pNﬂ'Q.

To prove that ((—f,c, xy) x ¢ reduces, it is enough to see p*({(—5,a,xy) X o’) >
PR+ p®ma, p*(pxm) F pRma, and u*(p x m2) # p @ . First, by (2.5), we have

a+pB+1 4

w(C(=B,a,xy) @ 0') = >0 (=B xw) X

(®o1<p*(c’) =0 j=0

(4.15)

By induction hypothesis, Lemma 2.1 and Frobenius reciprocity, we have
. 1
i (a') = C(=my—2,mi_3,Xyp) X -+ X C(*ll,*?xw)x
1
C(=nps mE—1, XypX0) X C(—=Ng—2, M3, XyX0) X ==+ X ((—k1, —§7Xon) ® wo.
(4.16)

Pickingi=a+f+1and j = — «in (4.15), and using (4.14) and (4.16), we have

N*(C(_ﬁaaan) Dol UI) 2 P®7T1 +p®7r2.

We now show that p*(p x m) # p ® ma. Suppose the contrary, and apply (2.5) to
p x m1. There exist an irreducible representation ¢ ® o1 < p*(71) and indices

1
0<j<i<—a+p, OSjl—zSiz—zSml—3+ml—2+1,---,0Sj1Si1Sm1+§,

1
ogj,;gz‘;CSnk71+nk+1,...,0§ji<z”1§n1+§,
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such that
1
C(_Bu —a — 17X1b) X C(—ml727ml—3an) X X C(_mla _§7X’¢))X
1
C(=nk, =1, X9 X0) X C(—=Np—2, M3, XpX0) X - X ((—n1, —§7X¢X0) ® o

<

( my—3,Mi—2 — -2, Xy) X ((=mi_2, —my_2 — 1+ ji_2, xy) X

1 . .
C(§,m1 — i1, Xy) X C(=m1, —m1 — 1+ j1, xy) X

C(—=nk—1, 1k — 13, XpXo0) X (=g, —ngk — 1+ i, X X0) X

1 _ .
((5om = i1, XwX0) X ((—n1,—n1 — 1+ 41, XyXo) X ¢

&

C(=B+7, =B —=1+1i,xy)x

Cl=my—2 + Ji—2, —mi—2 — L+ 412, xy) X == - X ((=m1 + j1, —m1 — 1 41, xy)X
(=

C(=nk + Jps =1 — 1L+ i3, xwXo) X -+ X ((—n1 + 41, —n1 — 1 + 47, xyxo) X 01.

Comparing cuspidal supports, we see that the cuspidal support of { cannot contain
v %xy, and

/J’*(ﬂ—l + 7T2) = :U’*(C(_Oév «, Xd)) A WO) =
2a4+1 u

Z ZC(—OGOZ—%XW X ((—a,—a—14v,xp) ®((—a+v,—a— 1+ u, xy) X wo
u=0 v=0

implies ¢ = xy1, so 01 = 7. As m; and 7w have the same cuspidal support, we must
have

J = 1o =012,y J1 =01y G = Gksyeey 1 =11
and m; & mo, a contradiction. Thus, we showed p*(p x 1) 2 p ® mo. In the same way
one gets p*(px m2) Z# p®m. Thus (=B, o, xyX) x 0’ reduces. As we already explained
this proves that o is strongly negative.

Now, we prove formula (4.7), that is, 0 — ((—8,a,xyx) % ¢/, and (4.6) is a
consequence, obtained using induction hypothesis. Since o is strongly negative, by
Lemma 4.3(2), there exist a real number o', o/ + 8 € Z>¢, and an irreducible unramified
representation o”/, such that o — ((—8,a/, xyx) % ¢”. Take o’ the largest possible, so
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o is strongly negative. The case o/ > a would imply that v XvX appears two times
in the cuspidal support of o, which is not possible. Hence, o/ < «, and let o/, be the
unramified irreducible subquotient of ¢(—a, @, xyX) X ¢’. Suppose &’ < a. We have

O':L S ((—0&,04, Xl/)X) A U, S C(—Oé, 0/7 XwX) X C(a/ + 1a «, XwX) Dol U/'

Cuspidal support implies ¢” < ((a’ + 1,a,xyx) % ¢’. By Lemma 3.3, o, <
C(—a, o, xpx) ¥ o”. Now

"

o= (=B, xypx) X 0" = (=, —a — 1, xpx) X ((—a,a,xypX) X 0
and therefore
o= ((=B,—a—1,xypx) X o),

Lemma 3.8 implies o], — {(—a, @, xyX) X ¢’. Thus

o= (=B, —a—1,xpX) X {(—a, o, xypx) X o'

By Lemma 3.4, 0 < {(—8, &, xpXx) X 0’. So & = o, proving (4.7) and (4.6). O
4.8. Classification of strongly negative unramified representations

We now prove that representations of Theorem 4.4 exhaust all genuine irreducible
strongly negative unramified representations of the metaplectic group. We first have a
proposition.

Proposition 4.5. Let x1 be an unramified unitary character of F* and oy, 51 € R, such
that oy + B1 € Z>¢ and a1 — B1 > 0. Then

(1) Representation ((—B1, a1, XyX1) X wo reduces if and only if v'x1 Xy X wo reduces for
some i with —f1 <i < ay and oy —i € Z, i.e., x1 € {1,x0}, —B1 € 2 — Zxo. If it
reduces, the unique subrepresentation is not unramified.

(2) Let o = 04,00 be asin Lemma 4.2. Then, representation {(—P1, a1, xyX1) X0 reduces
if and only if one of the following five representations reduces

1 1

C(*ﬂlvalele) X C(*O[, 757)(1/1)7 C(*alvﬂlanXl_l) X C(iO@*iaxw)a

1 _ 1
C(fﬁlaahX?ﬁXl) X C(fax 7§7X1/)X0)a C(fO[laBl?XdJXl 1) X C(*O/7 7§7X1/)X0)a

C(—Bhahxw)(l) N Wo-

If (=P, a1, xpXx1) X o reduces, its unique subrepresentation is not unramified.
(3) Let o(Jord) be as in Sect. 4.1. Then ((—f1, 01, XypX1) X o(Jord) reduces if and only
if one of the following representations reduces (i = 1,1 —2,..., j=k,k—2,...)
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<(_ﬂ17 aq, X’LPXI) X C(_mia mi—1, XIZJ)7 <(—O[1, 617 X’LPX;1> X C(_mia mi—1, X¢)7
C(_ﬂh aq, X’L/)Xl) X C(_nj7 nj—1, XI/JXO)a C(_alv ﬁlu X’L/)XII) X C(_nj7 Nj—1, Xeps XO)

C(=PB1, a1, xyX1) % o9(Jord).

If ((— P, 01, xypx1) xo(Jord) reduces, its unique subrepresentation is not unramified.

Proof.

(1)

(2)

Theorems A.1 and A.7 solve reducibility. Theorem 4.4 shows that in case of re-
ducibility, the irreducible unramified subquotient is strongly negative, so cannot be
a subrepresentation.

Let all representations from the list be irreducible, and ( = C(—a,—%,xd,),

¢ = (=, =3, xux0), G = C(=Br,01,xpx1) and & = ((—au, B, xpx7 ') By
Lemma 4.2 and (2.7),

GXo G XEXC Mwg Z X X Xwy =X X xw =G x ¢ x ¢ X wy,

thus
C(=Pr, a1, Xpx1) X o= G x ¢ x (' X wo,

C(=au, i, XX ") X o = (o x ¢ x (' X wp.

Because of the uniqueness of the irreducible unramified subquotient, the intersection
of images of the embeddings is nontrivial. By [11, Thm. 4.6], ((—81, a1, xyX1) X
o has a unique irreducible subrepresentation, appearing with multiplicity one in
its composition series, but it is also a quotient of C(fal,ﬁl,)wxl—l) X o by [15,
Lemma 3.1]. Thus, ¢(—B1, a1, x¢Xx1) ¥ 0 must be irreducible.
Let us suppose that one of the representations from the list reduces, and denote
by 7 the unramified irreducible subquotient of {(—f1, a1, Xy X1) X 0. Whenever 7 is
negative, it cannot be the unique subrepresentation of {(—/f1, a1, x4x1) ¥ 0 and thus
this representation must reduce, proving the claim. We use this argument repeatedly
below.
(i) (=P, o, xux1) XC(—a, —%, Xv) reduces, then x; = 1 and its unramified irre-
ducible subquotient is ¢(—a, a1, Xy) X ((—B1, —3, Xy). By Lemmas 2.1 and 3.3,

1 1
T S C(_avalaxd)) X C(_ﬁlv _§aX1Z1) X C(_O/v _§)X1Z1XO) X Wo,

T < C(_Olaalew) X 0By ,af-

By Lemma 4.2, 0g, o is negative. If & = o, Lemma 3.8 implies that 7 is nega-
tive. Else, @ # 1 and because of the reducibility —f5; = % or —a < —f; < —%.
Together with —f81 + a7 > 0, Lemmas 4.2 and 3.8, and Theorem 4.4 imply
negativity of 7. Since 7 is negative, it cannot be the unique subrepresentation
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(iif)

(iv)
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of ((—f1, a1, xyXx1) x o, and thus, this representation must reduce, proving the
claim.

If (=S, a1, xpx1) X {(—/, —%, X Xo) reduces, the proof is the same as in (i).
If {(—an, By, szXfl) x ((—a, —%, X+) reduces, we may assume that {(—f1, o,
XeX1) X ((—a, =3, xyp) is irreducible. Lemma 2.1 implies x; = 1, a +1 >
-0 > %7 a1 > «a. Because of (2.7) and Lemmas 2.1, 3.3 and 4.2, we have

1 1
T S C(-Oél, _§7X1b> X C(_athXw) X C(_ala _§7X1/1X0) X Wo,

T S <(_ﬂ17avxw) A Oaq,a-

If =81 = a+ 1, Lemma 4.2 implies negativity of 7. If —§; = «, Lemma 3.8
implies negativity of 7. In both cases, because 7 is negative, it cannot be the
unique subrepresentation of {(—51, a1, x4 Xx1) X o, and thus, this representation
must reduce, proving the claim. Otherwise, @ > —f; and for representation
C(=P1,a, Xy) X Oay o We have irreducibility of all representations listed in (2)
(because ag > a > —f; > %
at the beginning. Thus, 7 = {(—f1, @, Xy) X Tay,or- But then, because of the

), and so it is irreducible, as we already proved

uniqueness of the Zelevinsky classification (Theorem 3.6) and « # a4, 7 is not
a subrepresentation of ((—f1, a1, xyx1) X 0. Thus (=1, a1, xyx1) X o reduces
and its unique subrepresentation is not unramified.

If ((—aq, B1, Xy X1 1) X C(—a, — 2, XuXo) reduces, the proof is the same as in (iii).
If ((—p1, 01, Xy X1) X wo reduces, assume that all other representations from the
list are irreducible. We have x1 € {1, x0}, and take x; = 1, the other case being
the same.

If ((—o, — 3, xv) = Xyp1, then 7 < {(—aq, B1, Xy) X ((—a’, =5, XpXo0) X wo and
it is negative by Theorem 4.4 or Lemma 4.2. Else, —8; < —a so a; > « and

1 1
T < C(_ahBledJ) X C(_a, —§an) X g(_al7 —§,XwX0) X wo-

If —31 < —a, then 7 is negative by Lemma 4.4. Otherwise, —f3; = —a and

1

1 1 1
T < C(_ala _§aX1l)) X C(§70¢7X¢) X C(—O{, —§an) X C(—O{/, _§vX1bX0) X Wo,

1 1
T < C(—Oé,Oé, X!/)) X C(_ala _§aX1/)) X C(—O{/, _§aX1/)X0) X Wo-
Now, Lemmas 3.8, 4.2 and 3.3 imply that 7 is negative. In all cases, because T
is negative, it cannot be the unique subrepresentation of {(—f1, a1, xypX1) X 0
and thus this representation must reduce, proving the claim.

(3) We use induction on card(Jord). Case card(Jord) = 0 is trivial and card(Jord) = 1

is a consequence of (1). Because of (2), we may assume that there exist x € {1, x0}
such that card(Jord(xyx)) > 2. Let 28 + 1 > 2a + 1 be two largest elements of
Jord(xyx). Put Jord" = Jord\{(28 + 1, x4X), (2a + 1,xyX)}, 0 = o(Jord) and
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o' = o(Jord’). Note that 3 > o > % Let 7 be the unramified irreducible subquotient
of ((—p1, o1, xyx1)xo. By Theorem 4.4, ((—f1, a1, xpX1) X0 = (=1, a1, XypX1) X
C(_ﬁv a, XwX) xo'.

(i)

If ((—P1, a1, xypx1) X ((—B,a, xyX) reduces, then x1 = x, 8 > p1, a1 > a.
Suppose

T~ C(_Blaalvxlbxl) X o

Then, by Lemma 3.4 7 <= ((=f, a1, xyx) X ((=F1,a, xpX) X o' If | = 1] > «,
T is negative by Theorem 4.4 and Lemma 3.8 (Lemma 3.8 applies if 3 = a3 or
B1 = ). Thus, it cannot be the unique subrepresentation of (— 01, a1, Xy X1) X0
and this representation must reduce, proving the claim. Else, | — 1] < «
and by Theorem 4.4 and Lemma 3.8 (Lemma 3.8 applies if 5 = ay) the ir-
reducible unramified subquotient o’ of ((—f, a1, xyx) * ¢ is negative. Now
we have 7 — ((—f1,a, xyX) X 0", a contradiction with the Zelevinsky clas-
sification (Theorem 3.6 and a3 # «). Thus, 7 is not a subrepresentation and
¢(=P1, a1, xpx1) » o reduces.

If (=P, o1, xyx1) @ o’ reduces, by induction hypothesis x1 € {1, xo} and 31 €
% +Z. Having proved (i), we may also assume ((—f1, a1, Xy X1) X (=8, &, Xy X)
is irreducible. Thus

C(—=PB1 a1, xyx1) X 0 = (=B, xyX) X ((—B1,a1, Xyx1) X 0

Let 7 be the unique irreducible subrepresentation of ¢(—f1, a1, xyx1) X o’. By
induction hypothesis 7 is not unramified. If ((—23, a, xyXx) X (=1, @1, XuX1) ®
o’ appears with the same multiplicity in p*({(—05, a, xX) X C(—=B1, @1, XpX1) X
o’) and p*(¢(—B, a, xypx) X ), then {(—p1, a1, xypXx1) X o reduces and 7 is not
a subrepresentation.

First, we calculate the multiplicity of (=8, a, xyx) X (=1, 1, Xypx1) @ 0’
in p*(C(=8, a, xpx) X C(—=B1,a1,xpx1) % d'). By (2.5), there exist 0 < j <
1 <a+p0+1,0< 7 <i < a;+ 1+ 1 and an irreducible representation
(1 ® o1 < p*(0’') such that

C(=B,q, Xz/;X) X (=B, a1, xypx1) @0’ <

C(=a, B =i, xyx) X (=B, = B — L xux) ¥

C(=a1, Bi — i1, Xpx1) X ((=B1,1 — B1 — Lixyx1) X G

® ¢ —Byi— B =1L xpx) x ((J1 — P11 — B1 — L xex1) X o1,
Note that the cuspidal support of (1 does not contain v*y,,x for |k| > a.
If x1 = x, we have:

o If -9 < —f,then a < < 61 < ag,s0i = j1 = a + 61+ 1. Now
i=j=a+pf+lori=j=pF—aand (1 =xyland o1 Z o'
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o If oy < @, then 51| < a1 < a < . Since ((—au, f1 — i1, XuX) X ((—P1,71 —
B1 — 1, xyx) cannot produce v®xy,x two times if a3 = « or once if o < a,
we must have i = j = a+ 3+ 1 or i = 3 — «, and since v~ !y, x cannot
be obtained by a choice of ¢; and j;, we must have 57 = § — a. In both
cases, because of —f1 + a1 > 0, ((—au1, f1 — i1, xyx1) should not appear, so
i1 = a1 +/51+1. As o’ is strongly negative, (; cannot have in cuspidal support
a positive sum of powers of v. Thus j1 = a1 + 51 +1, (1 = xyp1, 01 =0,

o If —31 > o+ 1, we look how to get v*xyx. One possibility is j = a + 5+ 1.
Then i =j, i1 =j1 =a1+61+1, (1 = xy1 and 01 = o’. Another possibility
is i = B — a. Since v 1,y cannot be obtained by a choice of i; and ji,
we must have j = -, i1 =ji =a1+ 1+ 1, (1 = xyl and 0y = 0'.

If x # xu1, since (; does not contain v“x,x, we must have ¢ = j =a+ 8 +1

ori=j=f—a Because —f1 + a1 >0, {(—aq, 1 — i1, XyX1) cannot appear,

and i1 = a1 + 1 + 1. As ¢’ is strongly negative, ¢; cannot have in the cuspidal
support a positive sum of powers of v. Thus, j1 = a1 + 81 + 1, (1 = xy1 and
oL =o',

We proved that ((—f,a, xyX) X ((=B1, 01, x¢x1) ® o’ appears in p*(((—0, «,

XoX) X C(—B1, a1, xypx1) ¥ 0’) two times.

Now we show that ¢(—8, &, xyX) X {(—f1, 1, Xy Xx1) @0’ appears in u*(¢(—5, a,

XyX) X ) at least two times. Take ¢(—f1, 01, xyx1) ® 0’ < p*(7). Now

a+pB+1 4

PC(=Bre X)) X T) = Y > (=, B =i, xyx) X ((—=B,5 — B — 1, xyX) X

=0 j=0
C(_/Blaalaxd)xl) & C(.] - /Bal - B - 17X’L/JX) X al'

Choices of indices t = j = a+ f+ 1 and ¢ = j =  — a prove the claim.

If {(—5, a, xupx) X ((fal,ﬁl,xwxfl) reduces, we may assume that {(—/51, a1,
XyX1) X C(=B,a,xypXx) and ((—p1, a1, xpx1) X o are irreducible. Now x =
X1, b >a+1,8,>-8—-1, —a; < —f and

C(=Br, a1, xyx1) X o <= (=B, a1, xpx1) X (=B, a, xypx) @ o’
= (=B, Xy X) X (=B, 01, xypx1) @ 0’
= (=B, o, xyX) X ((—ar, i, xpx1) X o'

If 7 — ((—f1, 1, xyx1) X 0, Lemma 3.4 implies
T — C(fala a7X¢X) X C(fﬂa ﬂla XT,ZJX) X UI‘

If {(—B,B1, xux) = Xu1, then 7 is negative by Theorem 4.4, a contradiction.
Otherwise, by induction hypothesis, ((—8, 81, xyX) x ¢’ is irreducible, so

T — C(_a15a7X¢X) X C(—ﬂhﬁaXsz) A UI'
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Because —f1 > a + 1, {(—a1, o, xyx) X ((=P1, B, XuX) is irreducible, we have

T = ((=B1, B, xupX) X ¢(—a1, o, xyx) @ o'

Let ¢” be the unramified irreducible subquotient of {(—au,a, xyX) X o’. By
Theorem 4.4, it is strongly negative. Lemma 3.4 gives 7 — ((—f1, 8, xpx) X",
a contradiction with Theorem 3.6 (uniqueness of embedding).

(iv) If all representations from the list are irreducible, denote ¢ = ((—8, o, xy),

¢1 = C(—Pr,01, xypx1) and (o = ((—a1, B1, Xy X '). Now

Gro—=Gx(xo

GXo—=OXEXo 2 (xGxo 2(xGxo 2 x(xo.

By the uniqueness of the irreducible unramified subquotient, the intersection of
the images of embeddings is nontrivial. By [11, Thm. 4.6], {(—/f1, a1, XpX1) X 0
has a unique irreducible subrepresentation appearing with multiplicity one in
the composition series, but it is also a quotient of C(—al,ﬂ17x¢xf1) X o, by
[15, Lemma 3.1]. Thus, {(—f1, 01, XyX1) X ¢ must be irreducible. O

For n € Zxo, let Ittgep unr,sn(Sp(n, F)) (resp., [IrTgen,unr,sn(Sp(n, F))]) be the set
(resp., the set of isomorphism classes) of genuine irreducible strongly negative unramified

representations of Sp(n, F'). Now we finally prove their classification, up to isomorphism.
Brackets [ ] are used to denote an isomorphism class.

Theorem 4.6. Let n € Z>o. The map given by the assignment Jord — [o(Jord)] is a
bijection between Jord(n) and [IrTgepn unr,sn(Sp(n, F))].

Proof. Injectivity is obvious. We prove surjectivity by induction on n. Case n = 0 is
trivial. Let n € Zsq, and suppose that the claim is valid for all 0 < m < n. Take
o€ Irrgm,unmn(Sm)). Let 3 be the largest such that 7y, x is in cuspidal support
of o, where x is a unitary character. As in Lemma 4.3, let a be the largest such that there
is an embedding o — ((—f,a, xyX) X o, where ¢’ is irreducible. Lemma 4.3 implies
that —f + « < 0, ¢’ is strongly negative and ((—/, @, xyX) x ¢’ reduces. By induction
hypothesis and Proposition 4.5, we have o' = o(Jord’), x € {1,x0} and 8 € % + 7. If
Jord'(xyx) = 0, then, by Theorem 4.4,

o = o(Jord) for Jord = Jord’ U {(28 + 1, xyX), (2 + 1, x4X) }-

Otherwise, we show that o > |i| for every VinX appearing in the cuspidal support
of o’. Let 23’ +1 be the largest in Jord'(yX), and 2o’ 41 the second largest, if it exists,
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or else 2a/ +1 = 0. Let Jord” = Jord \{(28’ + 1, xuX), (2¢/ + 1, xyX) }- By Theorem 4.4
o= (=B, xpx) X C(=B, /', xpx) x o(Jord"). (4.17)

If 8/ = B, then o < (=B, &, xpX) X ((—=B,, xyx) ®¥ o(Jord”). By Lemma 3.4 and
the choice of a, we have a > o/(> —%) Also o < ((—=F', B, xex) X ((—a, &', xpXx) %
o(Jord”). By Theorem 4.4 and Lemma 3.8, the irreducible unramified subquotient of
((—a,a’, xypx) x o(Jord”) is negative, so, by Lemma 3.8, o is negative, but not strongly
negative, a contradiction. Thus, 8’ < 3.

If 8’ > «, we have several cases:

o If &/ > «, then ((—f, 0, xyx) X (=", &, xyx) reduces. By Lemma 3.4, 0 —
C(=B,a, xpX) x C(=B,a, xpXx) ¥ o(Jord”). Lemma 3.4 gives a contradiction with
the choice of a.

o If a>a, then o < ((—8,8, xyX) X ((—a, &, xyX) ¥ o(Jord”). By Theorem 4.4, o
embeds in this product, and Lemma 3.4 gives a contradiction with the choice of «.

o If = o, then 0 < {(—a,a’, xypX) x ((—=B,8", xpX) ¥ o(Jord”). By Theorem 4.4
and Lemma 3.8, ¢ is negative, but not strongly negative, a contradiction.

Soa > BI' Ifa= ﬂla o< C(_Ba _O‘_]-v X¢'X) XC(—(L Q, XQZJX) XC(—OZ, 0/7 Xﬂz’X) ><10(Jord”),
and

o < (=, o, xyx) X C(=B, ', xyx) x o(Jord”).

By Lemma 3.8 and Theorem 4.4, ¢ is not strongly negative, a contradiction. Thus,
B>a>p>a and o 2 o(Jord) for Jord = Jord' U {(28 + 1, xyX), 2a+1,xyx)}. O

5. The Zelevinsky classification of unramified representations

We are finally ready to prove the strong form of the Zelevinsky classification of genuine

unramified irreducible representations of Sp(n, F). But first we need a lemma.

Lemma 5.1. Let x, x1,--.,X: be unramified unitary characters of F*, a, 5 € R such
that « + B+ 1 € Zsg and —f 4+ «a > 0, and ly,...,l; € %Zzo- Let o/ be a genuine
irreducible unramified strongly negative representation of the metaplectic group and o the
irreducible unramified subquotient of ((—l1, 11, XypX1) X -+ X (=l le, xpxt) ¥ o'. Then
C(=B,a, xyx) x o reduces if and only if one of the following representations reduces
(i=1,...,t)

C(ifx (&2 wa) X C(ilia lia Xle)v C(*O{, /Ba Xﬂ/’Xﬁl) X C(ilia lia waz)a
((=B,a,xpX) x 0.

If (=B, a, xpx) X o reduces, its unique subrepresentation is not unramified.
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Proof. Lemma 3.8 implies o — ((—l1,01, xpX1) X -+ X {(=ls, b, xpXe) @ o’ and the
negativity of o. If all representations from the list are irreducible, we have

C(=a, Byxux ") ¥ o= ((—a, B, xex ™) X C(=l1, 1, xpxa) X -+ X C(=le, L, Xy xe) X o

=1, 11, X X1) X o0 X C(=ley Ly Xxe) X C(—a, By xpx ') @ o’

¢(
¢(

= (=l by xgxa) % X Q= by Xpxe) X C(=B, o, xpX) x 0
(=B, a, xpx) x (=l xpxa) X -+ X C(=ley by X Xe) @ 07,
¢(

C(_ﬁaa7X¢X) X o — —ﬁaaanX) X C(—llallanXl) X X C(—lt,luXth) A OJ

Because of the uniqueness of the irreducible unramified subquotient, the intersection of
the images of embeddings is nontrivial. By [11, Thm. 4.6], {(—8, v, x4 X) X o has a unique
irreducible subrepresentation appearing with multiplicity one, which is also a quotient of
C(—a, By xpx 1) x o, by [15, Lemma 3.1]. Thus ¢(—f, @, xyX) X ¢ must be irreducible.

Now, we consider the cases when one of the representations from the list reduces. Let
7 be the unramified irreducible subquotient of ((—/, &, xyX) % 0. Suppose that

(1) ¢(=B,a,xupx) % (=i, l;, xpx:) reduces for some s =1, ...,t. We may assume ¢ = 1.
Reducibility implies a > I; > § € %Zzo and y = xi1. Assume 7 — ((—0,q,
XyX) X 0. Now

T — C(fllaO@X?,UX) X <(7/85[17XU1X) X C(7l27127X1/1X2) X X C(fltvlt,x7/)xt) X JI

Let o1 < ¢(=8, 11, xox) XC(—la, la, X X2) X - X C(=l¢, I, X Xt) @0’ be its irreducible
unramified subquotient. By Lemma 3.4, 7 — {(—l1, @, xyX) * o1. For o1, there
exists an embedding o1 < (=81, a1, XypXx1) X -+ X {(—Brs Ok, Xy Xk) X Oneg, 88 in
Theorem 3.6. Now

T C(=l1, 0, Xypx) X ((=B1, a1, Xpx1) X =+ X C(—Br, Wk, Xop X&) X Opeg-

Since ¢(—8, o, xyx) does not contain V*llxd,x in the cuspidal support, we have a
contradiction with the uniqueness of the embedding of 7 (Theorem 3.6). Thus, 7 is
not a subrepresentation of ((—4, o, xyx) X o, which must then reduce.

(i) {(—B,a, xpXx) x o’ reduces. By Theorem 4.6 and Proposition 4.5, we have x €
{1, x0}. Having proved (i), we may assume that ((—8, &, xyX) X C(=1i, li; XeXs) is
irreducible for every i. Now

C(=B, 0, xypX) X 0 = C(=l1, 11, Xypx1) X - X C(=le, b, X Xe) X C(=B, a, xyX) X o'

Let m be the unique irreducible subrepresentation of ((—8,«,xyXx) x o’. By
Proposition 4.5, 7 is not unramified. If {(—l1,11, xpXx1) X ==+ X (=, b, xpXxe) X
C(—B,a,xyx) ® o’ is contained with the same multiplicity in p*({(—11, 0, xpXx1) X
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o X (=l by xpxe) X C(=B @, xypx) x 0”) and p* (C(—1, b, xpXx1) X - X (=g by,
XwXt) X ), then 7 cannot be a subrepresentation of {(—8, &, xyX) X ¢ and it must
then reduce. Let us calculate these multiplicities.

First, by (2.5), thereexist 0 < j <i<a++1,0<7j <i3 <21 +1,...,0<
Ji <4y <20y + 1, and an irreducible representation (; ® o1 < p*(¢’), such that

C(=lu, b xwxa) X o X C(=le e xpxe) X C(=B, o, xyx) @ 0' <

G, 0l =i, xeXT ") X C(=l, 1 =l — 1, xpxa) X -+ X (=l Iy — i, xpx D)%
C(=lesde = b — Lixpxe) X C(—a, B — i, xypX) X ((=B,7 — B — Lixyx) x G®
Cljr — 1,01 — i — 1, xyx1) X

ce X Qe = eyt — 1 — 1, xgxe) X C(J — B,i— B — 1, xpX) ¥ 01.

The sum of exponents of v in the cuspidal support of ((—I1,l1, xyXx1) X -+ X
C(=le, Ly xpxe) X C(—=B,a, xyx) is =8 + --- + a > 0. On the right hand side only
¢(—=B,j — B — L,xyx) can have a positive sum, at most —f3 + --- + «, achieved
for j = o+ B + 1, while ¢; has a negative sum if different from x,1. Thus
j=i=a+B+1 G =xypl, o1 2o and if x5, # x5!, is = js = 21, + 1,
while if x, = x5!, then iy = js =2l, + 1l or iy = js =0, forall s = 1,...,t.

For the second multiplicity, note that {(—5, a, xyX) ® ¢’ < p*(7). Now

N*(C(_llathle) X X C(_lt7lt7X¢Xt) A ﬂ-) 2

t 2041 i,

DDtk =i xexi ) X Gl g =l = Lxgxa) X

s=1 iy=0 j,=0
X C(—lt,lt - ithwal) X C(_ltajt — 1l — 17X¢Xt) X C(_Baa7X1ZJX)

@ ¢ =i =l — 1, xpxa) X - X (e = by ie — 1y — 1, xpxe) @ 0’

We can make choices for i5 and js, s = 1,...,t as above, so multiplicities are equal.

(iii) C(—a, B, xepx™) % (=L, L, xpxi) reduces for some i = 1,...,¢. Replace ¢(—1;,1;,
XoXi) With C(=1i, iy X Xi ) Now C(—8, o, X X) X C(—1is li, xox; ') reduces and we
are in case (i). O

Theorem 5.2 (Zelevinsky classification). Let o be a genuine irreducible unramified rep-
resentation of SM} Then, either o is negative, or there exist k € Z~g, and a
sequence X1, ---, Xk of unramified unitary characters of F*, and there exist real num-
bers a;, B;, such that o; + B; € Z>o and —B; +a; > 0, for ¢ = 1,...,k and there
exists a genuine irreducible unramified negative representation ey of the metaplec-
tic group, such that o — ((=B1, a1, xpXx1) X -+ X C(—Bk: Ok, Xy Xk) X Oneg- Data
C(=B1s a1, xuXx1), - - - C(—Brs ks, Xy Xk) are unique up to permutation, while Opeq 1S
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unique up to isomorphism. Moreover

0 = (=B, a1, XypX1) X o X C(—Br, ks X Xk) X Tneg-

Proof. Suppose that o is not negative and take an embedding as in Theorem 3.6

o — 4(7517 O‘laXﬂz’Xl) X X C(fﬂka O‘kaXdJXk) X Onegs (51)

where x1,...,xx are unramified unitary characters of F'*, «;, 3; are real numbers such
that a; +Bi € Z>o, —Bi+ai > 0,5 =1,...,k, (=1, a1, xypx1) X -+ X C(—Br, Ok, Xyp Xk)
is irreducible and o4 is a genuine irreducible unramified negative representation. Note
that we can permute Zelevinsky segment representations. Also, ((—8i, &, Xy Xi) X Oneg 1S
irreducible for every i, or else, by Proposition 4.5 and Lemma 5.1, its unique irreducible
subrepresentation p; is not unramified, resulting with

0 = (=B, a1, xpX1) X - X ((=Bi=1, qti—1, Xy Xi—1) X
C(—=Bit1, i1, X Xit+1) X -+ X C(—Br, 0k, Xy Xk) X Pi

a contradiction to Lemma 3.3. Now we do the following process. We start with
C(=PB1, a1, xpx1). Permute it until it is next to opeq, replace with C(—a1,ﬁ1,X¢Xf1)
and pull back to its place. To keep the embedding of o, for this last action, note that
C(=Bis i, xyXi) * ((—ai, B1, Xy X1 ) is irreducible for 4 > 1. Indeed, if 4 is the largest
such that ¢(—8i, ai, Xy Xi) X C(—a1, B1, xyXx; ) reduces and 7 its unique irreducible sub-
representation, then it is not unramified by Lemma 2.1. Now

o — C(_B27 a27X’¢1X2) X X C(_Bifh Oéi—lanXi—l)X

T X C(=Bit1, Qi 1, Xy Xit1) X -+ X C(=Bry Uy Xop Xk) X Tnegs
a contradiction to Lemma 3.3. Thus
o = ((—an, B, XpXi ) X C(=B2; a2, XupXa) X -+ X C(—Bhy Qi X Xk) X Tneg
We continue the process with ¢(—082, a2, xyX2), - - - C(—Bk, @k, Xy Xk)- In the end

o = C(—au, B, xuxi ") X ((—az, B, XXz ) X+ X (=, By X X5 ) X Tneg-

Lemma 3.1 of [15] implies that ¢ is a quotient of

C<_B17a17X¢X1) X C(_B%OZZ;X’LbXQ) X X C(_ﬂkaakuxka) X Oneg-

Thus, Theorem 3.6, together with (5.1) gives the result. O
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Appendix A. Reducibility of {(—8, a, x4X) X wo

The goal of this appendix is to prove a criterion for reducibility of the induced repre-
sentation {(—f, v, Xy X) X wo where x is a unitary unramified character of F'*.

A.1. The basic case of n =1

We first consider the reducibility of the induced representation x,xv® X wq. It is
settled by the following theorem of [23] (see also [7]).

Theorem A.1. Let x be a unitary character of F* and o € R. Representation xyxv™ Xwo
reduces if and only if x*> = 1px and o € {£1/2}. If @« = —1/2 and x is unramified such
that x> = 1px, then the unique unramified irreducible subquotient is a subrepresentation.

A.2. Lemmas of Tadié

The following lemmas directly generalize from [22]. We include their statements to fix
the notation.

Lemma A.2. Let Po, P, P" and P _be parabolic subgroups of Sp(n, F) with Levi factors
My, M', M" and M", such that P’ C P" and P' C P". Let oo be an irreducible
representation of My such that

Sp(n.F) 7., 15p(n.F°
rit >(1ndM£D< )(00)) # 0.

’

Assume that there exists an irreducible subquotient " of rif”n F)(I dSp p(n.F) (00)) such

that for every irreducible subquotient """ of Tf;,(: F)(I dSp(n F)( 0)) we have:

5.8. (r%,ﬁ( )) + 8.8. ( MW ") ) £ s.5. ( SpnF)(I dSp(n F)(UO)))~

SpnF)(

Then, induced representation Ind 00) is irreducible.

Lemma A.3. Let ’158 = ]\%Ng be a parabolic subgroup of Sm‘) and og an irreducible
unitarizable representation of ]\%.

Let P = M'N’ and P" = M"N" be parabolic subgroups of Sp(n, F) such that
P C ﬁo and P’ C P". Assume that there exists an irreducible subquotient 7" of

S F S a
rwf,‘/" (In d“” (00))

Sp(n,F Sp(n,F
TA% )(Indfg )(00))

of multiplicity one. Let 19 be an irreducible subquotient of

and o' an irreducible representation of M'. Assume that the

following three assertions hold:
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(i) Tnd2 ) (g) < nd 2 (o)

O
(ii) If 7§ is an drreducible subquotient of Tff(" F)(I dSp(n F)( 00))
10

that is mot isomorphic
to 19, then o’ is not a subquotient ofrw (73)-
(iii) There exists an irreducible subquotient p' of r% (10) such that p' has the same

multiplicity in r;\/@ (") and rSp(n ) (In dSp " F)( 0))-

Then Ind%g(n’F)(ao) is @rreducible.
0

A.3. The incomplete reducibility criterion

Now we prove the irreducibility under certain conditions. The following two lemmas
solve a special case.

Lemma A.4. Let x be a unitary unramified character of F* such that x> = 1. The
representation §(0,1, xyXx) X wo s irreducible.

Proof. The proof is the same as the proof of Lemma 6.2 and Proposition 6.3 of
[22], except that instead of using the analogue of Lemma 6.1 of [22], that is, xux X
d(—1, 1, xyXx) X wo is irreducible, it is enough to have that all irreducible subquotients of
XX X 0(—1,1, xpX) Xwp are isomorphic. This is valid by Corollary 8.3 of [8] and the fact
that x x §(—1,1,x) x 1 as the representation of the split odd special orthogonal group
is irreducible, which is a consequence of Lemma 6.1 of [22] and part (44) of Theorem 3.3
of [18].
For the sake of completeness we write down the proof. Using (2.6), we have

5.5.7(4;0) (XX X XX X XopVX X XypVX X Wo)

=4 ) XeX X XX X XeVX X Xpr X ® wo
(€1,e2)e{£1}2

5.5.7(4;0) (XX X 0(=1,1, XyX) X wo)
= 4xypx X 6(=1,1, xypXx) ® wo 44Xy X X XX X (0,1, xyX) ® wo.

Thus, the multiplicity of §(0,1, xyX) % 0(0,1, xypX) ® wo In ¥ (XX X XX X XeVX X
XyVX X wp) is 4, the same as in p* (xyx X 0(—1,1, xpX) X wo).
Now, recall that, by Theorem A.1, x,x X wo and x4vX X wp are irreducible. By (2.6),
we have
17 (8(0, 1, X X) X wo) = Xyl ® (0, 1, xyx) ¥ wo +
+ DX ¥X @ XX X Wo + XuX ® XyPX X wo] +
+ 000, 1, xyX) ® wo + XxuX X XX @ wo + 0(—1,0, Xy x) ® wol.
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Suppose that 6(0, 1, x4 x) X wo reduces. Then, there exists an irreducible subquotient ,
such that 7(1,1)(m) = xy¥X ® xpX X wo. Using (2.6) and Lemma 2.1, we see

P (1) = Xgp1 @ T + XgrX @ Xy X X wo + 26(0,1, xypX) ® wo.
Using (2.6), we have

5.5.7(4;0)(0(0, 1, xpx) ¥ ) = 25(0, 1, xpx) x (0,1, xyX) ® wo +
+ 2xpX X XX X 6(0,1, xypX) ® wo +
+20(—1,0, xyXx) X 6(0,1, xpX) @ wo.

Thus 5.5.7(4;0)(0(0, 1, xpx) X ™) > 46(0, 1, xyx) x 6(0,1, Xy Xx) ® wo. As we proved that
the multiplicity of §(0, 1, xyx) X 0(0,1, XyX) @ wo In w* (XyX X XX X XpVX X XpVX X
wp) is 4, the same as in pu*(xypx X 6(—1,1, xyX) X wp), and by the above argument all
irreducible subquotients of xyx X §(—1, 1, xyXx) X wp are isomorphic, we have s.s.(xyX X
O(—=1,1, xypx) Xwo) < 5.5.(6(0,1, xyx) ¥ ). Writing down s.5.7(4,0) (XX X 6(—1, 1, xyX) %
wo) < 5.5.7(4,0)(6(0,1, xyx) X ), we get
Axyx % 6(=1,1, xyX) ® wo + AxyX X Xyprx X 6(0,1, xyX) ® wo
< 260(0, 1, xypx) X 0(0, 1, xypX) ® wo + 2XpX X xy¥X X 0(0, 1, XpX) @ wo
+20(—1,0, xpXx) x 6(0,1, xpx) ® wo.
But, using Lemma 2.1 and (2.3) and (2.4), we see that x,x X d(—1,1, xyXx) @wo appears

only two times on the right hand side, a contradiction. We have proved that 6(0, 1, x4 x) ¥
wpo does not reduce. O

Lemma A.5. Let x be a unitary unramified character of F* such that x> = 1. The
representation (0,1, xyX) X wo is irreducible.

Proof. Using formulas (2.5) and (2.6), we have
5.5.7(1;1)(C(0, 1, XpX) X wo) = XV~ 'X @ XX X Wo + XypX @ Xy X X wo (A1)
5.5.7(1;1) (8(0, 1, Xy X) X wo) = Xyl X ® XX X Wo + Xy X @ X' X X wo (A.2)

all summands being irreducible by Theorem A.1. Since 6(0,1, xyX) X wo is irreducible
by Lemma A.4, we see that it is not isomorphic to any irreducible subquotient of
¢(0,1, xyx) ¥ wo. Now observe

C(0, 1, Xy X) X Wo = XX X XV X X wo = XX X XV~ "X X wo — Xpl ™ "X X XX X Wo

where the kernel of the last map, induced from x,Xx X Xpv~'x = XuV 71X X XgX, 18
3(—1,0, xypx) X wo = 6(0,1, xpX) ¥ wp. Thus,
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C(0, 1, xpX) X wo = XV~ TX X XX X Wo

Let m be the unique irreducible subrepresentation of (0,1, xyX) X wp. Frobenius reci-
procity implies that s.s.7(y;1)(m) > qu_lx ® XX X wo. Also, from (0,1, xpX) X wo —
XoX X XypV X X wo, we get s.5.7(1;1) () > xyX @ xyr' X ¥ wo. Thus,

S-S-T(l;l)(ﬂ) > qu_lx & XypX X wo + XX & xwulx X wo
Comparing to (A.1), we see that 7 = (0,1, xyX) X wo, showing irreducibility. O

Theorem A.6. Let a, 8 € R be such that a+8+1 € Z~q, and let x be a unitary unramified
character of F*. Suppose x> # 1px or —B ¢ 1/2 — Z>q or a ¢ —1/2 + Z>q. Then the
representation ((—f, o, XypX) X wo is irreducible.

Proof. We prove the two cases of the theorem separately. The third case, a ¢ —1/2+Z>,
follows from Case 2 below using relation (2.7).

Case 1: x2 # 1px.

Let 3 be a real number. We show, by induction on n € Zxq, irreducibility of the
representation o := ((—8, =8+ n, xyXx) X wp. Theorem A.1 provides the induction basis,
so assume n > 1. Using (2.5), we have

n+l <

pr(o)=> 3 CB=nB—ixpx ") x (=85 — B —1,xuX)

i=0 j=0

Let M',M",M" be Levi subgroups of Sp(n + 1, F) that correspond to (1,...,1;0),
(n+ 1;0), (1;n), resp.

55,50 () =
VI XX T @ (=B, =B = L xgx) X wo + v xyx @ (=B 4 1, =B+ 1, xpx) X wo.
(A.3)
s o n+1
n F } — .
s.s.(rl%(, +h )(0')) = Z C(B—mn,B—d,xex ") X C(=Byi— B —1,xpX) @wo. (A4)
i=0

Take 7 = v/ "y, x 71 x (=B, —B+n—1, Xy X) ®wo, which is the irreducible summand
on the right hand side of (A.4) for ¢ = n. We want to apply Lemma A.2. By induction
hypothesis, summands on the right hand side of (A.3) are irreducible. First take 7/ =
VP x Tt @ C(=B, =B +n — 1, xyX) X wp. Assume that

(1 ®@s.s.rq,.1:0)0") + (ss8ra..1y @ (") < s.s. Qf%"“ﬂ (J)> . (A.5)



394 I. Ciganovié, N. Grbac / Journal of Algebra 454 (2016) 357-399

From (A.3) we have (s.s.r¢. 1) ® 1)(7") < v P xux ® s.8.(r,... (= +1,-p +
n, Xy X) X wo)), a contradiction. Take now 7 = v =Py, x @ (=B +1, =B +n, xpX) X wo.
If (A.5) was valid, then (A.3) would imply (s.s.rgp,..1) ® 1)(7") < P 7"xyx"! ®
s.s. (ra,. 10 (=B, =B +n —1,xyX) ¥ w)). Again contradiction, and Lemma A.2
shows that o is irreducible.

Case 2: x? = 1px and —(3 ¢ 1/2 — Z>.
First we prove irreducibility of o in the special case o := ((—n,n, xypXx) X wo for
n € Z>o. Theorem A.1 covers the case n = 0. Let n > 1. Using (2.5), we have

2n+1 i

M*(U) = Z ZC(_nan - Zan) X g(_nv —TL+] - laXTﬁX)

i=0 j=0
®C(I —n,—n+1i—1,xyX) X wo.

S~S~(T(2n;1)(a)) = C(_n7 _17 XwX) X C(—’IL _17X’¢1X) ® Xy X X wo +

22((—71, —k — 1, xpX) X C(=n,k — 1, xpX) @ VP xpx X wo. (A.6)
k=1

All summands in (A.6) are irreducible. Let 77 = {(—n, —1, xyX) X {(—n, —1, xpX) @
Xy X X wo. It appears with multiplicity one in (A.6). Moreover,

8.8.(T(2n41;0)(0)) = 2 ZC(*%” — i, XgX) X ((=n, —n+1i—1,xyX) @ wo, (A7)
i=0

and all summands in (A.7) are irreducible. Let 79 = ¢(—n, 0, x4 X) X {(—n, —1, x4 X) Qwo.
Since v™yyx X wp is irreducible, and for i = 1,...,n — 1 and n > 2, vixyuXx X V"X X
is irreducible, we have 1", X X wo = v " xpx X wo and VixyX X VT XX 2T XX X
z/ix,/,x (n>2).So forn > 2

C(=n,m, xpX) X wo = V7 xpX X 1/_"+1X¢,X X oo X V”_lxd,x X VXX X W

n n

12

+1X¢X X oo XU _1XwX X VT XX X Wo

VXX X VT

n

12

VXX X X VT X X XX X VT XX X VXX X e X VT g X wo

n

12

v XX X e X VﬁleX X XX XV "XpX X VT +1X1/;X X oo X 1/71)(1[,)( X Wg-

Thus, for n > 1

C(—?’l,’l’L, XIZ)X) XN wo —

n

VXX X e X V_1X¢X X XX X V" XX X VT +1wa X oo X V_1X¢X X wp. (A.8)
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Let 0/ = v "Xy X® QU Xy X@Xp XV "X XV " Ty x®- - - @v ™ xy X ®wo. We use
Lemma A.3 to prove irreducibility of o = ((—n, n, xyXx) Xwo. Let o9 = {(—n,n, Xy X) Qwo.
From (A.8), we have condition (i) of Lemma A.3. For (ii), note that ¢’ is not a subquotient
of

T(1,...,1) (C(_nan - ZinlJX) X C(_nv —n+i— 17X111X)) ®wo, © = 07 cees N — ]-a

because every irreducible subquotient of {(—n,n — 1, xyx) X {(—n, —n +1i — 1, x4 Xx) has
vXXy in its cuspidal support. Now, from (A.7), we have condition (ii) of Lemma A.3, for
7o defined after formula (A.7). That leaves us with condition (iii). Since

T0 = C(_n7ovxwX) X C(_nv _17X¢'X) & wo = C(_n7 _17X¢X) X C(_na 07X¢'X) & wo,

we have 7o < 17Xy X X - X VT X X VXX X X XX @ wo. Let

Pr=v""XyX @ @V XX @V XX @ - @ XX ®wo € 8.5.(r(1,...150)(T0))-

From (A.G), we see that it is enough to show that p’ is not a subquotient of

C(=n, =k — 1, xyx) X C(—n,k — 1, xpX) @ Vixyx @ wo, 1 <k <n.

That is clear, because T(l;o)(VkaX X wp) = u_kxd,xé@wo + ka¢x®wo, 1 <k <n.So,
by Lemma A.3, representation o = ((—n, n, x4X) X wp is irreducible.

We consider now the general case o := ((—3, —8+n, xyX) Xwp for =5 ¢ 1/2—Z>¢. As
in Case 1, we show irreducibility of o by induction on n € Z>(. Because of Theorem A.1,
we may assume n > 1. Using (2.5), we obtain

n+1l 1

p(e)=> 3 CB=n,B—1i,xyx) X ((=B,5 — B —1,xuX)

i=0 j=0

®C(]*ﬁ’1*5*1,X¢;X> X wo-

Let M',M",M" be Levi subgroups of Sp(n + 1, F) that correspond to (1,...,1;0),
(n+1;0), (1;n), resp.

S~S~(Tf§/f§‘7p)(0)) =17y x @ C(=B, =B +n — 1, xpX) ¥ wo + v xpx
@ C(=B+1,—B+n, xpX) X wo (A.9)
— n+1
1=0

By the induction hypothesis, all summands in (A.9) are irreducible. We have two cases:
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B # 0. Because of (2.7), taking contragredient if necessary, we may assume (-3 +
(—B+mn))/2 >0, as it is equal to zero only for 3 € Z~( and n = 23, which is settled
above. Thus, the i = 1 summand 7/ = (8 —n, 8 — 1, xpX) x v’ @ wp in (A.10) is
irreducible. We use Lemma A.2. First, let

" =Py x @ (=B, =B +n — 1, xpX) X wo and assume

S.8. (r%(n’F) (0’)) > (1@ss.ra,. 1,0) (") + (ssra, 1) @ 1)(7"). (A.11)

From (A.9), we have a contradiction

(s.s.r1,. 1y ®@1)(7") < v XX ® 8. (ra,. 1n(C(=B+1,=B+n,xpx) X wp)) .

Take now 7" = v Pxyx ® ((=B +1,—B 4+ n, xyX) X wo and assume (A.11). Then
(A.9) implies

(S'S'T(l,...,l) ® 1)(7—/,) S VﬁinX’lPX & s.8. (T(l,...71;0) (C(_Bv _/B +n— la XwX) A WO)) )

a contradiction. So by Lemma A.2, 0 = (=8, —8 + n, xyX) X wp is irreducible.
B = 0. Since we already proved in Lemma A.5 that (0,1, xyX) X wo is irreducible,
we assume n > 2. Take the 7 = 2 summand

"

T = C(—’I’L, _2a XIZJX) X C(Oa 17 X’le) & wo,
in (A.10). It is irreducible. Now (A.9) becomes

—

Sp(n,F _
S.S.(TJ\%/ )(0')) =" "xypX @ C(0,n — 1, xypX) X wo + XeX ® C(1, 1, XpX) X wo.
(A.12)

We want to use Lemma A.2. First, let 7”7 = v~ x4 x ® ((0,n— 1, Xy X) X wo. Assume
that

(1®@ssra,. 10)T") + (ssra,.. 1)@ 1)(1") <ss. (r%’f”’”(((o,n, XuX) X wo)) :
(A.13)
But (A.2) implies a contradiction (s.s.r¢,.. 1) ® 1)(7") < xyx ® s.8.7(1,....1,0)(¢(1, 7,
Xy X) X wp). Now take 7" = xyx @ ((1,n, xypX) ¥ wo and assume (A.13). Relation
(A.2) implies
(ss.ra,..1) @) (T") S v xyx @887, 1,0)(C(0,n — 1, xyx) X wo),

a contradiction. So {(—8,—8 + n, xyX) X wp is irreducible, by Lemma A.2. O
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A.4. The complete reducibility criterion

Now we finally prove the main theorem of this section.

Theorem A.7. Let a, B € R be such that a+p+1 € Z~, and let x be a unitary unramified
character of F*. Representation ((—PB, a, x4 X) X wo reduces if and only if xpxv' X wy
reduces for some i such that —5 <i<a and o — 1 € Z.

Proof. From Theorem A.1, we know that Theorem A.6 covers all the cases in which
X,/,XVi X wq is irreducible for all i such that —f < i < a and a — i € Z. It remains
to check the cases in which at least one of these waui x wo reduces. That is, x? =
lpx and —f3 € 1/2 — Z>g and @ € —1/2 + Z>¢. In other words, we must show that
C(3 —k, 5 +1,xyX) X wo reduces for k,l € Zx.

Because of (2.7) and Lemma 4.1, we may assume |3 — k| < § + [ and k > 1, resp.
Now

1

(5

1 1_p _1 1 14y
2—/{,§+l7x¢x)><1wo<—>l/2 XX X oo X V72X X X VXX X - - X VET Xy X X Wp.

Let o1, be the unramified irreducible subquotient of C(%,% + I, xpX) X wo, as in
Lemma 4.1. Suppose that C(% —k, % + 1, xyx) X wo is irreducible. Then, by Lemma 3.4,

1

1 1 1
C(§ - ka 5 + Z?X’L/JX) XN wy — C(§ - ka _§,X’L/1X) X O%Jrl' (A14)

We will get a contradiction by proving that (A.14) does not hold. Using (2.5), we have

L1 1
iz (C(§ -k, B + 1, Xy X) X wo)
I+k+1 4 1 1 . 1 1 ’
= 2. . C(—§—l,k—§—27xw><)><C(§—k,§—k+]—17xwx)
=0 35=0
o1 o1
1 1
5.8. T(l+k+1;0)(§(§ —ko5+L XyX) X Wo)
e 1 1 1 .
1=0

By Lemma 4.1 and (2.5), we have:
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L1 1
H (4(5 —k,—i,xwx) A U%H)
41 ki
1 1 . 1 1
=ZZZC(§,—§+k—Z,xw><)Xé(i—k,—k—§+3,xwx)><
5=0 i=0 j=0
wo(—t o L )& U + & — i — = — ko) (A7)
B 'Y S, X X J 2 )b D) » Xp X Os—1, .
1 1
5.8 T(k+l+1;0)(<:(§ —k, —§aX¢X) A U%H)
k
1 1 ) 1 1
_;<(§’_§+k_z’x'¢x>X((i_ka_k_g—i_la)ﬁ/))()x
1 1
x C(—§ -1, —§anX) & wo. (A.18)

Now we have two possibilities. If —3 — 1 < 3 — k, (A.18) implies that p*({(5 —

k,—1, xyx) % 1) does not contain C(3 =k, 2+ 1, xpx) ®wo. Since p*(C(2 —k, 1 +1,
XyX) X wp) contains {(% — k,% + I, xeX) ® wo, we have a contradiction with (A.14).
Else, if —2 —1 = 1 — k, (A.18) implies that multiplicity of ((3 — k&, 3 +{, xyX) ® wo in
,u*({(% — k‘,—%,x@c) X U%H) is one. Namely, ((% —k,—k — % + 4, xpx) must be x,1
(i = 0), because ((3 —k, 3 +1, x,X) in its cuspidal support has no repetition of V%_kx,px.
But multiplicity of ¢(3 — &, % + 1, xpx) @wo in (5 —k, & +1, xypX) ¥ wp is two, i = 0 and
i =k+1+1in (A.16). Again we get contradiction with (A.14), so ((3 =k, 3 +1, xyX) @ wo
reduces. O
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