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Abstract

The cohomology of an arithmetic subgroup of a connected reductive algebraic group
defined over a number field may be interpreted in terms of the space of automorphic
forms. Taking the adelic point of view, we consider the automorphic cohomology of
the general linear group GL4 over a totally real number field and its inner form GL2

over a quaternion division algebra. In particular, we give the structural description
of the automorphic cohomology, study the contribution of the Eisenstein series, and
obtain a non-vanishing result for the cuspidal cohomology of the inner form. The
main tool for passing to the inner form is the Jacquet-Langlands correspondence,
which is made explicit in our case of interest.
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0 Introduction

0.1 Automorphic cohomology

Let G be a connected reductive algebraic Q-group. The case of interest for us
will be the group Resk/QH obtained from a connected reductive algebraic group
H defined over an algebraic number field k by restriction of scalars. The auto-
morphic cohomology H∗(G,E) of G, is usually defined as the relative Lie algebra
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cohomology group

H∗(G,E) = H∗(mG,KR;AE ⊗C E),

of G where AE denotes the space of automorphic forms on G(k)\G(A) with respect
to coefficient system originating with a finite-dimensional algebraic representation
of G. We refer to Section 1 in Chapter I for unexplained notation mG and KR.
This cohomology reflects a deep relation between the cohomology of arithmetic
subgroups of G and the corresponding theory of automorphic forms.

By use of the notion of cuspidal support for an automorphic form one obtains
a finer decomposition of the automorphic cohomology. Let C be the set of classes
of associate parabolic Q-subgroups of G. Given {P} a class of associate parabolic
Q-subgroups of G, let φ = {φR}R∈{P} be a class of associate irreducible cuspidal
automorphic representations of the Levi components of elements of {P} as defined
in [10, Section 1.2.]. The set of all such collections φ = {φR}R∈{P} is denoted by
ΦE,{P}. Given a class {P} of associate parabolic Q-subgroups of G, we denote
by VG({P}) the space of smooth functions on G(A) of uniform moderate growth
which are negligible along every parabolic Q-subgroup Q 6∈ {P}. Then, given any
φ ∈ ΦE,{P}, we let

AE,{P},φ =



f ∈ VG({P}) | fR ∈

⊕

π∈φR

L2
cusp,π(LR, ωπ)⊗ S(ǎG

R) ∀R ∈ {P}




be the space of functions in VG({P}) whose constant term along each R ∈ {P}
belongs to the isotypic components attached to the elements π ∈ φR of the space of
cuspidal automorphic forms on the Levi components LR. Then, by [10, Theorem
1.4 resp. 2.3] or [24, Theorem in III, 2.6], the automorphic cohomology H∗(G,E)
has a direct sum decomposition

H∗(G,E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(mG,KR,AE,{P},φ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of
associate irreducible cuspidal automorphic representations of the Levi components
of elements of {P}.

The summand in the direct sum decomposition of the cohomology H∗(G,E)
that is indexed by the full group {G} is called the cuspidal cohomology of G
with coefficients in E, and denoted by H∗

cusp(G,E). Due to the results in [8],
the cohomology classes in the remaining summands can be described by suitable
derivatives of Eisenstein series or residues of these. These classes span the so called
Eisenstein cohomology, to be denoted H∗

Eis(G,E).

0.2 The case GL(2) and inner forms

We now suppose that the semi-simple rank rkQG = 1. This is the case for G =
Resk/QH if rkkH = 1. Then there is exactly one G(Q)-conjugacy class P of proper
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parabolic Q-subgroups of G, and the associate class {P} of such a parabolic Q-
subgroup P coincides with P. Thus the decomposition above reduces to direct
sum decomposition

H∗(G,E) = H∗
cusp(G,E)⊕

⊕

φ∈ΦE,{P}

H∗(mG,KR;AE,{P},φ ⊗C E).

In the case of the general linear group H = GL(2)/k, Harder describes in [17]
in detail which types (in the sense of [26]) of Eisenstein cohomology classes occur
and how their actual construction is related to the analytic properties of certain
Euler products (or automorphic L-functions) attached to π. In the general case
of a k-rank one group H, the results in [16] present a premature form of the de-
composition above. However, the internal structure of the Eisenstein cohomology,
in particular, the very existence of residual Eisenstein cohomology classes are still
open questions in this generality.

By use of the twisted trace formula one can detect cuspidal automorphic rep-
resentations for the group GL(2)/k (or variants thereof) which give rise to non-
vanishing cuspidal cohomology classes. Then one can use the Jacquet-Langlands
correspondence [18] between cuspidal automorphic representations for GL(2) and
automorphic representations for its inner forms to construct non-vanishing coho-
mology classes for these inner forms. This had, for example, interesting applica-
tions in the study of arithmetically defined compact hyperbolic 3-manifolds in [20],
resp. [28].

0.3 The case GL(2) over a central division algebra

In this paper our object of concern is the following case: Let D be a central division
k-algebra of degree d defined over an algebraic number field k. Then the connected
reductive k-group GL(2, D) is of semi-simple k-rank 1; it is a k-form of the gen-
eral linear k-group GL(2d). Up to conjugacy, a minimal parabolic k-subgroup Q of
GL(2, D) has the form Q = LN with Levi component L ∼= GL(1, D)×GL(1, D),
and N the unipotent radical of Q. In recent work, Badulescu [1] and Badulescu-
Renard [2] established a generalization of the global Jacquet-Langlands correspon-
dence to the case GL(n)/k and its inner forms. It is based on the local Jacquet-
Langlands correspondence for unitary representations which they define. Unlike
the local Jacquet-Langlands correspondence of Deligne-Kazhdan-Vignéras [7] for
square-integrable representations which is a bijection, this generalization is neither
injective nor surjective, and there are unitary representations on both sides not
involved in the correspondence. Nevertheless, it suffices for defining the global
Jacquet-Langlands correspondence. For more details see Section 2 and Section 3
in Chapter II.

However, it is our objective to understand what the implications of the gen-
eral Jacquet-Langlands correspondence are for the investigation of the automor-
phic cohomology of the group Resk/QGL(2, D) obtained from GL(2, D) by restric-
tion of scalars. Of course, a detailed understanding of the automorphic cohomology
of the group Resk/QGL(2d)/k obtained from the split k-group GL(2d) by restric-
tion of scalars is fundamental for such an analysis.



212 Neven Grbac and Joachim Schwermer

Being modest in our aim we focus on the case of a quaternion division algebra
D over k. Then the group H ′ = GL(2, D) is an inner form of the general linear
group H = GL(4)/k of semi-simple k-rank 3. We are interested in the automorphic
cohomology of the Q-groups G = Resk/QH and G′ = Resk/QH ′ obtained from H
and H ′, respectively, by restriction of scalars. Starting from the decomposition of
the automorphic cohomology along the cuspidal support as described in Section 0.1
in both cases, namely G and G′, we make a comparison of the internal structure
of the individual summands involved in this description. The general Jacquet-
Langlands correspondence, made explicit in the case of the group H and its inner
form H ′, provides a relation between the automorphic representations on both
sides. However, due to some subtle issues, this relation is not at all carried over to
the cohomological frame work. This investigation has to be seen as a first attempt
to understand where the obstacles for a direct “cohomological comparison” are.
Some of them, for example, originate in the still not well understood cohomological
contribution of automorphic representations which occur in the discrete spectrum
of the underlying algebraic k-group but are non-cuspidal.

Our work includes

— a structural description of the automorphic cohomology of the group G =
Resk/QGL(4)/k, in particular, of the Eisenstein cohomology,

— an explicit description (up to infinitesimal equivalence) of the irreducible
unitary representations of GL4(R) with non-zero cohomology,

— making explicit the local and the global Jacquet-Langlands correspondence
in the case GL(4)/k,

— a structural description of the automorphic cohomology of the group G′ =
Resk/QGL(2, D), in particular, of the Eisenstein cohomology,

— a non-vanishing result for the cuspidal cohomology H∗
cusp(G′,C) of G′ =

Resk/QGL(2, D)
— understanding in which way residues of Eisenstein series may give rise to

non-trivial classes in the automorphic cohomology of G′ = Resk/QGL(2, D)
and G = Resk/QGL(4)/k respectively, and how their very existence may be
understood in terms of the global Jacquet-Langlands correspondence.

These results are contained in Part III of this paper. In Part I, we define
the automorphic cohomology, and recall its decomposition along the cuspidal sup-
port. We also discuss some background material in the theory of Eisenstein series.
Part II deals with the general Jacquet-Langlands correspondence. Although the
local Jacquet-Langlands correspondence for unitary representations seems quite
complicated, it gives the crucial local ingredients for the definition of the global
Jacquet-Langlands correspondence. This global correspondence between discrete
spectra of a general linear group and its inner form is defined and proved in Bad-
ulescu [1] and Badulescu-Renard [2]. It seems much more natural than the local
correspondences required for its definition. We precisely describe the local and
global correspondence in the case GL(4)/k. This amounts to an explicit enumer-
ation of the unitary representations involved in this correspondence.
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Notation

1. Let k be an arbitrary finite extension of the field Q of rational numbers. The
set of places of k will be denoted by V , while V∞ (resp. Vf ) will refer to the
set of archimedean (resp. non-archimedean) places of k. The completion of
k at a place v ∈ V is denoted by kv, and its ring of integers by Ov, v ∈ Vf .
In the case k = Q, the ring of integers of Qv will be denoted by Zv, v ∈ Vf .
Let Ak (resp. Ik) be the ring of adèles (resp. the group of idèles) of k. We
denote by Ak,f the finite adèles of k. For k = Q we suppress the subscript
from the notation.

Let D be a division algebra central over k. Let d be the degree of D over k.
We denote by VD a finite set of places v ∈ V of k such that D does not split
at v ∈ VD, and splits at v 6∈ VD. In other words, D ⊗k kv is isomorphic to
the matrix algebra Md(kv) of d× d matrices over kv at places v 6∈ VD, while
it is isomorphic to a matrix algebra of smaller square matrices with entries
in a division algebra Dv over kv at places v ∈ VD.

2. The algebraic groups we consider will be linear groups, i.e., such a group
H defined over a field k is affine viewed as an algebraic variety. We fix an
embedding ρ : H −→ GLn (defined over k) of G into some general linear
group.

If H is an algebraic group defined over a field k, and k′ is a commutative
k-algebra containing k, we denote by H(k′) the group of k′-valued points of
H. When k′ is a field containing k we denote by H/k′ the k′ algebraic group
H ×k k′ obtained from H by extending the ground field from k to k′.

On the other hand, if H is an algebraic group defined over a field k, and k′

a field contained in k, we denote by Resk/k′H the algebraic group defined
over k′ obtained from H by restriction of scalars from k to k′.

3. Let G be a connected reductive algebraic group defined over Q. Suppose
that a minimal parabolic Q-subgroup P0 of G and a Levi decomposition
P0 = L0N0 of P0 over Q have been fixed. By definition, a standard parabolic
Q-subgroup of G is a parabolic Q-subgroup P of G with P0 ⊂ P . Then P
has a unique Levi decomposition P = LP NP over Q such that LP ⊃ L0.
When the dependency on the parabolic subgroup is clear from the context,
we suppress the subscript P from the notation.

Let AP be the maximal Q-split torus in the center of LP . In the case of the
minimal parabolic Q-subgroup P0 we write A0 = AP0 . Then there is a unique
Langlands decomposition P = MP AP NP with MP ⊃ M0 and AP ⊂ A0.

Let g, p, ... denote the Lie algebras of G(R), P (R), . . . , respectively. The Lie
algebras of the factors in the Langlands decomposition of P will be denoted
by mP , aP , nP , and lP = mP + aP . We put ǎ0 = X∗(P0) ⊗ R, where X∗

denotes the group of Q-rational characters, and similarly for a given standard
parabolic Q-subgroup P ⊃ P0, ǎP = X∗(P ) ⊗ R. Then aP = X∗(AP ) ⊗ R,
where X∗ denotes the group of Q-rational cocharacters, and a0 = X∗(A0)⊗R
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are in a natural way in duality with ǎP and ǎ0; the pairing is denoted by 〈 , 〉.
In particular, aP and a0 are independent of the Langlands decomposition up
to canonical isomorphism. The inclusion AP ⊂ A0 defines aP → a0, and
the restriction of characters of P to P0 defines ǎP → ǎ0 which is inverse
to the dual of the previous map. Thus, one has direct sum decompositions
a0 = aP ⊕ aP

0 and ǎ0 = ǎP ⊕ ǎP
0 respectively. Let aQ

P be the intersection
of aP and aQ

0 in a0. Similar notation is used for ǎ. By mG we denote
the intersection ∩ker(dχ) of the kernels of the differentials of all rational
characters χ ∈ X∗(G). Then we put aG

P := aP ∩mG; its dimension is called
the rank of P . We use ǎG

P for its dual. We denote by Φ ⊂ X∗(A0) ⊂ ǎ0

the set of roots of A0 in g; it is a root system in the vector space ǎ0. The
ordering on Φ is fixed so that Φ+ coincides with the set of roots of A0 in
P0. Let ∆ ⊂ Φ be the set of simple positive roots. Let aG+

0 ⊂ aG
0 and

ǎG+
0 ⊂ ǎG

0 be the open positive Weyl chambers determined by the choice
of P0. Similarly, we denote the corresponding positive Weyl chambers by
aG+

P ⊂ aG
P and ǎG+

P ⊂ ǎG
P . If P is a standard parabolic Q-subgroup of G the

Weyl group of A0 in LP is denoted by WP . In particular, we write W = WG

for the Weyl group of the root system Φ. Note that WP is a subgroup of W .
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I. Automorphic Forms, Eisenstein Series, and

Cohomology

In this chapter we recall the definitions and review important properties of au-
tomorphic forms, automorphic cohomology, and Eisenstein series on a connected
reductive linear algebraic group defined over Q. Although in the rest of the paper
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we also consider reductive groups defined over an arbitrary algebraic number field
k, this will suffice because it can be considered as an algebraic group over Q via
the restriction of scalars from k to Q. Then the Ak-points of a k-group coincide
with A-points of the restriction of scalars viewed as a Q-group.

1 Spaces of automorphic forms

1.1 Parabolic subgroups

Let G be a connected reductive linear algebraic group defined over Q. Fix a
minimal parabolic subgroup P0 of G defined over Q and a Levi subgroup L0 of
P0 defined over Q. One has the Levi decomposition P0 = L0N0 with unipotent
radical N0. By definition, a standard parabolic subgroup P of G is a parabolic
subgroup P of G defined over Q that contains P0. Analogously, a standard Levi
subgroup LP of G is a Levi subgroup of any standard parabolic subgroup P of
G such that LP contains L0. A given standard parabolic subgroup P of G has a
unique standard Levi subgroup LP . We denote by P = LP NP the corresponding
Levi decomposition of P over Q.

1.2 Iwasawa decomposition

By definition, the adèle group G(A) of the group G is the direct product of the
group G(R) of real points of G and the restricted product

∏′
v∈Vf

G(Qv) =: G(Af )
with respect to the maximal compact subgroups G(Zv) ⊂ G(Qv), v ∈ Vf . We
fix a maximal compact subgroup K of G(A) subject to the following condition.
Since it is of the form K =

∏
v∈V Kv where Kv is a maximal compact subgroup

of G(Qv), v ∈ V , we suppose (as we may) that Kv = G(Zv) for almost all finite
places v ∈ Vf . If v is archimedean we write KR instead of Kv, and we write
Kf =

∏
v∈Vf

Kv. We may assume that the group K is in “good position” relative
to P0 (cf. [24, I, 1.6]).

For a given standard parabolic subgroup P = LP NP of G one has the Iwasawa
decomposition G(A) = LP (A)NP (A)K. Then we can define the standard height
function HP : G(A) → aP on G(A) by

∏
v∈V |χ(l)|v = e<χ,HP (lnk)> for any

character χ ∈ X∗(LP ) ⊂ ǎP .

1.3 Lie algebras

We denote by MG the connected component of the intersection of the kernels of
all Q-rational characters of G, and by mG = Lie(MG(R)) the corresponding Lie
algebra. Note that the maximal Q-split torus AG in the center of G reduces to
the identity if G is a semi-simple group. In such a case, mG = Lie(G(R)). In
general, the Lie algebra g = Lie(G(R)) decomposes as a direct sum g = aG ⊕ mG

of Lie algebras where aG denotes the Lie algebra of AG(R). In particular, mG

coincides with Lie(AG(R)◦ \G(R)). The maximal compact subgroup KR of G(R)
may be viewed as a subgroup of AG(R)◦ \ G(R). A character χ ∈ X∗(G) defines
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a homomorphism G(A) → I of G(A) into the group of idèles, also denoted by χ.
We denote by G(A)1 the subgroup

G(A)1 = {g ∈ G(A) | |χ(g)|A = 1, χ ∈ X∗(G)}

of G(A). One has a decomposition G(A) = AG(R)◦ ×G(A)1 as a direct product,
and the group G(A)1 can be identified with AG(R)◦\G(A). In an analogous way,
mG can be identified with the Lie algebra Lie(AG(R)◦ \ (G(A) ∩G(R))).

1.4 Functions of uniform moderate growth

We fix a height ‖ ‖ on the adèle group G(A). Let U(g) be the universal enveloping
algebra of the complexification of the real Lie algebra g. By definition, a C∞-
function f : G(A) → C is of uniform moderate growth on G(Q)\G(A) if

— f is K-finite (i.e., the set {fk, k ∈ K}, where fk(g) = f(gk), spans a finite-
dimensional space),

— there exists a constant r > 0, r ∈ R, such that for all elements D ∈ U(g)
there is cD ∈ R with |Df(g)| ≤ cD‖g‖r for all g ∈ G(A),

— f is invariant under left translation by elements of G(Q).

We denote the space of such functions of uniform moderate growth by Vumg(G).
We write

VG = C∞umg(G(Q)AG(R)◦\G(A))

for the space of smooth complex-valued functions of uniform moderate growth on
G(Q)AG(R)◦\G(A). The space VG carries in a natural way the structure of a
(g,KR;G(Af ))-module.

1.5 Automorphic forms

Let Z(g) be the center of the universal enveloping algebra U(g). We call a function
f ∈ Vumg(G) an automorphic form on G(A) if there exists an ideal J ⊂ Z(g) of
finite codimension that annihilates f . We denote the space of automorphic forms
on G(A) by A(G).

For a given character of AG(R)◦, that is, a continuous homomorphism χ :
AG(R)◦ → C×, let V (G,χ) (resp. A(G,χ)) denote the subspace of functions f
in Vumg(G) (resp. A(G)) so that f(ag) = χ(a)f(g) for all a ∈ AG(R)◦ and each
g ∈ G(A). In the case of the trivial character χ = 1, we have VG = V (G, 1), and
we write AG = A(G, 1).

1.6 Constant term

Let P = LP NP be a standard parabolic Q-subgroup of G. For a measurable
locally integrable function f on G(Q)\G(A), the constant term of f along P is the
function fP on NP (A)LP (Q)\G(A) defined by

fP : g 7−→
∫

NP (Q)\NP (A)

f(ng)dn , g ∈ G(A),
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where the Haar measure dn on NP (A) is normalized in such a way that one has
voldn (NP (Q)\NP (A)) = 1. The assignment f 7−→ fP is compatible with the
actions of g,KR and G(Af ) on these functions (if they are defined). If f is smooth
(or has moderate growth) then fP is smooth (or has moderate growth).

1.7 Cuspidal automorphic forms

For an automorphic form f ∈ A(G) we say that f is cuspidal if fP ≡ 0 for all
proper standard parabolic Q-subgroups of G. We denote the space of all cuspidal
automorphic forms on G(Q)\G(A) by Acusp(G). The space Acusp(G) is equipped
with a natural (g,KR, G(Af ))-module structure.

1.8 L2 automorphic forms

Let Z be the center of G, and ω a unitary character of Z(Q)\Z(A). We consider
the space of L2 automorphic forms with central character ω. It is the Hilbert space
consisting of classes of measurable functions f : G(A) → C such that

— f(γg) = f(g) for γ ∈ G(Q) and g ∈ G(A),
— f(zg) = ω(z)f(g) for z ∈ Z(A) and g ∈ G(A),
— f is square-integrable modulo center, i.e.,

∫
Z(A)G(Q)\G(A)

|f(g)|2 dg < ∞.

We denote this space by L2(G,ω). The group G(A) acts on L2(G,ω) by right
translations. Let L2

disc(G,ω) be the subspace of L2(G,ω) which is the sum of
all irreducible subrepresentations. It is called the discrete spectrum of G. Its
orthogonal complement is the continuous spectrum of G denoted by L2

cont(G,ω).
Let L2

cusp(G,ω) be the subspace of the space L2(G,ω) consisting of cuspidal
square-integrable automorphic forms, i.e., those classes in L2(G,ω) represented
by a measurable function f on G(A) whose constant term fP (g) = 0 for almost
all g ∈ G(A) along all proper parabolic Q-subgroups P . It is a closed G(A)-
invariant subspace of L2(G,ω) called the cuspidal spectrum of G. Gelfand, Graev
and Piatetski-Shapiro proved in [11] that it is semi-simple, and each irreducible
subrepresentation appears with finite multiplicity. Hence, L2

cusp(G,ω) is a subspace
of L2

disc(G,ω). The orthogonal complement of L2
cusp(G,ω) in L2

disc(G,ω) is the
residual spectrum of G, denoted by L2

res(G,ω).
Any cuspidal automorphic form in Acusp(G), with a given central character

ω, is square-integrable modulo center, since it is of rapid decay. On the other hand,
the smooth K-finite functions in an irreducible subrepresentation of L2

cusp(G,ω)
belong to Acusp(G). Such space of smooth K-finite functions in an irreducible
subrepresentation of L2

cusp(G,ω) is not a representation of G(A), because the KR-
finiteness is not preserved. However, it is a (g,KR;G(Af ))-submodule of Acusp(G),
and, by abuse of language, we call it a cuspidal automorphic representation of
G(A). Similarly, the space of smooth KR-finite functions in an irreducible subrep-
resentation of L2

disc(G,ω) is only a (g,KR;G(Af ))-submodule of the space A(G).
Nevertheless, we call it an automorphic representation of G(A) belonging to the
discrete spectrum. See [5] for more details.
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1.9 Decomposition along associate classes of parabolic
subgroups

Two parabolic Q-subgroups P and Q of G are said to be associate if their reduc-
tive components are conjugate by an element in G(Q). This is equivalent to the
condition that their split components are G(Q)-conjugate. This notion induces
an equivalence relation on the set P(G) of parabolic Q-subgroups of G. Given
P ∈ P(G), we denote its equivalence class by {P}, to be called the associate class
of P . Let C be the set of classes of associate parabolic Q-subgroups of G. For
{P} ∈ C denote by VG({P}) the space of elements in VG that are negligible along
Q for every parabolic Q-subgroup Q in G, Q /∈ {P}, that is, given Q = LQNQ,
for all g ∈ G(A) the function l 7→ fQ(lg) is orthogonal to the space of cuspidal
functions on AG(R)◦LQ(Q) \ LQ(A).

The space VG({P}), {P} ∈ C, is a submodule in VG with respect to its
natural structure as (g,KR;G(Af ))-module. It is known that the

∑
VG({P}),

{P} ∈ C, forms a direct sum. Finally, one has a decomposition as a direct sum of
(g,KR;G(Af ))-modules

VG =
⊕

{P}∈C
VG({P}).

This was first proved in [22], see [6, Theorem 2.4], for a variant of the original
proof. This decomposition gives rise to a decomposition on the subspace AG of
VG.

2 Automorphic cohomology

2.1 Definition of automorphic cohomology

Let (ν,E) be an irreducible finite-dimensional algebraic representation of G(C) in
a complex vector space. We suppose that AG(R)◦ acts by a character on E, to be
denoted by χ−1. Let JE ⊂ Z(g) be the annihilator of the dual representation of E
in Z(g). Let AE ⊂ VG be the subspace of functions f ∈ VG which are annihilated
by a power of JE . Then the spaces AE ⊗C E and VG ⊗C E both are naturally
equipped with an (mG,KR)-module structure. By [8, Theorem 18], the inclusion

AE ⊗C E −→ VG ⊗C E

of the space of automorphic forms on G (with respect to (ν,E)) in the space
of functions of uniform moderate growth induces an isomorphism on the level of
(mG,KR)-cohomology, that is,

H∗(mG,KR;AE ⊗C E)−̃→H∗(mG,KR;VG ⊗C E). (2.1)

Both cohomology spaces carry a G(Af )-module structure induced by the one on
AE and VG respectively, and the isomorphism is compatible with this G(Af )-
module structure.
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By Borel’s regularization theorem, the latter group can be identified with the
group

H∗(mG,KR;C∞(G(Q)AG(R)◦\G(A))⊗C E)

as a G(Af )-module up to a twist. In fact, as explained in [10] we keep in mind
that these cohomology groups have an interpretation as the inductive limit of the
deRham cohomology groups H∗(XC , E) of the orbit space

XC := G(Q)AG(R)◦ \G(A)/KRC

with coefficients in the local system given by the representation (ν,E), where C
ranges over the open compact subgroups of G(Af ). Thus, it is a natural framework
to study the cohomology of congruence subgroups of G(Q).

2.2 Decomposition along the cuspidal support

Let {P} be a class of associate parabolic Q-subgroups of G, and let φ = {φR}R∈{P}
be a class of associate irreducible cuspidal automorphic representations of the Levi
components of elements of {P} as defined in [10, Section 1.2].

The set of all such collections φ = {φR}R∈{P} is denoted by ΦE,{P}. Given
a class {P} of associate parabolic Q-subgroups of G, and any φ ∈ ΦE,{P}, we let

AE,{P},φ =



f ∈ VG({P}) | fR ∈

⊕

π∈φR

L2
cusp,π(LR, ωπ)⊗ S(ǎG

R) ∀R ∈ {P}




be the space of functions of uniform moderate growth whose constant term along
each R ∈ {P} belongs to the isotypic components attached to the elements π ∈ φR,
where ωπ is the central character of π. Then we have the following result ([10,
Theorem 1.4 resp. 2.3], or [24, Theorem in III, 2.6])

Theorem 2.1. The automorphic cohomology H∗(G,E) has a direct sum decom-
position

H∗(G,E) =
⊕

{P}∈C

⊕

φ∈ΦE,{P}

H∗(mG,KR;AE,{P},φ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of
associate irreducible cuspidal automorphic representations of the Levi components
of elements of {P}.

The summand in the direct sum decomposition of the cohomology H∗(G,E)
that is indexed by the full group {G} will be called the cuspidal cohomology of G
with coefficients in E, to be denoted H∗

cusp(G,E). The decompostion of H∗(G,E)
according to the set C of classes of associate parabolic Q - subgroups of G exhibits
a natural complement to the cuspidal cohomology, namely the summands indexed
by {P} ∈ C, {P} 6= {G}. Due to the results in [8] that these cohomology classes
can be described by suitable derivatives of Eisenstein series or residues of these,
one calls this complement

H∗
Eis(G,E) :=

⊕

{P}∈C,P 6=G

H∗(mG,KR;AE,{P} ⊗C E)
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the Eisenstein cohomology of G with coefficients in E.

3 Eisenstein series

In this section, following [21] and [24], we recall some facts regarding the analytic
properties of Eisenstein series attached to cuspidal automorphic representations
on the Levi components of proper parabolic Q-subgroups of a connected reductive
algebraic Q-group G. Special attention is given to the case of maximal proper
parabolic Q-subgroup. We use these results to study the spaces AE,{P},φ, φ ∈
ΦE,{P}, which are of importance in the study of automorphic cohomology. We
retain the notation of previous sections.

3.1 Definition of Eisenstein series

Let P be a standard parabolic Q-subgroup of G. We write P = LP NP for its Levi
decomposition. Let π be a cuspidal automorphic representation of LP (A). More
precisely, this is an irreducible (l,KR;LP (Af ))-module realized on the space of
K-finite smooth functions in an irreducible subrepresentation of L2

cusp(LP , ω) for
some central character ω. We denote by Vπ the π-isotypic subspace of the space
L2

cusp(LP , ω).
We suppose that π is normalized in such a way that the differential of the

restriction of the central character of π to AP (R)+ is trivial. This assumption is
just a convenient choice of coordinates, which makes the poles of the Eisenstein
series attached to π real. As explained in [10, Section 1.3], it can be achieved by
replacing π by an appropriate unitary twist. The twist just moves the poles of the
Eisenstein series along the imaginary axis.

As in [10, Section 1.3], consider the space Wπ of right K-finite smooth func-
tions

f : NP (A)LP (Q)\G(A) → C

such that for every g ∈ G(A) the function

fg(l) = f(lg)

on LP (Q)\LP (A) belongs to the π-isotypic subspace Vπ of the space of cuspidal
automorphic forms on LP (A). Then, for f ∈ Wπ, and λ ∈ ǎP,C, and for each
g ∈ G(A), one defines (at least formally) the Eisenstein series as

EG
P (f, λ)(g) =

∑

γ∈P (Q)\G(Q)

e〈HP (γg),λ+ρP 〉f(γg) =
∑

γ∈P (Q)\G(Q)

fλ(γg),

where fλ(g) = f(g)e〈HP (g),λ+ρP 〉, and ρP is the half-sum of positive roots with
respect to P0 in the root system Φ of G which are not positive roots of LP . The
pairing 〈·, ·〉 is the natural pairing of ǎP0,C and aP0,C.

This Eisenstein series converges absolutely and uniformly in g if the real
part Re(λ) is sufficiently regular, i.e., lies deep enough inside the positive Weyl
chamber ǎG+

P defined by P . The assignment λ 7−→ EG
P (f, λ)(g) defines a map that
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is holomorphic in the region of absolute convergence of the defining series and has
a meromorphic continuation to all of ǎP,C. We refer to [24, Section IV.1] for proofs
of these facts.

3.2 Filtration of AE,{P},φ

In the case of the given parabolic Q-subgroup P , and the given associate class φ ∈
ΦE,{P} containing π, the space AE,{P},φ introduced in Section 2 can be described
using Eisenstein series attached to π as in [10, Section 1.3]. More precisely, there
is a unique λ0 ∈ ǎP such that the Eisenstein series E(f, λ0) attached to π (or
its residue if there is a pole at λ = λ0) is annihilated by JE . There exists a
polynomial q(λ) on ǎP such that q(λ)E(f, λ) is holomorphic at λ = λ0. Then, the
space AE,{P},φ is spanned by all coefficients in the Taylor expansion of q(λ)E(f, λ)
around λ = λ0. This definition is independent on the choice of q, as well as
the choice of a representative P for the associate class {P} and a representative
π ∈ φP for φ. These coefficients are in fact all possible residues and main values
of derivatives of the Eisenstein series E(f, λ) attached to π.

The (mG,KR;G(Af ))-module AE,{P} has a filtration defined in [8, Section 6].
However, we use a slight modification as in [10, Section 5.2], where the filtration
is given along the cuspidal support. According to the decomposition of AE,{P}
along the cuspidal support as in Section 1.8, it suffices to give the filtration of the
(mG,KR;G(Af ))-modules AE,{P},φ, where φ ∈ ΦE,{P} is the associate class of π.
In this paper we consider only the (possibly trivial) lowest filtration step

LE,{P},φ ⊂ AE,{P},φ,

given as the (mG,KR;G(Af ))-module LE,{P},φ consisting of square-integrable au-
tomorphic forms on G supported in {P} and the associate class of π. It is non-
trivial if and only if the Eisenstein series E(f, λ) has a square-integrable residue
at λ = λ0 for some choice of f ∈ Wπ. In that case, it is isomorphic to the space of
these residues when f ranges over Wπ.

We remark that the fact that the space LE,{P},φ is a filtration step in the
filtration defined in [8, Section 6] follows from the fact that JE is the annihilator
of a finite-dimensional representation. Indeed, the infinitesimal character of any
finite-dimensional representation of G(C) is represented by an element inside the
open positive Weyl chamber ǎG+

0 , and thus, the restrictions of the elements in its
Weyl group orbit to any ǎP with P 6= G are non-zero. This shows that the function
T used for defining the filtration in [8, Section 6] obtains its minimal value if and
only if we form the residual Eisenstein series from a residual representation of G(A)
itself, since only then the evaluation point is zero. This means that we obtain the
residual representations of G(A) supported in π alone in the lowest filtration step.
These form LE,{P},φ. However, this argument does not hold in general for any
ideal of finite-codimension in Z(g) because the infinitesimal characters which are
annihilated by such ideal might be on the boundaries of the Weyl chambers. In
that case there really exist non-square-integrable automorphic forms in the lowest
filtration step.
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3.3 Eisenstein series of relative rank one

Let P = Pα, denote the standard maximal parabolic Q-subgroup of G which
corresponds to the subset ∆ \ {α} ⊂ ∆, where α is a simple root in Φ. In this
special case there is a convenient choice of an isomorphism ǎG

P,C
∼= C. Let ρP be

the half-sum of positive roots in Φ which are not positive roots of LP . We choose

ρ̃P = 〈ρP , α∨〉−1ρP

as a basis for ǎG
P,C following Shahidi’s convention in [31]. Here α∨ is the coroot

dual to α, and 〈·, ·〉 the natural pairing. We always identify accordingly s ∈ C
with λs = ρ̃P ⊗ s ∈ ǎG

P,C.
As in the general case, for a cuspidal automorphic representation π of LP (A),

which is normalized as above, one defines the space Wπ, and then, for f ∈ Wπ, and
λs ∈ ǎG

P,C, and for each g ∈ G(A), one defines (at least formally) the Eisenstein
series by the same series as above. This Eisenstein series converges absolutely and
uniformly in g if the real part Re(s) is sufficiently regular, i.e., lies deep enough
inside the positive Weyl chamber defined by P . The assignment s 7−→ EG

P (f, λs)(g)
defines a map that is holomorphic in the region of absolute convergence of the
defining series and has a meromorphic continuation to all of ǎG

P,C. It has a finite
number of simple poles in the real interval 0 < λs ≤ ρP , i.e., all the remaining
poles lie in the region Re(s) < 0. We refer to [24, Section IV.1] for proofs of these
facts.

In this case the filtration of the space AE,{P},φ defined in [8, Section 6] is a
two-step filtration

LE,{P},φ ⊂ AE,{P},φ,

as in [10, Section 5.2]. The space LE,{P},φ is spanned by the residues at s > 0
of the Eisenstein series attached to a function f such that for every g ∈ G(A)
the functions fg defined above belong to the π-isotypic subspace of the space
of cuspidal automorphic forms on LP (A). Those residues are square-integrable
automorphic forms by [24, Section I.4.11]. The quotient AE,{P},φ/LE,{P},φ is
spanned by the principal values of the derivatives of such Eisenstein series at
Re(s) ≥ 0.

3.4 Square-integrable cohomology

Having defined the space of square-integrable automorphic forms LE,{P},φ, it is
natural to consider its contribution to automorphic cohomology. Let

H∗(mG,KR;LE,{P},φ ⊗C E)

be the relative Lie algebra cohomology of LE,{P},φ. The inclusion LE,{P},φ ⊂
AE,{P},φ induces a map in the cohomology

H∗(mG,KR;LE,{P},φ ⊗C E) → H∗(mG,KR;AE,{P},φ ⊗C E).

We are interested in the image of that map which we denote by

H∗
(sq)(mG,KR;AE,{P},φ ⊗C E).
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Let

HEis,(sq)(G,E) =
⊕

{P}6={G}

⊕

φ∈ΦE,{P}

H∗
(sq)(mG,KR;AE,{P},φ ⊗C E).

Since every cuspidal automorphic form in Acusp(G) is square-integrable, we have
LE,{G},φ = AE,{G},φ, and the cuspidal cohomology coincides with

H∗
cusp(G,E) =

⊕

φ∈ΦE,{G}

H∗
(sq)(mG,KR;LE,{G},φ ⊗C E).

Thus we define square-integrable automorphic cohomology of G with respect to E
as

H∗
(sq)(G,E) = H∗

cusp(G,E)⊕HEis,(sq)(G,E).

II. Jacquet-Langlands Correspondence

In this chapter, k denotes an algebraic number field, and D a division algebra cen-
tral over k of degree d. We would like to compare the automorphic cohomology of
the k-split general linear group defined over a number field k with the automorphic
cohomology of its inner form — the general linear group over a division algebra
D. In particular, we are interested in the case GL(2, D), where D is a quater-
nion division algebra central over k. The correspondence between automorphic
representations belonging to the discrete spectrum of GL4(Ak) and its inner form
is given by the global Jacquet-Langlands correspondence between general linear
groups and their inner forms defined in Badulescu [1] and Badulescu and Renard
[2]. The former paper deals with the case where D splits at all v ∈ V∞. The latter
paper removes this assumption. We begin with a precise definition of considered
groups.

1 A k-rank one form of the general linear group:
GL(2, D)

1.1 The general linear group

Let GL(n) be the general linear group defined over k. It is a connected reductive
algebraic k-group of semi-simple k-rank n−1, where n ≥ 2. Let Q0 be the minimal
parabolic k-subgroup consisting of upper triangular non-singular matrices, let S
be the maximal torus of diagonal matrices, and let Q0 = LQ0NQ0 be its Levi
decomposition where LQ0 := S and NQ0 denotes the unipotent radical of Q0. Let
Φ, Φ+, ∆ denote the corresponding sets of roots, positive roots, simple roots,
respectively. The set ∆ is given as ∆ = {α1, α2, . . . , αn−1} where αi denotes the
usual projection S → k× given by the assignment diag(t1, . . . , tn) 7→ ti/ti+1. Let
W be the Weyl group of GL(n) with respect to S.

The conjugacy classes with respect to GL(n, k) in the set P(GL(n)) of
parabolic k-subgroups are in one-to-one correspondence with the subsets of ∆.
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Corresponding to J ⊂ ∆ there is the class represented by the standard parabolic
subgroup QJ . We let SJ = (∩α∈Jkerα)◦, and we denote the centralizer of SJ by
LQJ

:= ZGL(n)(SJ). Then QJ is the semidirect product of its unipotent radical
NQJ

by LQJ
, a so called Levi decomposition of QJ . The group LQJ

is reductive,
a Levi subgroup of QJ . Notice that the characters of S in NQJ

are exactly the
positive roots which contain at least one simple root not in J . Since any Q in
P(GL(n)) is GL(n, k)-conjugate to a unique QJ the corresponding subset J ⊂ ∆
is called the type of Q, to be denoted J(Q). The groups QJ are the standard
parabolic Q-subgroups of GL(n) determined by the choice of S and the set ∆ of
simple roots.

One has the following description: Let ρ = (r1, . . . , rl) be an ordered partition
of n into positive integers, i.e., an ordered sequence of positive integers so that
r1 + . . . + rl = n. The corresponding standard parabolic subgroup Qρ consists
of all matrices in GL(n, k) admitting a block decomposition in the form (pi,j)
with pi,j an (ri × rj)-matrix, and pi,j = 0 for i > j. Every parabolic subgroup
of GL(n) is conjugate to a subgroup of this type. More precisely, Qρ is of type
Jρ = ∆ \ {αr1+···+ri

: i = 1, · · · , l − 1}, and the assignment ρ 7→ Jρ defines a
bijection between partitions of n and subsets of ∆. The standard Levi subgroup
LQρ

of Qρ is the subgroup of matrices in Qρ where each block above the block
diagonal is zero, i.e., pi,j = 0 for i < j. Thus, there is an isomorphism LQρ

∼=
GL(r1)× . . .×GL(rl). A so called cuspidal parabolic subgroup corresponds up to
conjugacy to the case where ri = 1 or 2 for i = 1, . . . , l.

In particular, if R is a maximal parabolic k-subgroup of GL(n) of type ∆ \
{αj} then it is conjugate to the standard maximal parabolic k-subgroup

Qj := Q∆\{αj} = {(aik) ∈ GL(n) | aik = 0 for k ≤ j < i} , j = 1, . . . , n− 1.

We say that R is of type j. Note that in this case the Levi subgroup is isomorphic
to GL(j)×GL(n−j). The associate class {Qj} of maximal parabolic k-subgroups
R associated to Qj consists of the groups R of type j and n− j. If n = 2m is even
the elements R in {Qm} are conjugate to its opposite parabolic k-subgroup Ropp,
that is, the conjugacy class of Qm is self-opposite. Otherwise, for general n, the
group Qj is not conjugate to Qopp

j . We note that there are [n
2 ] associate classes of

maximal parabolic k-subgroups in GL(n).
In terms of ordered partitions of n, the parabolic k-subgroups Qρ and Qρ′

of GL(n), corresponding to ρ = (r1, . . . , rl) and ρ′ = (r′1, . . . , r
′
m), are associate if

and only if l = m and there is a permutation p of l letters such that r′i = rp(i)

for all i = 1, . . . , l. Thus, associate classes of parabolic k-subgroups of GL(n) are
parameterized by unordered partitions of n into positive integers.

Example – the case H = GL(4). In the case of the general linear group H =
GL(4) there are three conjugacy classes of maximal parabolic k-subgroups; they
are represented by the standard parabolic groups Q1, Q2, and Q3. Since Q1 and
Q3 are associate, one has the two associate classes {Q1} and {Q2}. The minimal
parabolic k-subgroups of H form one associate class {Q0} represented by the
standard parabolic subgroup Q0 := Qρ with ρ = (1, 1, 1, 1). Finally, the three
conjugacy classes of the standard parabolic k-subgroups of H corresponding to
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the ordered sequences (2, 1, 1), (1, 2, 1) and (1, 1, 2) respectively form one associate
class, to be denoted

{
Q{α1}

}
, where Q{α1} is a parabolic k-subgroup of H of

parabolic rank 2 and of type J = {α1}.

1.2 GL2 over a central division algebra

Let A be a central simple algebra of degree d over an algebraic number field k.
Given a positive integer q, let GL(q, A) be the connected reductive algebraic k-
group whose group GL(q, A)(l) of rational points over a commutative k-algebra l
containing k equals the group

GLq(Al) =
{
x ∈ Mq(Al) | nrdMq(Al)(x) 6= 0

}
,

where Al = A ⊗k l, and nrdMq(Al) is the reduced norm on the q × q matrix
algebra with entries in Al. If q = 1 then GL1(Al) is the group of invertible
elements in the l-algebra Al. The reduced norm defines a surjective k-morphism
GL(q, A) −→ Gm of k-groups, whose kernel is a connected semi-simple algebraic
k-group, to be denoted SL(q, A). We have

SL(q, A)(l) = SLq(Al) =
{
x ∈ Mq(Al) | nrdMq(Al)(x) = 1

}
.

Let D be a central division k-algebra of degree d. Then the connected reduc-
tive k-group GL(2, D) is of semi-simple k-rank 1. The group Z ′(k) of k-rational
points of its center Z ′ is given by

Z ′(k) =
{
g =

(
λ 0
0 λ

) | λ ∈ k×1D

}
.

We fix a maximal k-split torus S′ ⊂ GL(2, D) subject to

S′(k) =
{
g =

(
λ 0
0 µ

) | λ, µ ∈ k×1D

}
.

For the centralizer L′ := ZGL(2,D)(S′) of S′ we have

L′(k) =
{
g =

(
x 0
0 y

) | x, y ∈ D×}
.

We may (and will) identify L′ with the k-group GL(1, D)×GL(1, D).
Let Φk = Φ(GL(2, D), S′) ⊂ X∗(S′) be the set of roots of GL(2, D) with

respect to S′. The set {α} is a basis for Φk where α denotes the non-trivial
character S′/k → Gm/k defined by

(
λ 0
0 µ

) 7→ λµ−1. The corresponding minimal
parabolic k-subgroup determined by {α} is denoted by Q′. Its Levi factor is
LQ′ = L′, and we have a Levi decomposition of Q′ into the semidirect product
LQ′NQ′ of its unipotent radical NQ′ by LQ′ .

Let l be a splitting field of D, thus, there is an isomorphism ψ : D⊗kl → Md(l)
of l-algebras, where Md(l) is the d×d matrix algebra with entries in l. We fix this
isomorphism ψ once and for all. We denote by the same letter the isomorphism

ψ : GL(2, D)×k l −→ GL(n)/l, with n = 2d

of algebraic l-groups induced by ψ. The group GL(2, D) is a k-form of the general
linear k-group GL(2d). The image of the l-group Q′ ×k l under ψ is the standard
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parabolic l-subgroup Qd = Q∆\{αd} in the notation introduced in the previous
subsection for the general linear group. Its Levi subgroup LQd

/l is isomorphic to
GL(d)/l ×GL(d)/l.

Example – the case H ′ = GL(2, D), D is a quaternion division algebra. We include
this example to fix the notation for the rest of the paper. Let D be a quaternion
division algebra central over k. Let VD be the finite set of places of k at which
D does not split. Thus, VD is the set of places v of k at which D ⊗k kv

∼= Dv,
where Dv is the unique (up to isomorphism) quaternion division algebra over kv.
For v 6∈ VD we have D⊗k kv

∼= M2(kv), where M2(kv) is the 2× 2 matrix algebra
over kv. Let H ′ denote the algebraic k-group GL(2, D). It is an inner form of the
algebraic k-group H = GL(4). The only conjugacy class of parabolic subgroups
of H ′ is represented by Q′ = LQ′NQ′ , where LQ′ ∼= GL(1, D) × GL(1, D) is the
Levi factor. It is an inner form of the parabolic subgroup Q2 of H, with the Levi
factor LQ2

∼= GL(2)×GL(2).
We write H ′(Ak) for the adèlic points of H ′. Also we have H ′(kv) ∼= GL2(Dv)

for v ∈ VD, and H ′(kv) ∼= GL4(kv) for v 6∈ VD. The adèlic points of GL(1, D)
are denoted by D×

Ak
. Also GL(1, D)(kv) ∼= D×

v for v ∈ VD, and GL(1, D)(kv) ∼=
GL2(kv) for v 6∈ VD.

2 Local Jacquet-Langlands correspondence

We retain the notation of the previous section. Classical local Jacquet-Langlands
correspondence is a bijection between the set of isomorphism classes of square-
integrable representations of GLn(kv) and GLn/dv

(Dv), where kv is the completion
of k at a non-archimedean place v, and Dv is a central simple division algebra of
degree dv over kv, where dv divides n. This generalization of original local Jacquet-
Langlands correspondence between GL2(kv) and the multiplicative group of the
quaternion division algebra over kv (cf. [18]) is obtained by Deligne, Kazhdan and
Vignéras in [7]. It is defined by a certain character relation.

For finite places v ∈ Vf this correspondence is generalized to unitary repre-
sentations by Badulescu in [1], and for infinite places v ∈ V∞, which means real
places since there is no division algebra over C, by Badulescu and Renard in [2].
Although we use the term unitary representation at all places, one should have
in mind that at infinite places these are in fact Harish-Chandra modules. The
correspondence for unitary representations is no longer injective nor surjective,
and there exist on both sides unitary representations which are not involved in the
correspondence. However, it is again defined using the same character relation,
and the reason for missing representations is that, in some cases, this relation does
not respect unitarity.

Since we are mainly interested in the infinite places, where the representations
should be cohomological, we recall here in detail the local correspondence between
GL4(R) and GL2(H) of Badulescu and Renard [2], where H denotes the Hamilton
quaternions. The latter group is isomorphic to H ′(kv) for places v ∈ V∞ at
which D does not split, i.e., v ∈ V∞ ∩ VD. For finite places we also recall the
correspondence at the level of detail needed later on when dealing with the global
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correspondence.

2.1 Unitary dual of GL4(R) and GL2(H)

The unitary dual of GL(n) over R, C, and H is classified by Vogan [37]. However,
as in [2], we use the description and notation of [35], which is in analogy with the
one introduced by Tadić when describing the unitary dual of GL(n) over a p-adic
field in [33] and discussing the unitary dual of GL(n) over a p-adic division algebra
in [34].

For a unitary character χ of R×, let χ ◦ detn denote the corresponding char-
acter of GLn(R) where detn is the determinant on GLn(R), and let χ ◦ nrdn

denote the corresponding character of GLn(H), where nrdn is the reduced norm
on GLn(H).

For a unitary character χ of R×, let π(χ, α), where 0 < α < 1/2, denote the
complementary series representation of GL2(R), i.e., the induced representation
of GL2(R) from the character χ| · |α ⊗ χ| · |−α of R× × R×. It is irreducible and
unitary.

Similarly, if ρ is either a unitary square-integrable representation δ, or a
unitary character χ ◦ det2, of GL2(R), and 0 < α < 1/2, let π(ρ, α) be the
induced representation of GL4(R) from the representation ρ|det2 |α ⊗ ρ|det2 |−α

of GL2(R)×GL2(R). It is also irreducible and unitary.
Finally, for a unitary square-integrable representation δ of GL2(R) we denote

by u(δ, 2) the unique irreducible quotient of the induced representation of GL4(R)
from the representation δ|det |1/2⊗ δ|det |−1/2 of GL2(R)×GL2(R). Then u(δ, 2)
is a unitary representation.

We introduce the following sets of (isomorphism classes of) unitary represen-
tations (cf. [35] and [2])

U1 = {χ} ,

U2 = {χ ◦ det2, π(χ, α), δ : 0 < α < 1/2} ,

U3 = {χ ◦ det3} ,

U4 = {χ ◦ det4, π(χ ◦ det2, α), π(δ, α), u(δ, 2) : 0 < α < 1/2} ,

where χ ranges over all unitary characters of R×, and δ over all unitary square-
integrable representations of GL2(R). The representations in Ui are representa-
tions of GLi(R).

We introduce the same notation for GL2(H). If χ◦nrd1 is a character of H×,
let π(χ ◦ nrd1, β) with 0 < β < 1 denote the corresponding complementary series
representation of GL2(H). It is irreducible and unitary. Note that in this case the
complementary series is “longer” and goes all the way to 1.

If δ′ is an irreducible unitary representation of H× which is not one-dimen-
sional (it is certainly finite-dimensional), then π(δ′, α), where 0 < α < 1/2, denotes
the corresponding complementary series representation of GL2(H). It is irreducible
and unitary. For such δ′, we let u(δ′, 2) denote the unique irreducible quotient of
the induced representation of GL2(H) from the representation δ′nrd1/2

1 ⊗δ′nrd−1/2
1

of H× ×H×. It is a unitary representation.
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Then we define the following sets of (isomorphism classes of) unitary repre-
sentations (cf. [2])

U ′1 = {χ ◦ nrd1, δ′} ,

U ′2 = {χ ◦ nrd2, π(χ ◦ nrd1, β), π(δ′, α), u(δ′, 2) : 0 < α < 1/2, 0 < β < 1} ,

where χ ranges over all unitary characters of R×, and δ′ over all irreducible unitary
representations of H× which are not one-dimensional. The representations in U ′i
are representations of GLi(H).

Now the unitary duals of GL4(R) and GL2(H) are given in the following
Theorem.

Theorem 2.1. The sets Ui for i = 1, 2, 3, 4, and U ′j for j = 1, 2, consist of
irreducible unitary representations. Every representation induced from a tensor
product of representations either in sets Ui, or sets U ′j, to the appropriate general
linear group is irreducible and unitary. Every irreducible unitary representation of
GL4(R) and GL2(H) is obtained in a unique way, up to the order of factors, as
such an induced representation.

2.2 Jacquet-Langlands correspondence for GL4(R)
and GL2(H)

Now we follow [2] to define the archimedean local Jacquet-Langlands correspon-
dence for unitary representations in our case. It is more convenient to define a
map from representations of GL4(R) to those of GL2(H). However, this map is not
defined on all irreducible unitary representations of GL4(R). Those (irreducible)
unitary representations for which the map is defined are called locally compatible.

By Theorem 2.1, every irreducible unitary representation of GL4(R) is in-
duced from a tensor product of unique (up to permutation) elements of Ui, i =
1, 2, 3, 4. The Jacquet-Langlands correspondence respects this induction process
in a sense that the Jacquet-Langlands of such an induced representation is the
induced representation of the Jacquet-Langlands of the elements of Ui from which
we induce. Therefore, it suffices to define the correspondence for representations
in Ui. We call these the basic unitary representations. Also, if just one of the basic
unitary representations from which we induce is not compatible, then the whole
induced representation is not compatible.

In the description of the local Jacquet-Langlands correspondence at a real
place we use the notation Dm for square-integrable representations of GL2(R),
where m ≥ 2 is an integer. The square-integrable representation Dm is charac-
terized by the fact that its restriction to the maximal compact subgroup O(2) of
GL2(R) is of the form

Dm

∣∣
O(2)

∼=
⊕

j≡m mod 2
j≥m

Wj ,

where Wj , for j ≥ 2, is the irreducible representation of O(2) obtained as the
representation fully induced from the character z 7→ zj of the index two subgroup
U(1) in O(2). Hence, m is called the lowest O(2)-type of Dm, even though O(2)
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is not commutative. Another characterization of Dm is that it is the unique
irreducible subrepresentation of the representation of GL2(R) induced from the
character | · |m−1

2 sgnm⊗| · |−m−1
2 of the maximal split torus.

The elements of U1 and U3 are not compatible. Also the complementary
series representation π(χ, α) ∈ U2 is not compatible. The characters χ ◦ det2 ∈ U2

and χ ◦ det4 ∈ U4 correspond to the characters χ ◦ nrd1 ∈ U ′1 and χ ◦ nrd2 ∈
U ′2, respectively. The complementary series representation π(χ ◦ det2, α) ∈ U4

corresponds to π(χ ◦ nrd1, α).
It remains to define the correspondence for representations involving a uni-

tary square-integrable representation δ. In that case the correspondence depends
on δ in the following way. If δ = D2(χ ◦ det2) ∈ U2 is of lowest O(2)-type 2, then
by the classical Jacquet-Langlands correspondence it corresponds to the char-
acter χ ◦ nrd1 ∈ U ′1 of H×, where χ is a unitary character of R×. Observe
that D2 corresponds to the trivial character of H×. In this case we also have
π(δ, α) ∈ U4 corresponds to π(χ ◦ nrd1, α) ∈ U2, while u(δ, 2) ∈ U4 corresponds to
π(χ ◦ nrd1, 1/2) ∈ U2.

On the other hand, if δ = Dm(χ ◦ det2) ∈ U2 is of lowest O(2)-type m > 2,
then it corresponds to δ′ = D′

m(χ ◦ nrd1) ∈ U ′1, which is not a one-dimensional
representation of H×. In this case π(δ, α) ∈ U4 and u(δ, 2) ∈ U4 correspond to
π(δ′, α) ∈ U ′2 and u(δ′, 2) ∈ U ′2.

Table 1 Local Jacquet-Langlands correspondence at an infinite (real) place

Set Repn J.-L. corr.

U1 χ −
χ ◦ det2 χ ◦ nrd1

U2 π(χ, α) −
δ ∼= D2(χ ◦ det2) χ ◦ nrd1

δ ∼= Dm(χ ◦ det2), m > 2 D′m(χ ◦ nrd1)

U3 χ ◦ det3 −
χ ◦ det4 χ ◦ nrd2

π(χ ◦ det2, α) π(χ ◦ nrd1, α)

U4 π(δ, α), δ ∼= D2(χ ◦ det2) π(χ ◦ nrd1, α)

π(δ, α), δ ∼= Dm(χ ◦ det2), m > 2 π(δ′, α), δ′ ∼= D′m(χ ◦ nrd1)

u(δ, 2), δ ∼= D2(χ ◦ det2) π(χ ◦ nrd1, 1/2)

u(δ, 2), δ ∼= Dm(χ ◦ det2), m > 2 u(δ′, 2), δ′ ∼= D′m(χ ◦ nrd1)

For the convenience of the reader, we summarize the correspondence for rep-
resentations in Ui, i = 1, 2, 3, 4, in Table 1. The definition shows that, even
restricted to the set of compatible unitary representations of GL4(R), the Jacquet-
Langlands correspondence is neither injective, nor surjective. Injectivity fails, for
example, for the trivial and the sign character of GL4(R) which are both mapped
to the trivial character of GL2(H). Surjectivity fails since the complementary se-
ries representation of GL2(H) attached to a character of H× and 1/2 < β < 1 are
not in the image.
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2.3 Unitary dual of GL4(kv) and GL2(Dv) at v ∈ Vf

The unitary dual of the general linear group over a p-adic field is obtained by
Tadić in [33], while over a p-adic division algebra he described in [34] the unitary
dual depending on certain conjectures, which were finally proved by Sécherre in
[30] and Badulescu and Renard in [3]. However, in our small rank case, the de-
scription follows directly from [7]. We consider the case of Dv the unique (up to
isomorphism) quaternion division algebra over kv.

As in the archimedean case, the unitary dual of GL4(kv) consists of repre-
sentations fully induced from certain basic unitary representations of appropriate
general linear groups. These basic unitary representations are again divided into
four sets Vi, i = 1, 2, 3, 4, where Vi contains the basic unitary representations of
GLi(kv), as follows.

V1 = {χ} ,

V2 = {χ ◦ det2, π(χ, α), δ2 : 0 < α < 1/2} ,

V3 = {χ ◦ det3, δ3} ,

V4 = {χ ◦ det4, π(χ ◦ det2, α), π(δ2, α), u(δ2, 2), δ4 : 0 < α < 1/2} ,

where χ ranges over all unitary characters of k×v , while δi ranges over all unitary
square-integrable representations of GLi(kv). Note that at a finite place there are
square-integrable representation of GLi(kv) for any i, and supercuspidal represen-
tations are also square-integrable. Since the notation here is in obvious analogy
to the case kv = R in Section 2.1, we do not repeat the explanation.

Similarly, we define sets V ′i, for i = 1, 2, of basic unitary representation
involved in the unitary dual of GL2(Dv). We have

V ′1 = {χ ◦ nrd1, ρ′}
V ′2 = {χ ◦ nrd2, π(χ ◦ nrd1, β), π(ρ′, α), u(ρ′, 2), δ′ : 0 < α < 1/2, 0 < β < 1} ,

where χ ranges over all unitary characters of k×v , ρ′ over all irreducible unitary rep-
resentations of D×

v which are not one-dimensional, and δ′ over all unitary square-
integrable representations of GL2(Dv). The representations in V ′i are representa-
tions of GLi(Dv).

2.4 Jacquet-Langlands correspondence for GL4(kv) and
GL2(Dv) at v ∈ Vf

In the description of the global Jacquet-Langlands correspondence in Section 3
below, we also need some information at non-split finite places v ∈ Vf ∩ VD. For
such places H ′(kv) ∼= GL2(Dv), where Dv is the unique (up to isomorphism)
quaternion division algebra over kv, and the correspondence is a special case of
the local result in [1].

Just as in the archimedean case, the correspondence respects induction from
unitary representations of smaller general linear groups. Hence, it suffices to define
it on the sets Vi, for i = 1, 2, 3, 4, of basic unitary representations given in Section
2.3. The correspondence is summarized in Table 2.



Automorphic Cohomology —— GL2 over a Quaternion Algebra 231

Table 2 Local Jacquet-Langlands correspondence at a finite place

Set Repn J.–L. corr.

V1 χ −
χ ◦ det2 χ ◦ nrd1

V2 π(χ, α) −
δ2 ∼= St2(χ ◦ det2) χ ◦ nrd1

δ2 supercuspidal ρ′

V3 χ ◦ det3 −
δ3 −

χ ◦ det4 χ ◦ nrd2

π(χ ◦ det2, α) π(χ ◦ nrd1, α)

π(δ2, α), δ2 ∼= St2(χ ◦ det2) π(χ ◦ nrd1, α)

V4 π(δ2, α), δ2 supercuspidal π(ρ′, α)

u(δ2, 2), δ2 ∼= St2(χ ◦ det2) π(χ ◦ nrd1, 1/2)

u(δ2, 2), δ2 supercuspidal u(ρ′, 2)
δ4 δ′

Let us explain the unexplained notation used in Table 2. The square-inte-
grable representation St2 of GL2(kv) is the Steinberg representation, which is
the unique irreducible subrepresentation of the induced representation from the
character | · |1/2 ⊗ | · |−1/2 of k×v × k×v . Every unitary square-integrable represen-
tation which is not supercuspidal is a twist of St2 by a unitary character χ of
k×v , i.e., it is of the form St2(χ ◦ det2). For a supercuspidal representation δ2 of
GL2(kv) we denote by ρ′ the corresponding representation of D×

v . It is not one-
dimensional by the original Jacquet-Langlands correspondence as in [18]. Finally,
the correspondence between δ4 and δ′ is just the bijection on square-integrable
representations as defined in [7]. In [7] the correspondence is made more precise
using the Bernstein-Zelevinsky classification (cf. [40], [4]).

3 Global Jacquet-Langlands correspondence

Although the local Jacquet-Langlands correspondence for unitary representations
seems quite complicated, it gives the crucial local ingredients for the definition
of the global Jacquet-Langlands correspondence. This global correspondence be-
tween discrete spectra of a general linear group and its inner form is defined and
proved in Badulescu [1] and Badulescu-Renard [2]. It seems much more natural
than the local correspondences required for its definition.

In what follows we define the global Jacquet-Langlands correspondence for
the irreducible constituents of the discrete spectrum of H(Ak) and H ′(Ak). The
definition uses the local correspondence of Section 2, which is defined for Harish-
Chandra modules at infinite places v ∈ V∞, and smooth representations at finite
places v ∈ Vf . Hence, one should have in mind, when dealing with irreducible
constituents of the discrete spectrum, that we actually pass to the underlying
(g,KR;G(Af ))-module without mentioning that explicitly.
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3.1 Jacquet-Langlands correspondence between GL2(Ak)
and D×

Ak

We first recall the original global correspondence of Jacquet and Langlands [18].
Note that all irreducible automorphic representations of D×

Ak
are cuspidal. Origi-

nally the correspondence is a bijection between (cuspidal) automorphic represen-
tations of D×

Ak
which are not one-dimensional and so-called compatible cuspidal

automorphic representations of GL2(Ak). This is extended in [1] and [2] to one-
dimensional automorphic representations of D×

Ak
. These correspond to the residual

representations of GL2(Ak), which are all one-dimensional as well.

Theorem 3.1. (1) There is a unique bijection between (cuspidal) automorphic
representations of D×

Ak
which are not one-dimensional, and cuspidal auto-

morphic representations of GL2(Ak) with square-integrable local component
at each place where D does not split, such that if π′ ∼= ⊗vπ′v corresponds to
π ∼= ⊗vπv, then π′v ∼= πv at v 6∈ VD, and π′v corresponds to πv by the local
Jacquet-Langlands correspondence at v ∈ VD.

(2) There is a unique extension of the bijection in (1) to an injection of all (cus-
pidal) automorphic representations of D×

Ak
into automorphic representations

of GL2(Ak) belonging to the discrete spectrum such that if π′ corresponds
to π, then π is compatible, and the two local conditions of (1) are satisfied.
More precisely, this extension maps one-dimensional representation χ ◦ nrd
to χ ◦ det, where χ is a unitary character of k×\Ik.

3.2 Global correspondence

Again we restrict our attention to the case of the global Jacquet-Langlands corre-
spondence between H ′(Ak) and H(Ak). The center of both groups is isomorphic
to the group of idèles Ik via the isomorphism that assigns to an element x ∈ Ik
the scalar matrix of the appropriate size with x on the diagonal. Hence, we may
view the central characters of discrete spectrum automorphic representations of
both groups as unitary characters of k×\Ik. We fix such a central character ω. It
is preserved under global Jacquet-Langlands correspondence.

We say that an irreducible constituent of L2
disc(H, ω) is (globally) compatible

with respect to D if every local component πv of π at a place v ∈ VD is locally
compatible as a unitary representation of H(kv) ∼= GL4(kv), i.e., there is a unitary
representation π′v of H ′(kv) ∼= GL2(Dv) corresponding to πv by the local Jacquet-
Langlands correspondence. In our case at hand, the main result of [1] regarding
Jacquet-Langlands correspondence is as follows.

Theorem 3.2. There is a unique map Ξ from the set of irreducible constituents
of L2

disc(H
′, ω) to the set of irreducible constituents of L2

disc(H, ω), such that if
π = Ξ(π′) then

• π is compatible (with respect to D),
• πv

∼= π′v for v 6∈ VD,
• πv corresponds to π′v by the local Jacquet-Langlands correspondence at v ∈

VD.
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The map Ξ is injective, and the image consists of all compatible constituents of
L2

disc(H, ω) with respect to D.

The following more precise description of the global correspondence is also
proved in [1]. For a positive integer l let Rl be the standard parabolic k-subgroup
of GL(ln)/k corresponding to the partition ρ = (n, n, . . . , n) of ln. Its Levi factor
LRl

is isomorphic to the direct product of l copies of GL(n)/k. Let π be a cuspidal
automorphic representation of GLn(Ak). Let

tl =
(

l − 1
2

,
l − 3

2
, . . . ,− l − 1

2

)
∈ ǎRl

.

Then, we denote by I(l, π) the representation of GLln(Ak) induced from the rep-
resentation

π|det | l−1
2 ⊗ π|det | l−3

2 ⊗ · · · ⊗ π|det |− l−1
2

of the Levi factor LRl
(Ak). This representation has a unique irreducible quotient

which we denote by J(l, π). It is a residual representation of GLln(Ak) if l > 1.
For l = 1, we have by definition I(1, π) = J(1, π) = π. All residual representations
of GLN (Ak), for N > 1, are obtained in this way for some divisor l > 1 of N .

Theorem 3.3. Let π be an irreducible cuspidal automorphic representation of the
group GLn(Ak). There is a unique positive integer sπ,D, depending only on π and
the division algebra D, which is defined by the condition that J(l, π) is globally
compatible (with respect to D) if and only if sπ,D divides l. Moreover, sπ,D divides
the degree d of the division algebra.

A representation of the form J(sπ,D, π) of GLnsπ,D
(Ak) corresponds to a

cuspidal automorphic representation π′ of the inner form. A representation of the
form J(msπ,D, π), with m > 1, corresponds to a residual representation J ′(m,π′)
of the inner form, where m stands in this case for the point

t′m =
(

sπ,D
m− 1

2
, sπ,D

m− 3
2

, . . . ,−sπ,D
m− 1

2

)
,

and the notation J ′(m,π′) for inner forms is in an obvious analogy with the split
case.

3.3 Discrete spectrum of GL4(Ak)

In order to describe the global Jacquet-Langlands correspondence more precisely,
we require the description of the discrete spectrum L2

disc(H, ω) of H(Ak). In [23],
Mœglin and Waldspurger describe the residual part of the discrete spectrum for
GLn(Ak). The decomposition into irreducibles of the cuspidal part was first proved
by Gelfand, Graev and Piatetski-Shapiro in [11]. In [32] Shalika proved that each
representation appears with multiplicity one.

Theorem 3.4. The discrete spectrum L2
disc(H, ω) of H(Ak) decomposes into

L2
disc(H, ω) ∼= L2

cusp(H, ω)⊕ L2
res(H, ω),
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where L2
cusp(H, ω) is the cuspidal spectrum consisting of cuspidal elements, and

L2
res(H, ω) is its orthogonal complement called the residual spectrum. The cuspi-

dal part L2
cusp(H, ω) decomposes into a Hilbert space direct sum of all irreducible

cuspidal automorphic representations of H(Ak) with central character ω, each ap-
pearing with multiplicity one. The residual part L2

res(H, ω) decomposes along the
cuspidal support into

L2
res(H, ω) ∼= L2

res,{Q0}(H, ω)⊕ L2
res,{Q2}(H, ω),

where
L2

res,{Q0}(H, ω) ∼=
⊕

µ

µ ◦ det,

and the sum ranges over all unitary characters µ of k×\Ik such that µ4 = ω, while

L2
res,{Q2}(H, ω) ∼=

⊕
σ

J(2, σ),

and the sum ranges over all irreducible cuspidal automorphic representations σ of
GL2(Ak) with central character ωσ such that ω2

σ = ω.

3.4 Jacquet-Langlands correspondence for H ′(Ak)
and H(Ak)

In our case at hand, we can make the correspondence Ξ described in the two
theorems of Section 3.2 more explicit. Namely, we have the following explicit
description of the global Jacquet-Langlands correspondence.

Proposition 3.5. Let π be an irreducible constituent of L2
disc(H, ω). In view of

Theorem 3.4 we have the following possibilities.

(1) If π is cuspidal, then π is compatible with respect to D if and only if at all
non-split places v ∈ VD the local component πv is one of the following:
• v ∈ Vf and πv is a unitary square integrable representation of H(kv) ∼=

GL4(kv),
• πv is a tempered representation of H(kv) ∼= GL4(kv) fully induced from

two unitary square-integrable representations of GL2(kv),
• πv is a complementary series representation of H(kv) ∼= GL4(kv) at-

tached to a unitary square-integrable representation of GL2(kv) and a
real number 0 < α < 1/2.

Assume that π is compatible, and π = Ξ(π′). The local component π′v of π′

at v ∈ VD is according to the form of πv one of the following
• a unitary square integrable representation of H ′(kv) ∼= GL2(Dv) (this

can be explicitly described in terms of Zelevinsky segments),
• a tempered representation of H ′(kv) ∼= GL2(Dv) fully induced from a

tensor product of two unitary representations of D×
v ,

• a complementary series representation of H ′(kv) ∼= GL2(Dv) attached
to a unitary representation of D×

v and a real number 0 < α < 1/2.
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(2) If π ∼= J(2, σ), where σ is a cuspidal automorphic representation of GL2(Ak),
then π is always compatible with respect to D.
(a) If σv is square-integrable at all non-split places v ∈ VD, let σ′ be the

cuspidal automorphic representation of D×
Ak

corresponding to σ by the
classical Jacquet-Langlands correspondence. Note that σ′ is not one-
dimensional. Then π corresponds to the residual representation J ′(2, σ′)
of H ′(Ak).

(b) If there is a non-split place v ∈ VD such that σv is not square-integrable,
then π corresponds to a cuspidal automorphic representation π′ of the
group H ′(Ak). The local component π′v of π′ at v ∈ VD such that σv is
not square-integrable is
• either a tempered representation of H ′(kv) ∼= GL2(Dv), which is

fully induced from a tensor product of two unitary characters of
D×

v ,
• or a complementary series representation of H ′(kv) ∼= GL2(Dv),

attached to a unitary character of D×
v and a real number 0 < α <

1/2.
(3) If π ∼= µ◦det, where µ is a unitary character of k×\Ik, then π is always com-

patible with respect to D. It corresponds by the global Jacquet-Langlands cor-
respondence to the one-dimensional residual representation µ◦nrd of H ′(Ak).

Proof. We prove each part of the proposition separately.

(1) Any cuspidal automorphic representation π of GL4(Ak) is generic (cf. [32]).
Hence, its local components are generic as well. The generic unitary dual,
obtained in [33] over a p-adic field and [37] over an archimedean field, is of
the same form. More precisely, for any v ∈ V the local component πv is
a fully induced representation from certain basic unitary representations of
the form χ, δi, π(χ, α), π(δ2, α), where i = 2, 3, 4 if v ∈ Vf , and i = 2 if
v ∈ V∞ (since at the real place only δ2 exist).
Compatibility of π is determined by the local compatibility at v ∈ VD. A
local component πv at v ∈ VD is compatible if and only if the basic unitary
representation involved are compatible. This rules out the possibility of χ
and π(χ, α). Hence, in order to obtain a representation of GL4(kv), there
are only the three possibilities given in the theorem (the first one can occur
only for v ∈ VD ∩ Vf since there is no δ4 at a real place).
If π is compatible, then Theorem 3.3 shows that π′ is cuspidal, because
π = J(1, π). The description of local components π′v at v ∈ VD follows
directly from Section 2.2 and Section 2.4.

(2) The fact that J(2, σ) is always compatible follows from the second Theorem
in Section 3.2. Indeed, it shows that sσ,D divides the degree of D. Thus, in
the case of a quaternion division algebra, either sσ,D = 1 or sσ,D = 2, and
in both cases J(2, σ) is compatible.
(a) If sσ,D = 1, then σ itself is compatible. This is the situation of the

original Jacquet-Langlands correspondence (cf. [18]). The condition of
compatibility is precisely the condition on σv given in (2a). The rest of
the claim directly follows from Theorem 3.3.
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(b) If sσ,D = 2, then σ is not compatible, which is exactly the opposite of
the previous case, as claimed. Again Theorem 3.3 shows that in this
case π′ is cuspidal.
For describing the local components π′v we consider only places v ∈ VD

at which σv is not square-integrable, because the other possibility is
covered by the original Jacquet-Langlands correspondence as in part
(2a). Then σv is either a tempered representation fully induced from
two unitary characters χ1 and χ2 of k×v , or a complementary series
representation π(χ, α), where χ is a unitary character of k×v and 0 <
α < 1/2.
Now πv, for v ∈ VD, can be written either as a fully induced representa-
tion from χ1 ◦det2 and χ2 ◦det2, or as π(χ◦det2, α). The claim follows
from Section 2.2 and Section 2.4.

(3) Finally, the unitary characters µ ◦ det of H(Ak) are compatible, because
their local components are also characters of H(kv) ∼= GL4(kv), and they
correspond to characters of H ′(kv) ∼= GL2(Dv) at all v ∈ VD. Note that
sµ,D = 2 for every unitary character µ of k×\Ik. Therefore, characters of
H ′(Ak) are not cuspidal.

3.5 Discrete spectrum of H ′(Ak)

As a consequence of the global Jacquet-Langlands correspondence explicitly de-
scribed in Proposition (3.5) we obtain the decomposition of the discrete spectrum
of H ′(Ak). In [1] it is also proved that it is multiplicity one.

Theorem 3.6. The discrete spectrum L2
disc(H

′, ω) of H ′(Ak) decomposes into

L2
disc(H

′, ω) ∼= L2
cusp(H ′, ω)⊕ L2

res(H
′, ω),

where L2
cusp(H ′, ω) is the cuspidal spectrum consisting of cuspidal elements, and

L2
res(H

′, ω) is its orthogonal complement called the residual spectrum. The cuspidal
part L2

cusp(H ′, ω) decomposes into a Hilbert space direct sum of irreducible cuspidal
automorphic representations with central character ω, each appearing with multi-
plicity one, and obtained by the global Jacquet-Langlands correspondence either
from a cuspidal automorphic representation of H(Ak) as in part (1) of Proposi-
tion 3.5, or from a residual automorphic representation J(2, σ) of H(Ak) with σ
as in part (2b) of Proposition 3.5. The residual part L2

res(H
′, ω) decomposes into

a Hilbert space direct sum

L2
res(H

′, ω) ∼=
(⊕

µ

µ ◦ nrd

)
⊕

(⊕

σ′
J ′(2, σ′)

)
,

where the first sum ranges over all unitary characters µ of k×\Ik such that µ4 = ω,
and µ◦nrd is obtained by the Jacquet-Langlands correspondence from µ◦det, while
the second sum ranges over all cuspidal automorphic representations σ′ of D×

Ak

which are not one-dimensional, and J ′(2, σ′) is obtained by the Jacquet-Langlands
correspondence from J(2, σ), where σ is as in part (2a) of Proposition 3.5, with
central character ωσ = ωσ′ such that ω2

σ = ω.
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3.6 Remark

We describe here the discrete spectrum of algebraic k-groups, although the defini-
tion in Chapter I, Section 1.8 refers only to Q-groups. However, this generalization
is straightforward, and can be obtained via the restriction of scalars from k to Q.

III. Automorphic Cohomology of General

Linear Groups — a Comparison

Since the automorphic cohomology was defined in Chapter I for connected reduc-
tive linear algebraic groups defined over Q, we need to consider the restriction of
scalars from k to Q when dealing with k-groups. Thus, except in Section 1, in
this chapter we retain the notation of the previous one, namely H = GL(4)/k and
H ′ = GL(2, D)/k, where D is a quaternion division algebra central over a number
field k. However, we let G = Resk/QH and G′ = Resk/QH ′ be the Q-groups
obtained from H and H ′ by restriction of scalars, respectively. The goal of this
chapter is to compare the automorphic cohomology H∗(G,E) and H∗(G′, E), with
respect to the trivial representation E = C, and in particular, relate the possible
non-trivial cohomology classes via the Jacquet-Langlands correspondence.

1 Cohomological representations at Archimedean
places

We briefly discuss the constructive approach to the classification [39] of irreducible
unitary representations of a connected real reductive Lie group with non-vanishing
relative Lie algebra cohomology. This general result allows us to enumerate (up to
infinitesimal equivalence) the irreducible unitary (mH(R), O(4))-modules with non-
vanishing Lie algebra cohomology in an explicit way, where O(4) is the maximal
compact subgroup of H(R) ∼= GL4(R). We have to start off by determining
the irreducible unitary (mSL4(R), SO(4))-modules with non-vanishing Lie algebra
cohomology using the results in [39].

In this section we use a different notation then in the rest of the paper.
Namely, G denotes a connected real reductive Lie group, K ⊂ G a maximal
compact subgroup. Write g for the Lie algebra of G, and write gC for its com-
plexification. Given an irreducible unitary representation (π, Hπ) of G we denote
the Harish-Chandra module of Hπ (i.e., the set of K-finite vectors in the space of
C∞-vectors of Hπ) by the same letter or by Hπ,K . We denote by WG (resp. WK)
the Weyl group of G (resp. K).

1.1 The classification up to infinitesimal equivalence

Let G be a connected real reductive Lie group (of Harish-Chandra’s class), K ⊂ G
a maximal compact subgroup. Let θK be the Cartan involution corresponding to
the maximal compact subgroup K ⊂ G, and let g = k ⊕ p be the corresponding
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Cartan decomposition. By definition a θK-stable parabolic subalgebra q of g is a
parabolic subalgebra of gC such that θKq = q, and q∩ q = lC is a Levi subalgebra
of q where q refers to the image of q under complex conjugation with respect to the
real form g of gC. Write u for the nilradical of q. Then lC is the complexification
of a real subalgebra l of g. The normalizer of q in G is connected since G is, and
it coincides with the connected Lie subgroup L of G with Lie algebra l. The Levi
subgroup L has the same rank as G, is preserved by the Cartan involution θK , and
the restriction of θK to L is a Cartan involution. Moreover, the group L contains
a maximal torus T ⊂ K. We will indicate below a construction of all possible
θK-stable parabolic subalgebras q in g up to conjugation by K. There are only
finitely many K-conjugacy classes of θK-stable parabolic subalgebras q in g.

A θK-stable parabolic subalgebra q gives rise to an irreducible unitary rep-
resentation Aq of G. It is constructed via cohomological induction as RS

q (see
[39, Thm. 2.5]) and it is uniquely determined up to infinitesimal equivalence by
the K-conjugacy class of q. In the case that the θK-stable parabolic subalgebra
coincides with the full algebra, that is, q0 := gC, we take Aq = C. We denote the
Harish-Chandra module of Aq by the same letter or by Aq,K . One has

Hj(g,K, Aq,K) = HomL∩K(∧j−R(l ∩ p),C) (1.1)

where R = R(q) := dim(u ∩ pC). Consequently, the Lie algebra cohomology with
respect to the representation Aq vanishes in degrees below dim(u∩ pC) and above
dim(u∩pC)+dim(l∩pC). Suppose (π, Hπ) is an irreducible unitary representation
(π, Hπ) of G with

H∗(g,K, Hπ,K) 6= 0.

Then there is a θK-stable parabolic subalgebra q of g so that π ∼= Aq. One finds the
construction of the representations Aq in [25], a proof of their unitarity in [36] and
the classification of the irreducible unitary representations of G with non-vanishing
cohomology in [39].

Following [39] and [38, Section 4] we outline a construction of all θK-stable
parabolic subalgebras q of g up to conjugation by K. Fix a maximal torus T in
K. The centralizer H of T in G is a Cartan subgroup. According to the Cartan
decomposition of g we may write H = TA with A = H ∩ (exp p). We denote the
Lie algebra of T by tc. Let Φ(k, tc) =: Φc be the system of roots for tc in kC, and
fix a system Φ+

c := Φ+(k, tc) ⊂ Φ(k, tc) of positive roots. Similarly, we write Φn

for the set of non-zero weights of tc on pC.
Fix an element x ∈ i(tc)R that is dominant for K, that is, γ(x) ≥ 0 for all

γ ∈ Φ+(k, tc). Then the θK-stable parabolic subalgebra associated to x is defined
by

qx = hC ⊕
∑

γ∈Φ,γ(x)≥0

gC,γ

with Φ := Φn ∪ Φc. The corresponding Levi subalgebra qx ∩ qx = (lx)C is

(lx)C = hC ⊕
∑

γ∈Φ,γ(x)=0

gC,γ .

The Levi subgroup is then described by Lx = {g ∈ G | Ad(g)(x) = x}.
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1.2 The case GL4(R)

This general construction allows us to enumerate (up to infinitesimal equivalence)
the irreducible unitary (mGL4(R), O(4))-modules with non-vanishing Lie algebra
cohomology in an explicit way, where O(4) is a maximal compact subgroup of
GL4(R). The final result also appears in the thesis [19, Section 2].

First we have to deal with the pair consisting of the semi-simple real Lie
group G = SL(4,R) and the maximal compact subgroup K = SO(4). The Lie
algebra so4 is semi-simple of rank 2. Fix the maximal torus T = SO(2)×SO(2) in
K. The centralizer H of T in G is a Cartan subgroup. Let {γ1, γ2} be a basis for
the system Φ(k, tc) of positive roots for tc in kC. Given an element x ∈ i(tc)R that
is dominant for K, that is, γ(x) ≥ 0 for all γ ∈ Φ(k, tc), the θK-stable parabolic
subalgebra associated to x is defined by

qx = hC ⊕
∑

γ∈Φ,γ(x)≥0

gC,γ

with Φ := Φ(g, tc). The corresponding Levi subalgebra qx ∩ qx = (lx)C is

(lx)C = hC ⊕
∑

γ∈Φ,γ(x)=0

gC,γ .

Following this construction one obtains as in [19, Section 2.1] the following list
of θK-stable parabolic subalgebras q of g (up to conjugation by K = SO(4)),
enumerated as qj , j = 1, . . . , 6, with

(l1)C = gC u1 = {0},
(l2)C = hC ⊕ gC,γ1 ⊕ gC,−γ1 u2 = gC,γ2 ⊕ gC,γ2−γ1 ⊕ gC,γ2+γ1 ,
(l3)C = hC ⊕ gC,γ2 ⊕ gC,−γ2 u3 = gC,γ1 ⊕ gC,γ1−γ2 ⊕ gC,γ1+γ2 ,
(l4)C = hC ⊕ gC,γ2−γ1 ⊕ gC,γ1−γ2 u4 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ1+γ2 ,
(l5)C = hC u5 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ2−γ1 ⊕ gC,γ2+γ1 ,
(l6)C = hC u6 = gC,γ1 ⊕ gC,γ2 ⊕ gC,γ1−γ2 ⊕ gC,γ2+γ1 .

We denote by Aqj
the corresponding (mG, SO(4))-module. Second, by taking

into account the induction functor Ind from the category of (mG, SO(4))-modules
to the category of (mG, O(4))-modules, we now are in the position to determine
(up to infinitesimal equivalence) the irreducible unitary (mG, O(4))-modules with
non-vanishing relative Lie algebra cohomology. Note that mG = mGL4(R)

Proposition 1.1. (1) The (mG, O(4))-modules Ind(Aqj
), j = 2, 3 and j = 5, 6

are irreducible, to be denoted by Yqj
. One has Yq2

∼= Yq3 and Yq5
∼= Yq6

respectively.
(2) The (mG, O(4))-module Ind(Aq1) splits into the two irreducible summands

Yq1 := C and Y det
q1

:= Cdet.
(3) The (mG, O(4))-module Ind(Aq4) splits into two irreducible (mG, O(4))

-modules, more precisely one has Ind(Aqj
) = R2

q4
(C)⊕R2

q4
(Cdet).

Proof. The first assertion follows from the fact that Lj ∩ O(4) = Lj ∩ SO(4) for
j = 2, 3 and j = 5, 6 and that q2 is conjugate under O(4) to q3 respectively q5 is
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conjugate under O(4) to q6. With regard to the other two assertions we observe
that the Lj ∩O(4)-module Ind(C) obtained from the trivial Lj ∩SO(4)-module C
splits into the two irreducibles C and Cdet if j = 1 and 4.

Having determined the unitary Harish-Chandra modules with non-zero co-
homology for GL4(R), it is convenient to have their description in terms of the
Langlands classification and in terms of the classification of unitary representa-
tions used in Chapter II. We summarize these results in Table 3. The first column
is the notation used in the proposition above. The second column gives the data
defining the Langlands quotient of the representation, i.e., the standard parabolic
subgroup Q, a square-integrable representation δ of its Levi factor LQ(R), and an
element ν ∈ ǎ+

Q given in the basis consisting of the determinants on each general
linear group appearing in the Levi factor LQ. The third column lists the basic
unitary representations, see Section 2.1 in Chapter II, appearing in the classifica-
tion of the unitary representations. We also give in the last column the degrees in
which the cohomology is non-zero. In all these degrees the cohomology space is
isomorphic to C.

Table 3 Unitary Harish-Chandra modules for GL4(R) with non-zero cohomology

Repn Langlands data Basic unit. repns Hq 6= 0

Yq1 (Q0(R),1⊗ . . .⊗ 1, (3/2, 1/2,−1/2,−3/2)) 1 ◦ det4 q = 0, 5

Y det
q1

(Q0(R), sgn⊗ . . .⊗ sgn, (3/2, 1/2,−1/2,−3/2)) sgn ◦det4 q = 4, 9

Yq2 (Q2(R), D3 ⊗D3, (1/2,−1/2)) u(D3, 2) q = 3, 6

Yq5 (Q2(R), D2 ⊗D4, (0, 0)) D2, D4 q = 4, 5

R2
q4

(C) (Q{α2}(R),1⊗D4 ⊗ 1, (1/2, 0,−1/2)) 1 ◦ det2, D4 q = 3, 4

R2
q4

(Cdet) (Q{α2}(R), sgn⊗D4 ⊗ sgn, (1/2, 0,−1/2)) sgn ◦det2, D4 q = 5, 6

1.3 The case GL2(H)

The same general classification of unitary representations with non-zero cohomol-
ogy can be applied to the real Lie group G′ = GL2(H), and its maximal compact
subgroup K ′. It turns out that there are up to infinitesimal equivalence three such
representations which we denote by Xq′j , j = 1, 2, 3. We describe these represen-
tations in terms of the Langlands classification, and the classification of unitary
representations given in Section 2.1 in Chapter II. Note that here the elements of
ǎQ′ are given in the basis consisting of the reduced norm on each copy of H×. We
also give the degrees in which the cohomology is non-vanishing. In those degrees
the cohomology space is isomorphic to C. As in the case GL4(R), we summarize
the final result in Table 4, and leave the details to the reader.

Table 4 Unitary Harish-Chandra modules for GL2(H) with non-zero cohomology

Repn Langlands data Basic unit. repns Hq 6= 0

Xq′1
(Q′(R),1⊗ 1, (1,−1)) 1 ◦ nrd2 q = 0, 5

Xq′2
(Q′(R), D′3 ⊗D′3, (1/2,−1/2)) u(D′3, 2) q = 1, 4

Xq′3
(Q′(R),1H× ⊗D′4, (0, 0)) 1H× , D′4 q = 2, 3
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Comparing the description in terms of basic unitary representations for groups
GL4(R) and GL2(H), given in the third column of Table 3 and Table 4, it is
clear that the representations with non-zero cohomology are related by the local
Jacquet-Langlands correspondence described in Section 2.2 in Chapter II. More
precisely, the first two representations in Table 3 correspond to Xq′1 , the third
one correspond to Xq′2 , and the remaining three to Xq′3 . However, the degrees
in which their cohomology is non-vanishing varies. Even if two representations of
GL4(R) correspond to the same representation of GL2(H), the degrees in which
the cohomology is non-vanishing are not the same.

2 The automorphic cohomology of the general
linear group G = Resk/QGL4/k

Let H = GL(4)/k be the general linear group defined over k. We consider in
this section the automorphic cohomology of the Q-group G = Resk/QH obtained
by restriction of scalars. The standard parabolic Q-subgroups of G are obtained
from the standard parabolic k-subgroups of H by restriction of scalars. In par-
ticular, we denote by Pi = Resk/QQi, for i = 1, 2, 3, the three maximal proper
standard parabolic Q-subgroups of G, by P0 = Resk/QQ0 the minimal one, and
by P{αi} = Resk/QQ{αi}, for i = 1, 2, 3, the three intermediate ones. As for H,
among maximal parabolic subgroups P1 and P3 are associate, while the interme-
diate ones P{αi} are all associate. Thus, there are four associate classes of proper
parabolic Q-subgroups of G, namely the class of minimal parabolic subgroups
{P0}, two classes of maximal ones {P1} and {P2}, and one class of intermediate
ones {P{α1}}.

The automorphic cohomology H∗(G,E) has a direct sum decomposition

H∗(G,E) = H∗
cusp(G,E)⊕H∗

Eis(G,E)

where
H∗

Eis(G,E) :=
⊕

{P}∈C,P 6=G

H∗(mG,KR;AE,{P} ⊗C E)

is the Eisenstein cohomology of G with coefficients in E. The sum ranges over
associate classes of proper parabolic Q-subgroups of G. In this section, we discuss
the internal structure of each of the corresponding summands in this decomposition
of the automorphic cohomology.

2.1 Cuspidal cohomology

The cuspidal cohomology H∗
cusp(G,E) decomposes as a direct sum as

H∗
cusp(G,E) =

⊕

φ∈ΦE,{G}

H∗(mG,KR;AE,{G},φ ⊗C E)

where the sum ranges over the set ΦE,{G} of classes of associate irreducible cuspidal
automorphic representations of G.
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We define certain constants required to state a vanishing result for cuspidal
cohomology of the general linear group. For a given real Lie group M with finitely
many connected components and reductive Lie algebra 2q(M) = dimM−dimKM

where KM is a maximal compact subgroup of M . Set `0(M) := rk(M)− rk(KM ),
where rk denotes the absolute rank, and write q0(M) := 1

2 (2q(M) − `0(M)). In
the case of the real Lie group GLn(R) these values can be made explicit; we refer
to [27, Section 3.5]. The interval [q0(M), q0(M) + `0(M)] is centered around the
middle dimension of the symmetric space associated to the Lie group M . For the
group H(R) ∼= GL4(R) of interest to us, one obtains the interval [4, 5].

Theorem 2.1. Let k/Q be an algebraic number field, and let G/Q be the algebraic
Q-group Resk/QGL(n) obtained from the general linear group GL(n) defined over
k by restriction of scalars. Let (ν,E) be an irreducible finite dimensional algebraic
representation of G(C). Then

Hj
cusp(G,E) = 0 if j /∈ [q0(G(R)), q0(G(R)) + `0(G(R))] ∩ Z.

In particular, if k is totally real, and G = Resk/QH with H = GL(4)/k, then

Hj
cusp(G,E) = 0 if j /∈ [4[k : Q], 5[k : Q]] ∩ Z,

where [k : Q] is the degree of extension k/Q.

Proof. We consider a summand H∗(mG,KR;AE,{G},φ)⊗CE corresponding to the
associate class φ of a cuspidal automorphic representation π of G(A). We may
view π as a cuspidal automorphic representation of GLn(Ak). By the Künneth
rule, since G(R) ∼= ∏

v∈V∞ GLn(kv) with kv = R or kv = C, the corresponding
representation πv must have non-trivial cohomology for all v ∈ V∞.

On the other hand, π is cuspidal automorphic representation of GLn(Ak),
and hence generic. Thus, the local components πv are generic as well. As they are
also unitary, comparing the classification of generic unitary dual for GLn(R) and
GLn(C) of Vogan [37] to the classification of cohomological unitary representations
as in [39], it is not too difficult to see that πv is necessarily tempered. For a detailed
discussion of this fact see [27, Section 3.5] or [29, Chapter 6]. The degrees where
these specific tempered representations have non-vanishing cohomology give the
required bounds. If k is totally real, and G = Resk/QH with H = GL(4)/k, the
vanishing result follows by the Künneth rule from the vanishing outside [4, 5] ∩ Z
for GL4(R) mentioned before the statement of the Theorem.

By the construction of cuspidal cohomology classes for congruence subgroups
of GLn/k with respect to suitable coefficient systems (ν,E) as pursued in [20] this
bound q0(G(R)) is sharp (at least if we vary the choice of the base field k).

In the case of the trivial representation E = C, there is up to equivalence
exactly one unitary representation of GLn(R) which is generic and has non-trivial
cohomology with respect to E = C. It is tempered, and given as the fully induced
representation from a square-integrable representation of the Levi factor LQρ

of
the parabolic subgroup Qρ with ρ = (r1, . . . , rm), where m =

[
n
2

]
if n is even, and

m =
[

n
2

]
+ 1 if n is odd, and ri = 2 for i = 1, . . . ,

[
n
2

]
, and if n is odd rm = 1.
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The square-integrable representation of LQρ
is the tensor product of discrete series

representations Dn−2i+2 of GL2(R) of lowest O(2)-type n−2i+2 for i = 1, . . . ,
[

n
2

]
(see Section 2.2 in Chapter II), and if n is odd a trivial character of R×.

In particular, if n = 4, we obtain that this representation is fully induced
from the tensor product D4 ⊗ D2, where Di is the discrete series representation
of lowest O(2)-type i (see Section 2.2 in Chapter II), of the Levi factor LQ2(R) ∼=
GL2(R)×GL2(R).

2.2 The summands H∗(mG, KR;AE,{P} ⊗C E), P maximal
parabolic

Let {P} be one of the two associate classes {P1} and {P2} of maximal parabolic
Q-subgroups of the reductive Q-group G. As explained in Section 3.2 in Chapter
I, given φ ∈ ΦE,{P}, there is a natural two step filtration

LE,{P},φ ⊂ AE,{P},φ,

of the space AE,{P},φ of automorphic forms, where LE,{P},φ is the subspace of
AE,{P},φ consisting of square integrable automorphic forms. The space LE,{P},φ is
spanned by the residues at s > 0 of the Eisenstein series attached to functions f ∈
Wπ, where π ∼= σ⊗σ′ ∈ φP with σ and σ′ cuspidal automorphic representations of
the general linear groups appearing in the Levi factor LP of P (see Section 3.3 in
Chapter I). Those residues are square-integrable automorphic forms [24, Section
I.4.11]. The quotient AE,{P},φ/LE,{P},φ is in both cases spanned by the principal
value of the derivatives of such Eisenstein series at Re(s) ≥ 0.

By the description of the residual spectrum of H(Ak) ∼= GL4(Ak) (cf. [23],
recalled in Section 3.3 in Chapter II), which is the same as G(A), the space
LE,{P1},φ = (0) for every associate class φ. In the other case, LE,{P2},φ 6= (0)
if and only if φ is the associate class of a cuspidal representation π ∼= σ ⊗ σ, i.e.,
σ′ ∼= σ. Then we have the following result in our case of interest which is the main
theorem obtained in the case Resk/QGLn in [10, Section 5.6].

Theorem 2.2. Let {P} be an associate class of maximal parabolic Q-subgroups
of the group G, and let φ ∈ ΦE,{P} be an associate class of irreducible cuspidal
automorphic representations of the Levi components of elements in {P}.

(1) If {P} = {P1}, that is, the elements in {P} are not conjugate to their
opposite P−, then

H∗(mG,KR;LE,{P1} ⊗C E) = (0).

Consequently, H∗
(sq)(mG,KR;AE,{P1} ⊗C E) = (0), and thus the whole space

H∗(mG,KR;AE,{P1} ⊗C E) is generated by so called regular Eisenstein co-
homology classes.

(2) If {P} = {P2}, that is, the elements in {P} are conjugate to their opposite
P−, then
(a) if φ is the associate class of π ∼= σ ⊗ σ′ with σ 6∼= σ′, then

H∗(mG,KR;LE,{P2},φ ⊗C E) = (0).
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Consequently, H∗
(sq)(mG,KR;AE,{P2},φ⊗CE) = (0), and thus the space

H∗(mG,KR;AE,{P1},φ⊗CE) is generated by so called regular Eisenstein
cohomology classes.

(b) Otherwise, i.e., in the case π ∼= σ ⊗ σ, the space

H∗(mG,KR;LE,{P2},φ ⊗C E)

is non-trivial. It consists of square integrable cohomology classes repre-
sented by residues of suitable Eisenstein series attached to π. In par-
ticular, if k/Q is totally real of degree [k : Q], then

Hq (mG,KR;LE,{P2},φ ⊗C E) =


C[k:Q],

if q ∈ [
3[k : Q], 6[k : Q]

] ∩ (3Z) and
Πv

∼= Jv(P2(R), D3 ⊗D3, (1/2, 1/2)) for v ∈ V∞,

0, otherwise,

where Πv is the local component at the place v of LE,{P2},φ, and Jv

stands for the Langlands quotient.

Observe that in the case (2b) of the Theorem, the square-integrable cohomol-
ogy space

H∗
(sq)(mG,KR;AE,{P2},φ ⊗C E)

is not given. It is still an open problem to determine this space. However, it is
proved in [10] that the square-integrable cohomology classes are separated from
the regular ones by the degree in which they may occur.

2.3 The summand H∗(mG, KR;AE,{P0} ⊗C E)

Let {P0} be the associate class of the fixed minimal parabolic Q-subgroup P0 of
the reductive Q-group Resk/QGL(n) obtained from the k-group GL(n)/k by the
restriction of scalars. Let φ ∈ ΦE,{P0} be an associate class of cuspidal automorphic
representations of L0(A). By the description of the residual spectrum of GLn(Ak)
by Mœglin and Waldspurger [23], the space of square-integrable automorphic forms
LE,{P0},φ inside AE,{P0},φ is trivial unless φP0 contains a character of L0(A) of the
form χ ⊗ χ ⊗ · · · ⊗ χ, where χ is a unitary character of k×\Ik. If this necessary
condition is satisfied, then LE,{P0},φ is one-dimensional and isomorphic to χ ◦det.

In any case, by Franke’s filtration [8, Theorem 14, Section 6], the quotient
AE,{P0},φ/LE,{P0},φ is spanned by principal values of the derivatives of all the
Eisenstein series, attached to either residual automorphic representation, sup-
ported in χ ⊗ χ ⊗ · · · ⊗ χ, of the Levi factor of a proper parabolic subgroup
which is not minimal, or a cuspidal automorphic representation χ⊗χ⊗ · · · ⊗χ of
L0(A). Then, in the case of interest of this paper, we have the following result in
cohomology. The proof follows directly from the above discussion, except for the
degrees of non-vanishing cohomology which is a consequence of the Künneth rule
and Section 1.2.
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Theorem 2.3. Let {P0} be the associate class of the minimal parabolic Q-subgroup
P0 of the group G, and let φ ∈ ΦE,{P0} be an associate class of irreducible cuspidal
automorphic representations of the Levi components of elements in {P0}. Let
χ1 ⊗ χ2 ⊗ χ3 ⊗ χ4 ∈ φP0 be a unitary character of L0(A), where χi is a unitary
character of k×\Ik for i = 1, 2, 3, 4.

(1) If there are i 6= j such that χi 6= χj, then

H∗(mG,KR;LE,{P0},φ ⊗C E) = (0).

Consequently, H∗
(sq)(mG,KR;AE,{P0},φ ⊗C E) = (0).

(2) Otherwise, i.e., in the case χ1 = χ2 = χ3 = χ4, we denote this character by
χ. Then, the space H∗(mG,KR;LE,{P0},φ ⊗C E) is non-trivial. It consists
of square integrable cohomology classes represented by residues of suitable
Eisenstein series. In particular, if k/Q is totally real of degree [k : Q], and
t0 the number of places v ∈ V∞ such that χv = sgn, then

Hq(mG,KR;LE,{P0},φ ⊗C E) =


C[k:Q],

if q ∈ [
4t0, 5[k : Q] + 4t0

] ∩ (5Z+ 4t0) and
χv = 1 or χv = sgn at all places v ∈ V∞,

0, otherwise.

The problem of determining the image H∗
(sq)(mG,KR;LE,{P0},φ ⊗C E) was

studied for the minimal parabolic subgroup in the case SL(n)/Q by Franke in [9].

2.4 The summand H∗(mG, KR;AE,{P{α1}} ⊗C E)

Let {P{α1}} be the associate class of intermediate parabolic Q-subgroups of the
reductive Q-group G, i.e., the class consisting of proper parabolic Q-subgroups
which are neither minimal, nor maximal. By Section 1.1 in Chapter II, there is only
one such associate class. Again, the results of Mœglin and Waldspurger [23], show
that there are no square-integrable automorphic forms in the space AE,{P{α1}}.
Thus in this case the space LE,{P{α1}},φ of square-integrable automorphic forms
inside AE,{P{α1}},φ is trivial for any associate class φ ∈ ΦE,{P{α1}}. Thus, the
same holds in cohomology, i.e.,

H∗(mG,KR;LE,{P{α1}} ⊗C E) = (0).

Consequently, the space H∗
(sq)(mG,KR;AE,{P{α1}} ⊗C E) = (0).

By Franke [8, Theorem 14, Section 6], the space AE,{P{α1}} itself is spanned
by the principal values of the derivatives of all the Eisenstein series attached to
residual automorphic representations, supported in {P{α1}}, of the Levi factor
LP2(A) of the parabolic subgroup P2, and the cuspidal Eisenstein series supported
in {P{α1}}. More precisely, if φ is the associate class of a cuspidal automorphic
representation π ∼= σ ⊗ χ1 ⊗ χ2 of LP{α1}

(A), with χ1 = χ2 denoted by χ, then
the Franke filtration of AE,{P{α1}},φ is a two-step filtration

A′E,{P{α1}},φ ⊂ AE,{P{α1}},φ,
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where A′E,{P{α1}},φ
is spanned by the holomorphic values of all the derivatives

of the Eisenstein series attached to the representation σ ⊗ χ ◦ det2 of LP2(A) at
an appropriate evaluation point. The quotient is spanned by main values of the
derivatives of the Eisenstein series attached to π itself at an appropriate evaluation
point. Otherwise, if χ1 6= χ2, then A′E,{P{α1}},φ

= (0).

3 The automorphic cohomology
of G′ = Resk/QGL(2, D)

We consider now the automorphic cohomology of the Q-group G′ which is obtained
from the k-group H ′ = GL(2, D) by restriction of scalars, where D is a quaternion
division algebra central over k. Since there is a unique conjugacy (and associate)
class of proper Q-parabolic subgroups of G′, given by P ′ = Resk/QQ′, the de-
composition of the automorphic cohomology H∗(G′, E) with respect to associate
classes of parabolic subgroups consists of two summands

H∗(G′, E) = H∗
cusp(G′, E)

⊕
H∗

Eis(G
′, E),

where
H∗

Eis(G
′, E) = H∗(mG′ ,K

′
R;AE,{P ′} ⊗C E).

We are primarily interested into square-integrable cohomology, namely

H∗
(sq)(G

′, E) = H∗
cusp(G′, E)

⊕
H∗

Eis,(sq)(G
′, E)

We study each summand separately using the global Jacquet-Langlands corre-
spondence (see Chapter II, Section 3) to make a comparison with the case of
G = Resk/QH, where H = GL(4)/k, considered in Section 2.

3.1 Global Jacquet-Langlands correspondence in
cohomology

The injective map Ξ of the global Jacquet-Langlands correspondence between
H ′(Ak) and H(Ak), defined in Section 3.2 in Chapter II, is in fact also an injective
map from the discrete spectrum representations of G′(A) into the discrete spectrum
representations of G(A). This map gives rise to a map, also denoted by Ξ, between
the cohomology spaces

Ξ : H∗(mG′ ,K
′
R;LE,{R′},φ′ ⊗C E) → H∗(mG,KR; Ξ(LE,{R′},φ′)⊗C E),

where either R′ = P ′ or R′ = G′, and Ξ(LE,{R′},φ′) is defined as follows. Let
π′ ∈ φ′R′ be a cuspidal automorphic representation of the Levi factor LR′(A).
Observe that we allow here R′ = G′, and thus LR′ = G′. Then, by the global
Jacquet-Langlands correspondence, there is a discrete spectrum representation
Ξ(π′) of the corresponding Levi factor in G. Hence, Ξ(π′) belongs to LE,{P},φ
for uniquely determined parabolic Q-subgroup P of G, and an associate class φ of
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a cuspidal automorphic representation of its Levi factor which is the support of
Ξ(π′). Then we define

Ξ(LE,{R′},φ′) = LE,{P},φ.

In accordance to the terminology regarding the global Jacquet-Langlands corre-
spondence, introduced in Section 3.2 in Chapter II, we say that a cohomology
space

H∗ (
mG,KR;LE,{P},φ ⊗C E

)

for G is D-compatible if it is among the spaces in the range of Ξ. This is equivalent
to D-compatibility of LE,{P},φ. The properties of the map Ξ in cohomology are
given in the following theorem.

Theorem 3.1. In the notation as above, the cohomology space

H∗(mG′ ,K
′
R;LE,{R′},φ′ ⊗C E)

is non-trivial if and only if

H∗(mG,KR; Ξ(LE,{R′},φ′)⊗C E)

is non-trivial.

The proof follows directly from the description of the local Jacquet-Langlands
correspondence at a real place in Section 2.2 in Chapter II. Namely, it shows
that the representations with non-zero cohomology of GL4(R) correspond to such
representations for GL2(H). In what follows, we refine the map Ξ by the degrees
of cohomology. However, this will be done considering case by case below.

Although we have now defined a map Ξ between the cohomology of the
spaces of square-integrable automorphic forms, it is not clear how is this related
to the summands in the decomposition along the cuspidal support of the square-
integrable automorphic cohomology. More precisely, we would like to understand
the following diagram

H∗(mG′ ,K
′
R;LE,{R′},φ′ ⊗C E) Ξ−−−−→ H∗(mG,KR;LE,{P},φ ⊗C E)

↓ ↓ (3.1)

H∗
(sq)(mG′ ,K

′
R;AE,{R′},φ′ ⊗C E)

Ξ(sq)−−−−−−−→ H∗
(sq)(mG,KR;AE,{P},φ ⊗C E)

where LE,{P},φ = Ξ(LE,{R′},φ′), the vertical maps are induced from the inclusion
of the space of square-integrable ones into the space of automorphic forms. The
map Ξ(sq) is to be considered case by case below.

3.2 Cuspidal cohomology

The cuspidal cohomology decomposes into

H∗
cusp(G′, E) =

⊕

φ′∈ΦE,{G′}

H∗(mG′ ,K
′
R;LE,{G′},φ′ ⊗C E),
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where the sum ranges over all associate classes of cuspidal automorphic representa-
tions of G′(A) which are represented by a representation π′ ∈ φG′ with non-trivial
cohomology with respect to E. Hence, any cuspidal automorphic representation π′

of G′(A) whose infinite component is cohomological has non-trivial automorphic
cohomology in the same degrees as its infinite component as a Harish-Chandra
module. We have thus the following result.

Theorem 3.2. Assume k is a totally real number field of degree [k : Q]. Let t
denote the number of archimedean places of k at which D does not split. Then,
Hq

cusp(G′, E) vanishes if

q 6∈
([

4[k : Q]− 2t, 5[k : Q]− 2t
] ∩ Z

)
∪

([
3[k : Q]− 2t, 6[k : Q]− 2t

] ∩ (3Z+ t)
)
.

In particular, if k = Q and D is non-split at the real place of Q, then Hq
cusp(G′, E)

vanishes in the degrees q = 0 and q ≥ 5.
More precisely, let φ′ be the associate class of a cuspidal automorphic rep-

resentation π′ of G′(A). If π′ is such that Ξ(π′) is cuspidal (see Section 3.4 in
Chapter II), then

Hq (mG′ ,K
′
R;LE,{G′},φ′ ⊗C E) =




C[k:Q],

if q ∈ [
4[k : Q]− 2t, 5[k : Q]− 2t

] ∩ Z and

π′v ∼=
{

Ind
GL4(R)
P2(R) (D2 ⊗D4), v ∈ V∞ \ VD,

Ind
GL2(kv)(H)
P ′(H) (1H× ⊗D′

4), v ∈ V∞ ∩ VD.

0, otherwise.

If π′ is such that Ξ(π′) is residual (see Section 3.4 in Chapter II), then

Hq (mG′ ,K
′
R;LE,{G′},φ′ ⊗C E) =




C[k:Q],
if q ∈ [

3[k : Q]− 2t, 6[k : Q]− 2t
] ∩ (3Z+ t) and

π′v ∼=
{

Jv(P2(R), D3 ⊗D3, (1/2, 1/2)), v ∈ V∞ \ VD,
J ′v(P ′(H), D′

3 ⊗D′
3, (1/2,−1/2)), v ∈ V∞ ∩ VD.

0, otherwise,

where Jv and J ′v denote the Langlands quotients in GL4(R) and GL2(H), respec-
tively.

Proof. It suffices to show the second claim of the theorem, since it implies the
vanishing result for the cuspidal cohomology H∗

cusp(G′, E). Viewing π′ as a cus-
pidal automorphic representation of H ′(Ak), and applying the Künneth rule, the
theorem reduces to the consideration of local components at archimedean places.
These were studied in Section 1.3.

Note that the non-vanishing of Hq
cusp(G′, E) in the degrees where the the-

orem does not give a vanishing result depends only on the existence of cuspidal
automorphic π′ with the required archimedean components. In the case where
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Ξ(π′) is residual, the non-vanishing reduces to the existence of a cuspidal auto-
morphic representation of GL2(Ak) with given square-integrable representations
at archimedean places, and at least one non-split non-archimedean place where the
local component is not square-integrable. In the other case where Ξ(π′) is cuspidal,
the non-vanishing is equivalent to the existence of a cuspidal automorphic repre-
sentation of GL4(Ak) with the given tempered representation at all archimedean
places, and the local components at non-split non-archimedean places as in part
(1) of Proposition 3.5 in Chapter II.

We consider finally the diagram (3.1). If Ξ(π′) is cuspidal, both vertical
maps are isomorphisms because the target space is a part of cuspidal cohomology.
Thus, in this case Ξ(sq) can be identified with Ξ. In the other case, i.e., Ξ(π′) is
residual, only the left hand side vertical map is an isomorphism. Thus, Ξ(sq) is not
determined by Ξ, although Ξ gives the possible range of Ξ(sq). Finally note that
when applying Ξ there is a shift in the degrees in which the cohomology space is
non-zero. In the case of a totally real number field k this shift equals 2t, where t
is the number of non-split places of D.

3.3 Eisenstein cohomology

In the case of Eisenstein cohomology, the space of square-integrable automorphic
forms LE,{P ′},φ′ is a proper subspace of AE,{P ′},φ′ . Hence, the cohomology space

H∗(mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E)

just gives possible non-trivial classes in the corresponding square-integrable coho-
mology space

H∗
(sq)(mG′ ,K

′
R;AE,{P ′},φ′ ⊗C E).

The problem of determining which classes are indeed non-trivial in the latter space
is subtle and out of the scope of our consideration in this paper. However, the
former space can be described via the global Jacquet-Langlands correspondence.

Theorem 3.3. Assume k is a totally real number field of degree [k : Q]. Let t
denote the number of archimedean places of k at which D does not split. Let φ′

be the associate class of a cuspidal automorphic representation π′1⊗π′2 of the Levi
factor L′(A) of P ′. If π′1 6= π′2, then H∗

Eis,(sq)(G
′, E) is trivial.

Suppose that π′1 = π′2 = π′. If π′ is not one-dimensional, then

Hq (mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E) =




C[k:Q],
if q ∈ [

3[k : Q]− 2t, 6[k : Q]− 2t
] ∩ (3Z+ t) and

Π′v ∼=
{

Jv(P2(R), D3 ⊗D3, (1/2, 1/2)), v ∈ V∞ \ VD,
J ′v(P ′(H), D′

3 ⊗D′
3, (1/2,−1/2)), v ∈ V∞ ∩ VD.

0, otherwise,

where Π′v is the local component at the place v of LE,{P ′},φ′ , and Jv and J ′v denote
the Langlands quotient in GL4(R) and GL2(H), respectively. If π′ ∼= χ◦nrd, where
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χ is a unitary character of k×\Ik, let t′0 denote the number of split archimedean
places where χv = sgn. Then

Hq (mG′ ,K
′
R;LE,{P ′},φ′ ⊗C E) =



C[k:Q],

if q ∈ [
4t′0, 5[k : Q] + 4t′0

] ∩ (5Z+ 4t′0) and
χv = 1 or χv = sgn at all places v ∈ V∞,

0, otherwise.

Proof. As in the proof of Theorem 3.2, the Künneth rule reduces the proof to local
considerations of Section 1.2 and Section 1.3.

For the Eisenstein cohomology spaces the diagram (3.1) is out of reach of
the methods of this paper. The vertical arrows both may not be isomorphisms.
Thus, the relation between Ξ and Ξ(sq) is not clear at all. The shift in the degrees
when applying Ξ for the case of totally real number field depends on whether the
cuspidal support π′ is one-dimensional or not. If not the shift is again 2t, where
t is the number of non-split archimedean places of D. If π′ = χ ◦ nrd is one-
dimensional, the shift in degrees is 4(t0 − t′0), where t0 − t′0 equals the number of
archimedean places at which D does not split and χv = sgn.

We remark at the end that one could try to follow the original approach of
Langlands to determine the spaces of residues of the Eisenstein series for G′(A),
instead of using the Jacquet-Langlands correspondence of Badulescu resp. Bad-
ulescu and Renard which relies on the trace formula. The difficulty in applying
that approach is in the fact that the Langlands-Shahidi method for normalization
of intertwining operators (cf. [31]) is not available for groups which are not quasi-
split. To overcome this difficulty one should find a way to compare the normalizing
factors between the inner and split form of the group. This can not be done in
general. Nevertheless, this approach was used in the thesis [19], as well as in the
Appendix of [1] where a substantial ingredient was already established by the trace
formula in the body of the paper. For inner forms of some split classical groups
the same approach is pursued in [12], [13], [14], [15].
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