
Algorithms for Sustainable System Topologies

Tihana Galinac Grbac[0000−0002−4351−4082], Emili Puh, and Neven
Grbac[0000−0001−6657−6297]

Juraj Dobrila University of Pula, Zagrebačka 30, HR-52100 Pula, Croatia
{tgalinac,epuh,neven.grbac}@unipu.hr

Abstract. These are the follow-up lecture notes of the lectures pre-
sented at the SusTrainable Summer School 2022 held at the University
of Rijeka, Croatia, in July 2022. The main goal of the lectures is to
provide a gentle introduction to topological data analysis because of its
possible applications to sustainable software engineering. When applying
topological data analysis to software system structures, one can observe
additional structural metrics from the topological space which may be
useful as a complement analysis technique in understanding complex soft-
ware system behavior while aiming to address required quality attributes
and sustainable goals.
Specific challenges on addressing sustainability as software quality at-
tribute, but also as an aspect of engineering software, are discussed. A
running example is presented and how the topological data analysis can
be used to analyse software structures is explained, related implementa-
tion details are discussed, and these observations are related to sustain-
able software and software engineering practice. The topological notions
and ideas are introduced and explained on a toy example, in which the
basic topological invariants are calculated explicitly, and then an exer-
cise is provided in which the students can test their understanding and
check the efficiency of their algorithms on examples of complex software
structures.

Keywords: Software systems · Software structure · Topological data
analysis · Computational topology · Algebraic topology.

1 Introduction

Digitalization is nowadays recognized as a strategy for driving business success
and a key strategy for implementing global sustainable goals in various domains.
The software is the main tool used to abstract and model the physical world
driving digitalization in all aspects of human life and as such it becomes a cru-
cial target in addressing global sustainability goals. Therefore, sustainability has
become one of the global goals for further technological evolution [18, 19].

Adequate modeling of software logic and algorithms is important to address
sustainability goals from different perspectives. Engineering sustainable soft-
ware targets optimization of computation in big data analysis in applications
such as medicine and environmental modeling cases, optimization of physical
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resource usage targeting performance or energy efficiency constraints support-
ing decision-making processes in various applications such as business processes,
traffic management, communal infrastructure management, etc. and addressing
reliability, security and responsibility aspects of software operation in various
mission-critical domains. To support these tasks, the software implements var-
ious advanced machine learning and artificial intelligence algorithms that may
operate on big data, may be distributed across the entire telecommunication net-
work, and may require extensive processing power and related resources. Here
the main problem is the effective and efficient use of computational power and
resources. In the software engineering domain, sustainable software engi-
neering is a twofold act, it considers theory and practice that support software
engineering tasks developing software that would secure sustainable software
operation within the target application domain as mentioned above, but also
to support sustainable business goals for the software engineering industry like
for example to support long-term software evolution and responsible profession
towards all stakeholders involved in the software lifecycle value chain. Sustain-
ability goals significantly reflect on the software engineering profession, and all
traditional software engineering methods need additional reassessment from this
new perspective. Some examples are code optimization, code analysis, detecting
anomalies, bug tracking and resolution, support in communication and social
networking among stakeholders engaged in the software lifecycle, support in
predictive maintenance, and software modeling oriented to long-term software
evolution.

In all these software applications the key problem is the management of
complexity. In our previous lecture notes [13, 14], we define complex systems
as systems in which it is hard or impossible to derive simple rules of global
software behavior from local system behaviors. Global system behavior may be
characterized through the system properties measured as a consequence of the
software system execution. Examples of global system properties are defined
by ISO Quality model [20]. For example, in software systems, we may measure
reliability as the software system quality property of being able to work or oper-
ate for long periods without breaking down or needing attention. Furthermore,
there is work in progress to revise standard software quality attributes following
global sustainability goal [32, 24, 23], in which we may measure sustainability
as the global system property of the use of natural resources and energy in a
way that does not harm the environment. Both global properties are sensitive
to decisions we undertake during the system design phase while modeling soft-
ware logic and algorithms. On the other hand, local software behavior may be
characterized by dimensions of the local system properties. Examples of local
system properties are various metrics that can be measured during the software
and system engineering phases on the product, process, or even project level,
like for instance, various cyclomatic complexity metrics on system components,
component defectiveness, or effort spent on component development, people ex-
pertise, etc. As is defined in the above-stated definition of a complex system,
the main problem in engineering such a complex system is the absence of simple
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models that can guide design decisions, e.g. how to develop system structure and
its components’ complexities that would lead to desired global system behavior
during its execution and use in the real environments.

The system structure is the main artifact we model in any complex system
design. The possible solution space in which we design components of complex
systems and their interactions is extremely large. Proper design decisions can
select system structures whose execution can achieve the best global properties
during system execution. We may understand this concept of connecting two
levels of system abstraction through the case of music. The music is designed
through music composition and the composed music is felt as sonority during
music reproduction, see Fig. 1 reused from [12]. Note that these two levels of
music abstraction provide completely different views on music.

Fig. 1: Design time music composition view (top) versus sonority during music
reproduction view (bottom). Image reused from [12].

Graphs are an essential and frequently used tool in various fields of engineer-
ing complex systems structures due to their ability to model complex systems by
connecting global behaviors to local properties and their internal relationships in
a comprehensible and manipulable manner. Numerous graph-based algorithms
can be used to analyze and model system behavior effectively. However, the main
problem of the majority of graph-based algorithms is computational efficiency
and lack of structural property metrics. Topological Data Analysis (TDA) is a
useful analysis method because of its ability to analyze shapes and structures
within the topological space. Graphs used in the computing discipline may cap-
ture topological space of data where data can be any analyzed artifact from big
data in various applications to the data coming from software structure. The use
of TDA provides a unique perspective on the structural and dynamic properties
of analyzed data, offering insights that complement traditional analysis meth-
ods. The main benefit of TDA is that it brings a new qualitative perspective on
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the analyzed system structure (or data structure) that may be related to other
global and local system properties [25].

These lecture notes explain how we may apply TDA to engineering sustain-
able software. In our running case, we will show how TDA may be used in the
analysis of software structures with the help of TDA aiming to address sustain-
able software evolution. The results of our case of using TDA to model software
structures in evolution are presented in [37].

The main learning objectives of these lecture notes are as follows:

– To understand specific challenges of modeling and management of sustain-
able software systems

– To understand the needs and benefits of generalized approaches to software
modeling and software management

– To introduce students with the key concepts from topological data analysis
– to learn how to implement abstract topological notions,
– to understand the difficulties in terms of computational power and sustain-

ability of the algorithm by testing the code on different types of graphs,
– to understand how we can impact on sustainable software structures

The lecture notes are structured as follows. This introductory section is fol-
lowed by Sect. 2 in which we define a playground for the application of TDA
within software engineering context. Here the application of complex system
definition is discussed in the context of a software system, the complex soft-
ware system modeling and design problems and solutions are pointed out, and
the landscape of sustainable software structures is defined. In Sect. 3, TDA is
motivated and introduced. In Sect. 4, the examples of algorithms in TDA are
presented. Sect. 5 explains the principles of TDA algorithms on a toy example.
In Sect. 6, an exercise for students to practice the TDA principles on software
structures is given. Finally in Sect. 7 we conclude the paper.

2 Sustainable software structures

There are several specific challenges of the modeling and management of sus-
tainable software systems.

Software engineering discipline addresses problems of system reuse, indepen-
dent evolution of system parts, and development of generic software functions
that are getting harder and more expensive as the complexity of software in-
creases. The consequences of badly designed software solutions may be severe
and affect operational software behavior, making software product operations
and their development ineffective in achieving sustainable goals. Advanced soft-
ware management tools are needed to enable smarter software creation thus
fulfilling not only functional goals but also operational sustainability of resource
management.

The specific challenge of designing complex systems is that it is hard to
understand, manage, maintain, and evolve, and especially several people with
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diverse knowledge is needed to develop them. So, the responsible software engi-
neering profession has to enable the independence of people working together on
the same complex system, to enable its understanding for its easier maintenance
and long-term evolution. The design principles used in the software engineering
discipline that we introduced in [13, 14] are modular system designs aiming to
develop the system as a set of loosely coupled components, and with a number
of levels of abstraction with a layered design and clear hierarchy. Therefore, any
(non-trivial) software system has modular structures and consists of modules
(components) and their interactions. The term module refers to a component
with the standard and loosely coupled interfaces that are used by other modules
within its environment. Depending on the context and the purpose of the study,
the modules may be subroutines, functions, units, classes, objects,. . .

Another challenge of modern software systems is that they usually operate
in a globally interconnected Internet environment, modules may be distributed
over the Internet network, modules may be invoked at runtime, and modules
may be replaced at runtime. The system structure is then composed not only of
many components that are run within isolated computer nodes, but the software
structure is a set of software components that are interconnected on a geograph-
ically distributed Internet network. Decisions on software structure may and will
also influence the sustainability of network operations. One of the key challenges
that 6G networks should address is how to lower energy consumption [1]. This
work is an attempt in that direction, since the majority of software-based re-
source management solutions are deployed via telecommunication networks and
smart designs of software structures may lead to significant savings. These are
specific challenges of modeling and management of sustainable software systems
for distributed software deployment environments.

To address the aforespecified challenges the software engineering discipline
has developed various generalized approaches to software modeling and man-
agement. One widely used abstract artifact is software structure. The software
structure is defined as a set of modules and their interactions that are used to
achieve global system functionality. The software structure is an abstract artifact
and there are numerous ways to represent software structure. One of the most
common software structure representations is by using call graphs [4].

Fig. 2: Call graph as a representation of software structure [34].
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An example of representing Java code as a call graph is presented in [34] and
the concept is reused from [38]. In this example, the graph is used for abstract
software structure representation, in which program classes (A, B, C) are repre-
sented as graph nodes (vertices) and method calls (methodB(), methodC()) are
represented as directed graph edges. The same principle we reused to develop
a graph extraction tool rFind to extract call-graphs from Java code [34], which
were analyzed with the help of motifs. Although, this analysis has provided us
with useful insights into software structure evolution the main problem was in
its computational inefficiency. Within this lecture, the students were encouraged
to use the same call-graph structures to exercise with TDA described in Sect. 6.
The results of the TDA analysis on the same call graphs were presented in [37]
where the experiences of using motifs versus TDA were explained in detail.

Our previous studies analyzed software system behavior with the help of this
abstract representation of software communication structure as a graph network,
in which we experiment with network science models on such software graphs
[39, 34, 33]. With the help of various structural characterization approaches, the
aim is to understand the system behavior such as reliability as a global system
property. These works are an extension of our previous studies in Software De-
fect Prediction [27] that aim to predict high-risk defective modules based on the
models trained on historical data of local software metrics. The main challenge
in these works is dimensionality reduction and feature selection procedures, [16,
31]. In the related survey studies, it has been identified that an improvement in
SDP models could be gained with the additional characterization of the prob-
lem, not represented within the standard software metrics. These models suffer
from a lack of system structure knowledge that may be incorporated into the
data analysis and provide a more powerful basis for data clustering. TDA may
be used for clustering of the graph structure by determining the extent to which
nodes in a graph tend to form local clusters or groups that may improve the
effectiveness and efficiency of decision-making algorithms. In our previous work,
we have already demonstrated that software structure may contain useful in-
formation to model software defect prediction [39, 34]. Some hidden structural
characterization obtained from topological information and higher dimensional
structure can be obtained from the TDA models such as Betti numbers (which
we explain in Sect. 4). These may help to better distinguish between differences
and similarities during the data clustering phase. This topological information
has been already identified as powerful tool in various data analysis domains
[6, 26]. For example in healthcare and disease detection [22], neuroscience [21],
image analysis and computer vision [2, 8, 3], protein classification [5], gene ex-
pression data classification [9], epidemiology [35], software failure dynamics [36],
etc.

3 Topological Data Analysis

Topology is a branch of mathematics that deals with qualitative geometric infor-
mation. This discipline studies geometric properties in a way that is much less
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sensitive to the actual choice of metric than simple geometric methods, which in-
volve quantitative geometric properties such as distance, angle, area, or volume.
More precisely, topology ignores the quantitative values of distance functions
and replaces them with the notion of infinite proximity of a point to a subset
in space. Roughly speaking, topology studies the shape and form of a geometric
object and ignores its size and position.

This metric insensitivity is useful in studying situations in which one only
understands the metric roughly. Topological data analysis refers to the study of
data using topological methods. It is particularly useful to describe and compare
the shape, discover trends, and search for hidden patterns in the data.

The standard reference for the basic general topology is the classic book
by Munkres [30]. For the algebraic topology, the recommended references are
[29] and [17]. There are several books and survey articles explaining the various
applications of topological data analysis, such as [7], [6], [28], [11]. For an account
of open problems in computational topology see [15].

3.1 Topology as a qualitative model of reality

Sometimes in the study of real-world behavior, it is not important to have precise
quantitative models. In such cases, the interest is in the shape, trends or form,
and not in size, scale or time frame. The models of reality are then qualitative, not
quantitative. The qualitative models come in two types: discrete and continuous.
Common examples of discrete models are graphs, which may be viewed as a set
of vertices (also called nodes, points) together with a set of edges (also called
branches). Edges are pairs of vertices, usually represented as a line connecting
two vertices. Graphs may be used to model connections between objects, but
without actual scale or size of them. Weighted graphs may be used if more
quantitative information is required.

Topology is a part of geometry that deals with the qualitative properties of
geometrical objects. It provides a model of the shape of a geometrical object,
without referring to its size. Very roughly speaking, two objects are topologically
equivalent if they can be transformed into each other by stretching and modeling
but without gluing and cutting. A folklore example for topological equivalence is
the example of a doughnut and a coffee mug in Fig. 3, because if they were made
of clay one could model one to another without cutting and gluing. However, the
pot in the figure is not topologically equivalent to the doughnut and the coffee
mug. The reason is that the pot has two handles with a hole in each, and the
doughnut and a coffee mug have just one hole. Hence, in order to get equivalence
we must either glue one of the holes in the handles of the pot or cut a hole in
the coffee mug, but both gluing and cutting is forbidden.

Topological space is a set of points for which a certain notion of “closeness” is
defined. This is achieved by defining for each point a set of (open) neighborhoods.
For example, the real line is a topological space in which the neighborhoods of
each point are open intervals containing that point. Another example would be
the plane. It is a topological space in which the neighborhoods of each point are
open discs containing that point. These examples are shown in Fig. 4.
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(a) Doughtnut

(b) Coffeemug

(c) Pot

Fig. 3: Example of topological equivalence.
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Fig. 4: Neighborhoods on a line and in the plane as examples of topological
spaces.
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Fig. 5: Continuous functions between topological spaces preserve neighborhoods.
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Fig. 6: Approximations of the sine function with a straight line and a parabola
around the point x = π

3 .

The topological spaces are compared using continuous maps, which in some
sense preserve “closeness”, which is encoded in neighborhoods. Under a continu-
ous map, the preimage of an open neighborhood of each point is again an open
neighborhood. A schematic image of this condition is given in Fig. 5. Homeo-
morphism is a continuous bijection between two topological spaces such that its
inverse is also continuous. Two topological spaces are topologically equivalent
if there is a homeomorphism between them. It is extremely difficult to check
that two topological spaces are homeomorphic or, in other words, topologically
equivalent. Often one cannot find or construct a homeomorphism between topo-
logical spaces, but also cannot exclude the possibility of its existence, so that
the question of their equivalence cannot be settled.

Considering and comparing topological spaces is important in topological
data analysis, as the topological space itself contains information on the under-
lying data, its structure and properties.

3.2 Topological invariants as approximations

Topological invariants are certain objects attached to a topological space, which
remain unchanged under homeomorphisms, i.e., topologically equivalent spaces
have the same topological invariants. Thus, if one finds any topological invariant
of two topological spaces which is not the same, they are certainly not topo-
logically equivalent, but still, if all topological invariants that can be explicitly
computed or described of two topological spaces are the same, it is still not
sufficient to decide whether they are topologically equivalent or not. There are
many topological invariants, most of them of algebraic nature. Hence, the study
of topological invariants is often referred to as algebraic topology. The most
common invariants are the fundamental group, homotopy, homology and coho-
mology, and persistent homology.



Algorithms for Sustainable System Topologies 11

We draw now an analogy to, hopefully, more familiar subject of mathemat-
ical analysis. In mathematical analysis, which is a very quantitative field of
mathematics, the approximations of functions is one of the most useful tools in
applications. Given, for instance, a real function on some interval, one may use
derivatives to obtain the best approximation with a straight line of that func-
tion near a point (the so-called tangent line). Using higher order derivatives, the
Taylor polynomials provide approximations with polynomials of higher degree.
The example1 of approximations of the sine function with a straight line (the
Taylor polynomial of degree one) and a parabola (the Taylor polynomial of de-
gree two) aroung point x = π

3 is given in Fig. 6. It is often in applications that
only such approximation of the observed phenomenon is available (interpolation
polynomials). Polynomials are elementary functions, which are more suitable for
calculations than arbitrary functions, while at the same time provide a reason-
able approximations of the real world phenomena.

Unlike mathematical analysis, topological spaces are not at all quantita-
tive. The approximations of topological spaces should somehow approximate the
shape and play the same role as polynomials do in mathematical analysis. (Al-
gebraic) topological invariants may be viewed precisely as algebraic objects that
approximate a topological space. They are simpler than the original topological
space, but still resemble its shape often in highly sophisticated ways. Algebra is
in some sense easier than topology.

3.3 From topological space to its invariants

The passage from a topological space to its algebraic topological invariants usu-
ally requires some kind of discrete model of a continuous object such as a topo-
logical space. This is achieved using the so-called triangulation. The topological
space is described using a skeleton, which is similar to a graph describing the
space, but contains also higher dimensional pieces (not only vertices and edges).
Such skeleton is called a simplicial complex and it is a generalization of a graph.

A triangulation by a simplicial complex is a generalization of graphs in which
also higher dimensional pieces, and not only vertices and edges, are present.
These higher dimensional pieces are called simplices. In the spirit of graph theory,
a d-dimensional simplex is simply a set of d+ 1 vertices (points), together with
all lower-dimensional subsimplices, i.e., the non-empty subsets. Observe that an
edge of a graph may be viewed as a set of two points. Thus, together with its
1 More precisely, the function f(x) = sinx is approximated around the point x = π

3
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non-empty subsets, which are its end-points, it is an 1-simplex. Vertices of a
graph are 0-dimensional simplices, as they can be viewed as sets with one point.
More generally, a triangle, together with its sides and vertices, may be viewed
as a 2-dimensional simplex. Similarly, a tetrahedron is a 3-dimensional simplex.

Any (finite) set of simplices, viewed as a single object, is a simplicial com-
plex. The point is that any topological space may be triangulated by a simplicial
complex, which may be viewed as a discretization of a topological space. The tri-
angulation by a simplicial complex is not unique, but different triangulations lead
to certain topological invariants which are equal. Hence, assignment of certain
topological invariants to a topological space using a convenient discretization in
terms of the simplicial complex really makes sense.
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Fig. 7: A triangulation of a two-dimensional sphere.

Examples of triangulations are given in Fig. 7 and Fig. 8. The former shows
a triangulation of a 2-sphere, and the latter the trinagulation of a 2-dimensional
torus. A triangulation of a 2-sphere is presented on the sphere itself, extracted
out of a sphere and with straight edges, but also as a plane diagram in which
the points and segments with the same names are identified. In the case of a 2-
dimensional torus, a triangulation is more complicated, so that only the points
of the triangulation are shown in the figure, and not the full triangulation of the
torus. It is given as a plane diagram instead, in which the points and segments
with the same names are identified.

The relationship between the study of topological spaces and the study of
their invariants can be nicely pointed out by comparing zoology and paleontol-
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Fig. 8: A triangulation of a two-dimensional torus.

ogy. In paleontology the study of dinosaurs relies mostly on the animal skeletons,
which can be compared to the study of simplicial complices and the associated
algebraic objects. On the other hand, zoology can study animals as a whole,
but also consider only the skeletons, which can be compared to the study of a
topological space as it is given, but also the algebraic invariants can be used.
However, it is quite often the case in topology that the topological spaces are so
complicated that we are more in the skin of a paleontologist than a zoologist.
Or, in analogy with the music example provided in Sect. 1 the software struc-
ture is like a music sheet structure where we explore its properties and try to
understand its consequences on sonority in music waveforms during its repro-
duction. Again, the relation among various structural differences in sheet music
and its audio representations are so complicated and we need advanced methods
for their better understanding, [12].

3.4 Topological analysis of software

The study of software in terms of a graph is an old and widespread idea. It
turns out to be very useful in all stages of the software life-cycle from the design,
testing, and verification to maintenance.

Any (non-trivial) software system consists of components. Depending on the
context and the purpose of the study, the components may be modules, software
units, classes, objects, functions, and so on. The components may be viewed as
vertices of a graph and the connections between components may be viewed as
edges of a graph. These together form a graph representing a software system.
However, the graph representation of software captures only one-dimensional re-
lations between software components. To get a finer description of the software
structure higher-dimensional relations should be considered. Here, we will pro-
vide details on how topological space in terms of its higher-dimensional relations
in complex software systems structures can be applied.

Hence, one step further into the structure of the software system and its
components is to find groups of components tied together. Such groups may be
viewed as simplices, just like two connected software components were viewed as
edges (1-dimensional simplices). This gives the simplicial complex of a software
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system. It can be viewed as a higher-dimensional version of a graph. The motifs,
discussed in the previous sections can also be viewed as such higher-dimensional
objects in the software structure.

The simplicial complex of a software system is a discretization of some topo-
logical space. The topological invariants of that space may be viewed as topolog-
ical invariants of the software. These invariants can be computed directly from
the simplicial complex of software. They may be viewed as approximations of the
software structure. The key point of this approach to software system structure
is that one should approximate the structure by topological invariants obtained
from the simplicial complex of the software system. The topological approach
ignores the scale of the system and concentrates only on its shape. The topo-
logical analysis can detect hidden similarities and differences in software system
structures.

In the analogy to the zoology and paleontology elaborated above, the topo-
logical study of software is entirely within the paleontology side. The software
is like a dinosaur skeleton waiting for us to explore and extrapolate and try to
figure out the properties of the whole animal. We will explain the first steps in
that endeavour in the following sections.

4 Topological Algorithms

This section is devoted to the description of the topological algorithm which will
be applied to the software structure. It is very well known algorithm and can be
viewed as the “hello world” of topological analysis of software. The reference for
this material could be any textbook devoted to computational topology, such as
[10].

The algorithm presented here is the most basic algorithm of computational
topology, and meant as an invitation to dive into the field of topological data
analysis. It is the basic step in the study of computational algebraic topology,
in particular, the homology, cohomology, persistant homology, among other.

The section should be read in combination with Sect. 5, because the latter
contains the running example. The notions and operations described here are
performed and explained in detail on the running example in Sect. 5.

The main concepts introduced here are the basic notions of homological al-
gebra. The ultimate goal is to introduce the Betti numbers, i.e., the ranks of
homology groups, associated to a simplicial complex. For simplicity of exposi-
tion, the underlying field is the field Z2 = {0, 1} of two elements with addition
and multiplication modulo two. The notions required and defined in this section
are summarized in Table 1 for convenience of the reader.

The importance of homology groups, and the associated Betti numbers, lies
in the fact that they encode certain topological information about the space,
or in our case the software graph. These are mostly related to connectedness
properties of the topological space whose “skeleton” is the software graph in
question. Although the homology groups over Z2 considered in these lectures
capture only limited topological information, they provide a nice introduction to
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Notion Symbol Definition
Simplicial complex Calligraphic letters K A family of non-empty sets which con-

tains all non-empty subsets of its mem-
bers

Simplex σ, τ ,... Members of a simplicial complex
p-simplex Simplex of dimension p, i.e., containing

p+ 1 elements
p-chain c, d,... Formal sums of simplices of the same

dimension p

Boundary operator ∂ The linear operator defined on chains
as the chain of lower dimension given as
the formal sum of the boundary faces

p-boundary operator ∂p The boundary operator acting on p-
chains

Cycles z, x, y,... Chains with zero boundary
Boundaries b, a,... Chains obtained as boundaries of

chains of higher dimension
Rank of p-cycles zp The basis two logarithm of the number

of p-cycles
Rank of p-boundaries bp The basis two logarithm of the number

of p-boundaries
Betti number βp The non-negative integer obtained as

βp = zp − bp
Table 1: Summary of basic notions

the subject of topological data analysis. In particular, they are computationally
accessible and the students can make their one code for computing the Betti
numbers.

4.1 Simplicial complex

The definition of a simplicial complex is essentially very simple. The simplicial
complex is just a bunch of sets, but whenever some set is in the bunch, then all
its non-empty subsets are in the same bunch. It is as simple as that.

Formally, a finite family K of non-empty finite sets is called a simplicial
complex if every non-empty subset τ of any set σ in the family K is also a
member of the family K (called a face of σ), i.e.,

if σ ∈ K and ∅ ≠ τ ⊆ σ, then τ ∈ K.

Note that here Greek letters denote sets. This is usual in the study of simplicial
complices.

The sets in a simplicial complex are called simplices. The elements of sets
in a simplicial complex are usually called points. In other words, every simplex
consists of points. The number of points in a simplex determines its dimension,
sometimes also called the degree of a simplex. More precisely, a simplex with
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Fig. 9: Examples of simplicial complices viewed as families of sets.

p + 1 points is of dimension p and usually referred to as a p-simplex. Thus, a
p-simplex is a set in K containing exactly p+ 1 points, so that

0-simplices are just the points,
1-simplices contain two points (sometimes called segments),
2-simplices contain three points (sometimes called triangles),
...
p-simplices contain p+ 1 points.

Examples of simplicial complices, viewed as families of sets, are given in Fig. 9.
The first simplicial complex Ka, given in Fig. 9a, consists of four sets with

one element in each of these sets, that is, Ka is the family of sets

Ka =
{
{A}, {B}, {C}, {D}

}
.
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Thus, it contains four 0-simplices (points), and no higher-dimensional simplices.
The second simplicial complex Kb, given in Fig. 9b, contains 1-simplices. As

shown in the figure, it is the family of sets

Kb =
{
{A,B}, {B,C}, {D,E},

{A}, {B}, {C}, {D}, {E}, {F}
}
,

where the 1-simplices (segments) are listed in the first row and the 0-simplices
(points) in the second row.

The third simplicial complex Kc, given in Fig. 9c, is more complicated. It
contains the 2-simplices. As shown in the figure, Kc is the family of sets

Kc =
{
{A,B,C}, {B,C,D}, {D,E, F}, {G,H, I},

{A,B}, {A,C}, {B,C}, {B,C}, {C,D}, {D,E},
{D,F}, {E,F}, {G,H}, {G, I}, {H, I},

{A}, {B}, {C}, {D}, {E}, {F}, {G}, {H}, {I}, {J}
}

where is the 2-simplices are listed in the first row, the 1-simplices in the second
and third row, and the 0-simplices in the last row. Observe that all non-empty
subsets of every set in the family are also members of the family. For example,
since the 2-simplex {A,B,C} is in the simplicial complex Kc, all its non-empty
subsets {A,B}, {A,C}, {B,C}, {A}, {B}, {C} are also simplices in Kc.

These figures of simplicial complices become very difficult to follow if the sim-
plical complex contains higher-dimensional simplices. Already Fig. 9c is quite
messy. Therefore, we will develop data structures for handling the simplicial
complices. These are introduced in Sect. 5. The simplicial complex and its sim-
plices in the running example of Sect. 5 are constructed inductively in Sect. 5.4,
starting with the lowest dimensions zero and one in Sect. 5.3.

4.2 Geometric viewpoint

Simplicial complices arise from geometry (or more precisely topology), and may
be interpreted as the family of polyhedra in a sufficiently high-dimensional space.
That is where the terminology using points, faces, boundaries etc, comes from.
The geometric viewpoint is a way of visualizing the set-based definition of sim-
plicial complex, introduced in Sect. 4.1, but not a suitable form of representation
for computational purposes.

The simplicial complices of Fig. 9 are represented from the geometric view-
point in Fig. 10. The sets of two points are represented by real geometric seg-
ments, the sets of three points by triangles, and those of four points by tetrahe-
dra. The problem of representing the higher-dimensional simplices remains, as
it requires more than three dimensions.

Observe how the simplicial complex Ka, from the geometric point of view,
is represented in Fig. 10a by four points A, B, C, D in space. The simplicial
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(d) Simplicial complex Kd

Fig. 10: Examples of simplicial complices from the geometric viewpoint.

complex Kb is presented in Fig. 10b. Its 1-simplices are represented by line
segments AB, BC, DE, while 0-simplices are points. The simplicial complex Kc

is presented in Fig. 10c. Its 2-simplices are represented by the triangles △ABC,
△BCD, △DEF , △GHI, its 1-simplices are the segments in the figure, and the
0-simplices the points. The figures of simplicial complices from the geometric
point of view seem simpler than the figures of the same simplicial complices
as families of sets above. However, the limitation of representing the higher-
dimensional simplices remain.

The last simplicial complex Kd, given in Fig. 10d, contains 3-simplices. These
are the tetrahedra ABCD and ABCE. The 2-simplices are triangles △ABC,
△ABD, △ABE, △ACD, △ACE, △BCD, △BCE. Observe that the triangle
△BCF is not a 2-simplex as it is not shaded, although all of its sides are 1-
simplices. The 1-simplices are all segments in the figure, and 0-simplices are all
points in the figure.
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Fig. 11: The tetrahedron ABCD representing a simplicial complex.
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Fig. 12: The simplices of the simplicial complex represented by the tetrahedron
ABCD.

As another example, consider a tetrahedron ABCD given in Fig. 11. It rep-
resents a 3-simplex. In the abstract approach taken above, this 3-simplex is just
the set

σ = {A,B,C,D}
of vertices of the tetrahedron. Notice that the geometrical dimension of a tetra-
hedron coincides with the simplicial dimension. That is the reason why simplices
with p+ 1 points are considered to be p-dimensional.

The faces of the tetrahedron are the four triangles △ABC, △ABD, △BCD
and △CAD, as shown in Fig. 12. These are the 2-simplices that are subsimplices
of the tertrahedron. In the abstract setting, these are the sets

{A,B,C}, {A,B,D}, {B,C,D}, {C,A,D},

of the vertices of the triangles. Observe that these are all subsets with three ele-
ments of the 3-simplex σ = {A,B,C,D}. In geometric language, these faces form
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the boundary of the tetrahedron. The notion of boundary will play a prominent
role in the abstract simplicial complices as well.

Going one step further, the six edges AB, BC, CA, AD, BD, CD of the
tetrahedron, shown in Fig. 12, represent 1-simplices. These edges are at the
same time the sides of the triangle faces of the tetrahedron. In the abstract
setting, the 1-simplices are just the sets of endpoint of these edges, i.e.,

{A,B}, {B,C}, {C,A}, {A,D}, {B,D}, {C,D}.

Observe again that these are all subsets with two elements of the 3-simplex
σ = {A,B,C,D}, but they are also subsets of some of the 2-simplices arising
from triangle faces of the tetrahedron.

Finally, the four vertices A, B, C, D of the tetrahedron represent 0-simplices.
They are endpoints of the edges and also vertices of the triangle faces of the
tetrahedron. In the abstract setting, they form the sets

{A}, {B}, {C}, {D}.

These are again all subsets with one element of the 3-simplex σ = {A,B,C,D},
but they are also subsets of some of the 2-simplices represented by edges and
3-simplices represented by triangle faces of the tetrahedron.
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Fig. 13: Non-examples of simplicial complices.

Although one may think of a simplex as a polyhedron, and its subsimplices
as its faces of all dimensions (vertices, edges, faces, higher-dimensional faces),
it is easier, and computationally more convenient, to work with an abstract
data structure such as our definition of the simplicial complex. In that way,
we avoid geometric concerns. For example, there could be several intersecting
polyhedra in a simplicial complex, and they must intersect only in their faces.
More precisely, the intersection of any two such polyhedra must be a face of both.
But in geometry, polyhedra may intersect in different geometric objects. See, for
example, the intersections of two triangles in Fig. 13. Only if the polyhedra
intersect in a face or an edge or a vertex, they represent a simplicial complex.
This is easier to handle by considering a bunch of sets, than looking at the
geometric picture and properties of polyhedra.
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4.3 Simplicial complex of a (software) graph

There are several ways to assign a simplicial complex to a graph. We explain
here the simplest way as an example, although this is too naive for serious ap-
plications. Our goal here is to explain a topological algorithm, so this simple
approach will do. Be aware that our approach could result in computationally
highly demanding algorithm in the case of an arbitrary graph. However, the na-
ture of software graphs is such that the computation will be feasible. As already
mentioned in Sect. 4.1, the construction is illustrated in the running example of
Sect. 5, more precisely, in Sect. 5.3 and Sect. 5.4.

Let G = (V,E) be a graph with the set of vertices V and the set of edges E.
We consider only simple graphs, i.e., G is undirected, unweighted, has no loops
and no multiple edges. Recall that a loop is an edge with equal endpoints, and
a multiple edge refers to the existence of several edges with the same endpoints.
An example is given in Fig. 17 and explained in Sect. 5.

A p-simplex in the graph G is defined as any subgraph containing p + 1
vertices such that each pair of vertices is connected by an edge. Recall that such
subgraph is called a complete graph with p + 1 vertices. In applications, such
subgraphs are often referred to as cliques in a graph.

More precisely, in our approach, the simplices of the simplicial complex as-
sociated to a given graph are the following:

0-simplices are just vertices (complete subgraphs with 1 vertex),
1-simplices are just edges (complete subgraphs with 2 vertices),
2-simplices are triangles (complete subgraphs with 3 vertices),
3-simplices are tetrahedra (complete subgraphs with 4 vertices),
...
p-simplices are complete subgraphs with p+ 1 vertices.

Observe that all subgraphs of a complete graph are also complete. Therefore, we
really obtained a simplicial complex, because the faces of a simplex are indeed
simplices.

4.4 Chains

We proceed with an arbitrary simplicial complex K. In applications, it will be
the simplicial complex assigned to a software graph. Examples of all the notions
introduced here are given in the running example of Sect. 5. However, since the
notions in the running example are all expressed in an appropriate basis given
by simplices, the chains do not appear explicitly in Sect. 5. They are hidden in
the linear algebra formalism.

The motivation for introducing chains and their addition is to have a linear
algebra formalism which allows the consideration of several simplices of the same
dimension as a single object. This will allow the study of higher-dimensional
topological structures, and in particular the Betti numbers, using linear algebra.
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Let Sp denote the family of all p-simplices in the simplicial complex K. Denote
by np the number of p-simplices, i.e., np = |Sp| is the cardinality of Sp. Write

Sp = {σ1, σ2, . . . , σnp
}

for the p-simplices in K.
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Fig. 14: Examples of 1-chains c1 and c2.

A p-chain in K is any subfamily of Sp. In other words, any choice of any
number of p-simplices produces a p-chain. Even the empty choice, in which none
of the p-simplices is chosen, is allowed.

Examples of 1-chains are given in Fig. 14. The 1-chain c1 on the left-hand
side in the figure consists of 1-simplices AB, BC, CD, DE and EF , while the
1-chain c2 on the right-hand side in the figure consists of the same 1-simplices
with FA as an extra 1-simplex.

There is a convenient way to write p-chains using formal sums of p-simplices
with coefficients in Z2 = {0, 1}. The coefficients encode our choice of p-simplices
in a p-chain. If the coefficient of a p-simplex is zero, then it is not chosen in a
p-chain, while if the coefficient is one, then it is chosen to be in a p-chain.

More precisely, a p-chain c in K can be written as a formal sum

c =

np∑
i=1

aiσi,

where ai ∈ Z2 = {0, 1}. If the coefficient ai = 0, then σi is not in the p-chain c,
while if ai = 1, then σi is in the p-chain c. The 1-chains in Fig. 14 can be written
as

c1 = AB +BC + CD +DE + EF

c2 = AB +BC + CD +DE + EF + FA

in the formal sum notation.
Another point of view, perhaps more familiar, is to interpret a p-chain c in

K as a sequence of coefficients

c = (a1, a2, . . . , anp
),
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where ai ∈ Z2 = {0, 1}, so that a p-chain is any np-bit word. The coefficient ai
again indicates whether the p-simplex σi is in the chain c or not.

Let Cp denote the set of all p-chains in the simplicial complex K. The addition
of p-chains is defined, either as the mod 2 addition of formal sums, or as the
exclusive or operation on np-bit words. Let

c =

np∑
i=1

aiσi = (a1, a2, . . . , anp
),

c′ =

np∑
i=1

biσi = (b1, b2, . . . , bnp
)

be two p-chains in Cp. Then, their sum is given as

c+ c′ =

np∑
i=1

(ai +2 bi)σi

= (a1 ⊕ b1, a2 ⊕ b2, . . . , anp
⊕ bnp

),

where +2 stands for the mod 2 addition and ⊕ stands for the exclusive or oper-
ation. The sum of the two 1-chains in Fig. 14 is

c1 + c2 = FA,

because the other 1-simplices appear in both 1-chains, so that they cancel in
mod 2 addition.2

Observe that the cardinality |Cp| = 2np , because it is the number of np-bit
words. The exponent np is called the rank of Cp. The reason for exclusive-or,
i.e., mod 2, addition of chains is used here, because we restrict the scope of this
lecture notes to the simplest case of the field Z2 of two elements. The analogous
theory can be developed over other fields and rings, such as the ring of integers
Z. However, in that case the boundary operator, introduced in Sect. 4.5 below,
must be defined in a different way, using certain alternating sums of boundary
faces. This is necessary in order to satisfy the fundamental property of boundary
operators, explained in Sect. 4.7.

4.5 Boundary operator

The boundary operator is the glue that fits together all the simplices of different
dimensions in a simplicial complex. The p-boundary operator ∂p assigns to each
p-simplex its boundary, i.e., the family of its (p − 1)-simplex faces. But such

2 We mention, for the record, that the set Cp of all p-chains in the simplicial complex
K forms an Abelian group with addition. However, this fact and the algebraic notion
of groups will not be necessary for understanding the rest of the paper.
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family is a (p−1)-chain. Given a p-simplex σi ∈ Sp, the action of the p-boundary
operator can be expressed as

∂pσi =
∑

τ∈Sp−1

τ⊆σi

τ ∈ Cp−1,

which is a sum of (p − 1)-simplices τ , and thus a (p − 1)-chain in Cp−1. In
the running example of Sect. 5, the boundary operators are determined in their
matrix representation as part of the construction of the simpicial complex in
Sect. 5.3 and Sect. 5.4.

For example, the 3-boundary ∂3 of the 3-simplex given by the tetrahedron
ABCD in Fig. 11 is given as

∂3(ABCD) = △ABC +△ACD +△ADB +△BCD,

which is the 2-chain given as the sum of 2-simplex faces in Fig. 12 of the tetra-
hedron ABCD.

More generally, given a p-chain

c =

np∑
i=1

aiσi ∈ Cp,

the p-boundary operator ∂p acts as

∂pc = ∂p

(
np∑
i=1

aiσi

)

=

np∑
i=1

ai∂pσi ∈ Cp−1,

where
∂pσi =

∑
τ∈Sp−1

τ⊆σi

τ ∈ Cp−1,

as above. Hence, ∂p is a map from Cp to Cp−1. It is now clear from the definition
how the boundary operator glues together information on simplices and chains
of different dimensions.

For example, the 1-boundary operator ∂1 applied to the 1-chains c1 and c2
in Fig. 14 is computed as follows

∂1c1 = ∂1
(
AB +BC + CD +DE + EF

)
= ∂1AB + ∂1BC + ∂1CD + ∂1DE + ∂1EF

= (A+B) + (B + C) + (C +D) + (D + E) + (E + F )

= A+ F
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which is the 0-chain given as the sum of 0-simplices A and F , while

∂1c2 = ∂1
(
AB +BC + CD +DE + EF + FA

)
= ∂1AB + ∂1BC + ∂1CD + ∂1DE + ∂1EF + ∂1FA

= (A+B) + (B + C) + (C +D) + (D + E) + (E + F ) + (F +A)

= 0

which is the empty 0-simplex denoted by zero. The boundary operator computes
the boundary of the simplices in a chain expressed as a sum over Z2, i.e., with
mod 2 addition. The boundary operator gives 0 if the simplices form a cycle, as
in the example of c2.

At this point, it becomes clear why the formal sum notation for p-chains is
much more convenient than the np bit words approach. The reason is that, in
the formal sum notation, it is not necessary to maintain the order of p-simplices.
Given a p-chain c in Cp, one may write

c =
∑
σ∈Sp

aσσ,

where aσ ∈ Z2 = {0, 1} is the coefficient of the p-simplex σ. As above aσ = 1 if
σ belongs to c, and aσ = 0 if σ does not belong to c. The order of σ is irrelevant.

This advantage of the formal sum notation is useful in the definition of the
p-boundary operator. It is not necessary to specify which simplices τ are in the
boundary when defining and using the p-boundary operator. However, as we
will see below, for explicit calculation of topological invariants, it is convenient
to have the order of p-simplices fixed.

4.6 Matrix of the boundary operator

The convenient way to view the boundary operator is as the linear operator on
the vector spaces of chains. In this context, the matrix of the boundary operators
as a linear operator can be introduced. That is the subject of this section. In the
running example of Sect. 5, the matrix of the boundary operators are determined
inductively in Sect. 5.4, starting with the lowest dimension in Sect. 5.3.

The p-chains in Cp may be viewed as linear combinations with coefficients
in Z2 = {0, 1} of simplices in Sp. Hence, they form a vector space over the field
Z2 of two elements. The basis of Cp as a vector space over Z2 is the set Sp of
all p-simplices. Thus, the dimension of Cp over Z2 is the number np = |Sp| of
p-simplices.

By the very definition of the p-boundary operator, it is a linear operator from
Cp to Cp−1 as vector spaces over Zp, because it respects the linear combinations

∂p

(
np∑
i=1

aiσi

)
=

np∑
i=1

ai∂pσi,

for any ai ∈ Z2.
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As any linear operator, the p-boundary operator ∂p can be represented by a
matrix. The matrix of the p-boundary operator ∂p has np−1 rows, because it is
the dimension of Cp−1, and np columns, because it is the dimension of Cp. It
contains only 0’s and 1’s, because the vector spaces are over Z2 = {0, 1}. The
rows represent (p− 1)-simplices in Sp−1, and the columns represent p-simplices
in Sp, in a fixed order.

The j-th column represents the p-simplex σj ∈ Sp. It contains 1 in the rows
representing its (p− 1)-simplex faces in Sp−1, and 0 in the rows which represent
(p − 1)-simplices in Sp−1 which are not its faces. Every p-simplex has exactly
p + 1 faces, so that each column contains precisely p + 1 ones. More precisely,
the element at the crossing of the i-th row and the j-th column equals 1 if the
i-th simplex in Sp−1 is a (p − 1)-simplex face of the j-th simplex in Sp, and it
equals 0 otherwise. More precisely,

∂p =



d1,1 . . . d1,np

. . .
... di,j

...
. . .

dnp−1,1 . . . dnp−1,np


,

where

di,j =

1, if the i-th (p− 1)-simplex τi ∈ Sp−1 is a face
of the j-th p-simplex σj ∈ Sp,

0, otherwise.

4.7 Boundary operators as differentials

In this section, we explain the most fundamental property of boundary operators.
It is the fact that the boundary of a boundary is zero.

The boundary operators in different dimensions fit into this picture

. . .
∂p+2
−−−→Cp+1

∂p+1
−−−→Cp

∂p
−−→Cp−1

∂p−1
−−−→ . . .

∂2−−→C1
∂1−−→C0.

The fundamental property of the boundary operators is that the composition of
consecutive boundary operators is the zero operator, i.e.,

∂p ◦ ∂p+1 = 0

for all p. In other words, the boundary of the boundary of any chain is 0.
This fundamental property of the boundary operators is the defining property

of differentials of a simplicial complex. Hence, by the definition of differentials,
this property of the boundary operators means that they are differentials of the
simplicial complex.

The proof of the fundamental property of boundary operators follows from
the fact that every (p− 1)-simplex face of a (p+ 1)-simplex is at the same time
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a face of exactly two of its p-simplex faces, and since 2 = 0 mod 2, the resulting
chain is the zero chain. This can be easily checked in the abstract view of the
simplicial complex. Given a (p+ 1)-simplex as a set of p+ 1 points, its (p− 1)-
simplex face is a subset of p− 1 points. In other words, the (p− 1)-simplex face
is obtained by removing two points from the (p+ 1)-simplex. But then, adding
each of the removed points to the (p − 1)-simplex face produces exactly two p-
simplex faces of the (p+1)-simplex which share the (p− 1)-simplex face. Hence,
the number of appearances of any (p − 1)-simplex face in the boundary of the
boundary of the (p+ 1)-simplex is even, which equals 0 in mod 2 arithmetic of
Z2.

4.8 Cycles and boundaries

The cycles and boundaries in a simplicial complex are special types of chains.
They are defined in terms of the boundary operators. In the running example
of Sect. 5, the cycles and boundaries are not determined explicitly. Instead,
only their numbers are determined in Sect. 5.5 from the matrices of boundary
operators using the linear algebra notions of rank and defect of a linear operator.

A p-cycle z is a p-chain with zero boundary, i.e.,

∂pz = 0.

The set of all p-cycles is denoted Zp. It is a subset of the set Cp of all p-chains.3

An example of 1-cycle is the 1-chain c2 in Fig. 14, because we already calcu-
lated in Sect. 4.5 its 1-boundary and obtained ∂1c2 = 0 is the empty 0-chain. The
other 1-chain c1 in Fig. 14 is not an 1-cycle, because its 1-boundary ∂1c1 = A+F
is not the empty 0-chain. The figure also explains where the name of the cycles
comes from. The 1-cycle c2 is represented by a closed loop, while the 1-chain c1,
which is not an 1-cycle, is not.

The number |Zp| of p-chains is a power of two

|Zp| = 2zp ,

where the exponent zp is called the rank of Zp. In the special case of p = 0, there
is no boundary operator ∂0, but we make the convention that all 0-chains are
0-cycles, i.e., Z0 = C0, and the rank of Z0 is z0 = n0.

A p-boundary b is a p-chain which is a boundary of some (p+ 1)-chain, i.e.,

b = ∂p+1c

for some c ∈ Cp+1. The set of all p-boundaries is denoted Bp. It is a subset of
the set Cp of all p-chains.4

3 For the record, the set Zp of p-cycles forms an Abelian group under addition of
chains.

4 For the record, the set Bp of p-boundaries forms an Abelian group under addition
of chains.
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The number |Bp| of p-boundaries is also a power of two

|Bp| = 2bp ,

where the exponent bp is called the rank of Bp.
If t is the top dimension of a simplex in a simplicial complex, i.e., there are

no p-simplices of dimension p > t, then there are no t-boundaries, because there
is no (t+1)-simplex in the simplicial complex. Hence, Bt is trivial and the rank
bt = 0 for the top dimension t.

The fundamental property of the boundary operators implies that every p-
boundary is a p-cycle, because the boundary of the boundary is always zero.
More precisely, if b = ∂p+1c is any p-boundary, then

∂pb = ∂p(∂p+1c) = (∂p ◦ ∂p+1)c = 0,

which means that b is a p-cycle. Thus,

Bp ⊆ Zp

for all p.

4.9 Homology

The p-th homology group Hp of a simplicial complex counts the p-cycles which
are not obtained as p-boundaries, i.e., the “true” cycles among p-chains.5 For
our purposes, it is sufficient to know that the number |Hp| of elements in the
p-th homology group is also a power of two, and that its rank is the difference
between the ranks of of Zp and Bp. In the running example of Sect. 5, the Betti
numbers are determined in the final step of Sect. 5.6. If we write

|Hp| = 2βp ,

then the rank βp of Hp is called the p-th Betti number. It is obtained by the
formula

β0 = z0 − b0 = n0 − b0,

βp = zp − bp, 1 ≤ p ≤ t− 1,

βt = zt − bt = zt,

βq = 0, q > t,

where t is the top dimension of a simplex in the simplicial complex. All these
values can be read off from the matrix of ∂p, as we shall see in the examples
below in Sect. 5. However, in order to provide intuition for the chains representing
elements of the homology groups over Z2, we begin here with a simple illustrative
example.
5 Formally, the p-th homology group is defined as the quotient group Hp = Zp/Bp,

which is again an Abelian group.
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Fig. 15: Simplicial complex K in the example of Sect. 4.9

Let K be the simplicial complex given in Fig. 15. The shaded triangle in
the figure is a 2-simplex in K, while the unshaded one is not in K. Hence, the
simplicial complex K consists of the following simplices

S2 = {△ABC},
S1 = {AB,AC,BC,BD,CD},
S0 = {A,B,C,D}.

The chain representing an element in homology group is best exhibited in di-
mension one. Hence, we first determine 1-cycles.

The 1-boundary operator acts on an arbitrary 1-chain as

∂1(xAB + yAC + zBC + uBD + vCD)

= x(A+B) + y(A+ C) + z(B + C) + u(B +D) + v(C +D)

= (x+ y)A+ (x+ z + u)B + (y + z + v)C + (u+ v)D,

where x, y, z, u, v ∈ Z2 are arbitrary coefficients. The condition for 1-cycles is
that the obtained 0-chain is trivial, i.e., all the coefficients must be zero. Solving
the system of equations over Z2 gives

y = x

v = u

z = x+ u,

where x, u ∈ Z2 are arbitrary. Hence, there are four 1-cycles, and the rank of Z1

is z1 = 2. More precisely, the 1-cycles are all 1-chains of the form

xAB + xAC + (x+ u)BC + uBD + uCD,
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which can be rearranged as

x(AB +AC +BC) + u(BC +BD + CD),

where x, u ∈ Z2 are arbitrary.
The next task is to determine the 1-boundaries. The only 2-simplex is the

triangle △ABC, hence the 2-boundary operator acts on an arbitrary 2-chain as

∂2(k△ABC) = k(AB +AC +BC),

so that the only non-trivial 1-boundary is the 1-chain

AB +AC +BC,

and the rank of B1 is b1 = 1.
From the above, we can easily compute the Betti number in dimension one,

which is
β1 = z1 − b1 = 1.

However, in this example we would like to provide an exemplary 1-chain rep-
resenting the non-trivial element of the homology group H1. Comparing the
obtained 1-boundary with the description of 1-cycles, we see that 1-cycle in the
first bracket, the one with coefficient x, is actually an 1-boundary, and thus not
a non-trivial element of H1. This implies that the non-trivial element in H1 is
represented by the other bracket in the description of 1-cycles above. It is the
1-cycle

BC +BD + CD.

In this way we determined an example of a cycle, which is not a boundary.
There is another subtlety arising from the quotient group definition of H1.

Namely, there could be more than one 1-cycle representing the same element in
H1. In our example, this happens with the 1-cycle

(AB +AC +BC) + (BC +BD + CD) = AB +AC +BD + CD,

which is the mod 2 sum of the two 1-cycles considered above. This 1-cycle is not
an 1-boundary by itself, so that it should also represent a non-trivial element of
H1. However, the mod 2 difference between the two representatives is precisely
the 1-boundary AB + AC + BC, so that, up to boundary, the two 1-cycles are
equal, and therefore represent the same element in H1.

4.10 Example 1: Homology of a tetrahedron

We consider now a simple geometric example, which can be done directly by
hand and can be observed in pictures. It is the example of a tetrahedron, which
is already a 3-simplex, so that the simplicial complex of a tetrahedron consists
of a single 3-simplex with all its subsimplices. This example is already described
in Sect. 4.2 and depicted in Fig. 11 and Fig. 12. The sets Sp of p-simplices are
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already listed there, and their geometric presentation is discussed. For determin-
ing the homology of a tetrahedron and its Betti numbers, we only require the
description of the boundary operators.

The 3-boundary operator ∂3 acts on the set C3 of 3-chains. Since there is only
one 3-simplex {A,B,C,D}, i.e., the whole tetrahedron ABCD, all the 3-chains
are of the form

c3 = k ·ABCD,

where ABCD = {A,B,C,D} denotes the tetrahedron as a 3-simplex and k ∈ Z2

is the coefficient. In other words, there are only two 3-chains: the empty chain
and the chain ABCD. The action of the 3-boundary operator on the 3-chain c3
is given by the formula

∂3c3 = k · (△BCD +△ACD +△ABD +△ABC) ,

where the triangles in the brackets are 2-simplices that form the boundary of
the tetrahedron ABCD.

From this formula we can read off the 3-cycles and 2-boundaries. There are
no non-trivial 3-cycles, because ∂3c3 = 0 only if the coefficient k = 0. Thus,
c3 is a 3-cycle if and only if it is trivial, i.e., the empty 3-chain. Since 3 is the
top dimension of the simplicial complex of the tetrahedron, it follows that the
homology group

H3 = Z3 = {0}
is trivial, and the Betti number β3 = 0.

The 2-boundaries are the 2-chains obtained as the image of the 3-boundary
operator. Hence, B2 consists of

B2 =
{
k · (△BCD +△ACD +△ABD +△ABC) , where k ∈ Z2

}
.

In other words, there are only two 2-boundaries: the empty 2-chain and the
2-chain

△BCD +△ACD +△ABD +△ABC.

Thus, the rank of B2 is b2 = 1.
We should consider next the 2-boundary operator ∂2, which acts on 2-chains.

Since there are four 2-simplices, i.e., four triangles, in the simplicial complex, any
2-chain is of the form

c2 = a · △BCD + b · △ACD + c · △ABD + d · △ABC,

where the triangles represent 2-simplices and a, b, c, d ∈ Z2 are the coefficients.
Note that the number of 2-chains is 2n2 = 24 = 16.

The action of the 2-boundary operator on the 2-chain c2 is given by the
formula

∂2c2 =a ·
(
BC + CD +DB

)
+ b ·

(
AC + CD +DA

)
+ c ·

(
AB +BD +DA

)
+ d ·

(
AB +BC + CA

)
=(c+ d) ·AB + (b+ d) ·AC + (b+ c) ·AD

+ (a+ d) ·BC + (a+ c) ·BD + (a+ b) · CD.
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Here in the first line we compute the boundary of each triangle separately, and
then in the second line sum up according to segments. i.e., 1-simplices.

We can obtain from this formula the 2-cycles and 1-boundaries. The 2-cycles
are those 2-chains c2 for which ∂2c2 = 0. In mod 2 arithmetic, this happens if
and only if all the coefficients are zero, i.e.,

a = b = c = d = e = f.

Therefore, the set of 2-cycles is

Z2 =
{
a · (△BCD +△ACD +△ABD +△ABC) , where a ∈ Z2

}
.

But this is equal to the set B2 of 2-boundaries obtained above. Hence, the
homology group

H2 = {0}

is also trivial, and the Betti number β2 = 0.
Finding all 1-boundaries by hand is a bit more involved. The trick is to

determine first the 1-cycles, because every 1-boundary is at the same time an
1-cycle, by the fundamental property of differentials in a simplicial complex.
Finding 1-boundaries among 1-cycles turns out to be easier.

Therefore, consider now the 1-boundary operator ∂1 which acts on 1-chains.
There are six 1-simplices in the simplicial complex, given by the edges of the
tetrahedron. Thus, any 1-chain is of the form

c1 = x ·AB + y ·AC + z ·AD + u ·BC + v ·BD + w · CD,

where the segments represent the 1-simplices and x, y, z, u, v, w ∈ Z2 are coeffi-
cients. The number of 1-chains is 2n1 = 26 = 64.

The action of the 1-boundary operator ∂1 on c1 is given by the formula

∂1c1 =x · (A+B) + y · (A+ C) + z · (A+D)

+ u · (B + C) + v · (B +D) + w · (C +D)

=(x+ y + z) ·A+ (x+ u+ v) ·B + (y + u+ w) · C + (z + v + w) ·D,

where in the first line we just determined the boundaries of the segments as
the sum of their endpoints, and in the second line we summed up according to
points, i.e., 0-simplices.

The 1-cycles are those 1-chains for which ∂1c1 = 0, so that they are deter-
mined by the solutions of the system of linear equations

x+ y + z = 0

x+ u+ v = 0

y + u+ w = 0

z + v + w = 0
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in Z2. Since, in mod 2 arithmetic, the last equation is the sum of the first three
equations, it can be erased. The remaining three equation can be solved in terms
of x, y and u as

z = x+ y

v = x+ u

w = y + u

where x, y, u ∈ Z2 are arbitrary. Hence, the set of 1-cycles consists of

Z1 =
{
x ·
(
AB +AD +BD

)
+ y ·

(
AC +AD + CD

)
+ u·

(
BC +BD + CD

)
where x, y, u ∈ Z2

}
.

We are now ready to find the 1-boundaries among the 1-cycles described
above in the set Z1. Observe that the three brackets in the expression for an
1-cycle are all boundaries of one of the triangle faces of the tetrahedron. More
precisely,

∂2 (△ABD) = AB +AD +BD

∂2 (△ACD) = AC +AD + CD

∂2 (△BCD) = BC +BD + CD.

Therefore, for any x, y, u ∈ Z2, we have

∂2 (x · △ABD + y · △ACD + u · △BCD) =x ·
(
AB +AD +BD

)
+ y ·

(
AC +AD + CD

)
+ u ·

(
BC +BD + CD

)
,

which shows that every 1-cycle is at the same time an 1-boundary. In other
words, Z1 = B1, so that the homology group

H1 = {0}

is trivial, and the Betti number β1 = 0.
It remains to determine homology in dimension zero. Since all 0-chains are

0-cycles, we have

Z1 = C1 =
{
q ·A+ r ·B + s · C + t ·D where q, r, s, t ∈ Z2

}
.

The number of 0-cycles is 2n0 = 24 = 16. It is sufficient to determine which of
these 0-cycles are 0-boundaries. Since the 1-boundary operator acts on the edges
of the tetrahedron, and each of them has two end-points, it turns out that in the
boundary of any 1-chain, there is an even number of points in total. This means
that among elements in Z1, the 1-boundaries are determined by the condition
that

q + r + s+ t = 0
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in mod 2 arithmetic. This means that the number of 0-boundaries is 24−1 = 8,
as the last coefficient is always determined by the other three according to the
condition above. Therefore, the Betti number equals β0 = 4− 3 = 1.

In conclusion, we have determined the Betti numbers

β0 = 1,

βq = 0, for q > 0,

for homology over Z2.
More generally, the homology over Z2 of any p-simplex, viewed as a simplicial

complex with all of its subsimplices, exhibits a similar pattern of Betti numbers.
The only non-zero Betti number is β0 = 1. There is a geometric reason underlying
this result. Any p-simplex, as for instance the tetrahedron, can be contracted
into a point, without gluing or cutting. Hence, the topological invariants of a
p-simplex (or any other convex set), are those of a single point. But for a single
point, which is a 0-simplex, the top dimension is zero. And in dimension zero,
the point represents a cycle, which is not a boundary. Thus, β0 = 1, and βq = 0
for all q > 0, for homology over Z2 of any p-simplex.

4.11 Example 2: Homology of a 2-sphere

The homology of a 2-sphere is calculated using its triangulation. The result is
independent of the choice of triangulation and we use the one already given in
Fig. 7. This triangulation is a simplicial complex very close to the simplicial
complex of the tetrahedron in the previous example. The only difference is that
the 3-simplex given by the whole tetrahedron is removed from the simplicial
complex.

Hence, all the calculations in the previous example apply here, except for the
homology groups in the top dimension. In the case of 2-sphere the top dimension
is two, because there are no 3-simplices in the simplicial complex. However, the
2-cycles remain the same as in the case of the tetrahedron. Thus, the number of
2-cycles is 2. But since there are no 3-simplices, there are no 2-boundaries, so
that the homology group is

H2 = Z2,

and the Betti number is β2 = 1. The other homology groups and the Betti
numnbers are exactly the same as in the example of the tetrahedron. Thus, the
Betti numbers of the homology over Z2 of the 2-sphere are

β0 = β2 = 1,

βp = 0 for all p ̸= 0, 2.

The same argument, relying on the homology of an (n+ 1)-simplex, implies
that the Betti numbers for the n-sphere, i.e., the n-dimensional sphere in the
(n+ 1)-dimensional space, are given by

β0 = βn = 1,
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βp = 0 for all p ̸= 0, n.

for homology over Z2.

5 A running example

In the real world, a software graph will never be a simple graph. The vertices
of a software graph may represent different things: classes, objects, functions,
modules, components, software units etc. The edges of a software graph represent
communication or calls between these parts of the software. In any case, the
software graph is always directed, as the calls between parts of the software are
directed from one part to the other. The software graph is often weighted or
with multiple edges, because some calls between parts of the software are more
frequent than others. This is encapsulated in the graph by assigning weights
to the edges or allowing multiple edges for multiple calls. Even the loops may
appear in a software graph, as they would represent recursive calls to the same
part of software.

On the other hand, the topological algorithm presented in Sect. 4 requires
a simple graph as input, works over the field Z2 = {0, 1} of two elements, and
defines simplices as complete subgraphs. These simplifications are necessary to
make the presentation of the basic concepts more accessible to students. Never-
theless, it still captures certain amount of topological insight in higher dimen-
sional structure of software. The topological techniques of similar nature can
be applied to more general settings, such as the cases of directed and weighted
graphs and working over other field and rings than Z2. The reference for these
techniques could be any textbook on algebraic topology such as [29].

In the real world software is certainly a limitation, although there is still
some topological insight gained from the presented algorithm.

5.1 Input to the algorithm

The running example considered now is given by the graph given in Fig. 16. It is
a small graph consisting of only four vertices, denoted in the figure by numbers
1, 2, 3 and 4, but it is not a simple graph. There are multiple edges and it is
directed. Hence, the input to the running example is just a list of edges of a
software graph. The first two numbers in each line represent an edge between
the vertices labeled by these numbers. The direction of the edge is the order of
numbers. It is also possible that the edges are weighted, which is indicated in
the list by the third number in each row. In the running example, all the weights
are set to 1. For the running example in Fig. 16, the list of edges is given by
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1 

2 

3 

4 

Fig. 16: The graph of the running example.

1 2 1
2 3 1
1 3 1
2 1 1
1 2 1
3 2 1
3 4 1
4 1 1
4 1 1
4 3 1

However, since the topological algorithm that we introduced in Sect. 4 requires
a simple graph as input, the list of edges must be cleaned up. The multiple edges
must be replaced by a single undirected copy of an edge, and the weights must
be erased. Hence, the input to the topological algorithm for the running example
is the list

S1 =


2 3
1 3
2 1
4 1
4 3

 .

where multiple edges and weights are removed. The simple graph obtained by
this procedure is given in Fig. 17.

5.2 Step 0 – adjacency matrix

The step 0 of the algorithm is to write down the adjacency matrix of the given
simple graph. It will be used repeatedly in the following steps as it encodes infor-
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1 

2 

3 

4 

Fig. 17: The simple graph obtained in the running example.

mation about neighboring vertices. This information is required in constructing
the simplicial complex and boundary operators introduced in Sect. 4, more pre-
cisely, in Sect. 4.1, Sect. 4.3 and Sect. 4.5.

Recall that the adjacency matrix of a graph is a square matrix with the
number of rows and columns equal to the number of vertices of the graph. Let
n0 denote the number of vertices in the graph, so that the adjacency matrix is
an n0 × n0 matrix. The order of vertices must be chosen and fixed. Then, the
elements of the adjacency matrix are determined as follows.

There is 1 at the crossing of the i-th row and the j-th column, if the i-th
and the j-th vertex are connected by an edge,
There is 0 at the crossing of the i-th row and the j-th column, otherwise.

Observe that we consider a simple graph. Hence, the adjacency matrix is sym-
metric, because the edges are undirected. It contains only ones and zeroes, be-
cause there are neither multiple edges nor weights. The diagonal entries are zero,
because there are no loops.

In the running example n0 = 4, and the order of vertices is already fixed by
the labels 1, 2, 3, 4. The adjacency matrix is

A =


0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

 .

Observe that A has all the properties mentioned for the adjacency matrix of a
simple graph.
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5.3 Step 1 – incidence matrix

The next step is to determine the incidence matrix of a given graph. It is nothing
else than the matrix of the boundary operator in dimension one, as defined in
Sect. 4.6.

Recall that the incidence matrix of a graph is a matrix with the number of
rows equal to the number n0 of vertices, and the number of columns equal to
the number n1 of edges. Thus, the incidence matrix is an n0 × n1 matrix. The
order of vertices and edges must be fixed once and for all. Then, the entries of
the incidence matrix are determined as follows.

There is 1 at the crossing of the i-th row and the j-th column, if the i-th
vertex belongs to the j-th edge,
There is 0 at the crossing of the i-th row and the j-th column, otherwise.

Since every edge has two vertices as its end-points, each column of the incidence
matrix contains exactly two entries equal to 1, and the rest are 0.

In the running example, there are n0 = 4 vertices, ordered by their labels,
and n1 = 5 edges, ordered as in the given list S1 of edges. The order of edges may
be chosen differently. The most canonical choice would be to order the edges in
the lexicographical order with respect to the order of edges, but this is not so
important in this small example. With the fixed order of vertices and edges as
above in S1, the incidence matrix in the running example is

∂1 =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 1
0 0 0 1 1

 .

Observe that the incidence matrix is denoted by ∂1, as the 1-boundary op-
erator. This is not a coincidence. The incidence matrix is precisely the matrix
of the 1-boundary operator written with the fixed order of vertices, which are
0-simplices, and edges, which are 1-simplices of the simplicial complex assigned
to the graph. The point is that the j-th column, which represents the j-th edge,
i.e., j-th 1-simplex, contains 1 precisely in the rows representing its end-points,
i.e., its 0-simplex faces. Thus, the incidence matrix is indeed equal to the matrix
of the 1-boundary operator.

For convenience of the reader, following the suggestion of the referee, we draw
here the table from which the matrix of the boundary operator ∂1 is determined

∂1 ∼

2, 3 1, 3 2, 1 4, 1 4, 3

1 ×
√ √ √

×
2

√
×

√
× ×

3
√ √

× ×
√

4 × × ×
√ √

The rows are labeled with 0-simplices (i.e., vertices) and columns are labeled
with 1-simplices (i.e., edges). The signs

√
and × in the table represent whether
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the vertex of a given row is the end-point of the edge of a given column, or not.
In the matrix, these signs become ones and zeroes.

Similar table for the boundary operator ∂2 is as follows.

∂2 ∼

2, 3, 1 1, 3, 4

2, 3
√

×
1, 3

√ √

2, 1
√

×
4, 1 ×

√

4, 3 ×
√

In this table, the rows are labeled with 1-simplices (i.e., edges) and columns are
labeled with 2-simplices (i.e., triangles), and signs

√
and × represent whether a

given edge is the side of a given triangle.
In this way, it becomes clear how the matrices of the boundary operator are

determined from the knowledge of boundary faces of every simplex in a simplicial
complex.

5.4 Step 2 – higher differentials

The algorithm proceeds iteratively by computing step-by-step the higher differ-
entials of the simplicial complex, that is, the matrices of the p-boundary opera-
tors for p ≥ 2.

There are a few sloppy places in applying this procedure. First of all, one
should make sure that the list Sp of p-simplices does not contain several copies
of the same p-simplex. Hence, it is desirable to fix an order of vertex labels
(increasing or decreasing) when making the list in order to avoid double simplices
in Sp.

Another issue is that adding a column in the matrix ∂p of p-boundary op-
erator requires the knowledge of the row numbers corresponding to all of its
faces. Perhaps a good idea is to make the list Sp in such a way that the order of
simplices is easy to handle and allows fast search.

Recall from Sect. 4.6 that the matrix of the p-boundary operator ∂p is a
matrix with np−1 rows and np columns, where nk is the number of k-simplices,
i.e., the number of complete subgraphs with k + 1 vertices. The entries in the
matrix are determined as follows.

There is 1 at the crossing of the i-th row and the j-th column, if the i-th
(p− 1)-simplex, i.e., the i-th complete subgraph with p vertices, is a (p− 1)-
simplex face of the j-th p-simplex, i.e., a subgraph of the the j-th complete
subgraph with p+ 1 vertices,
There is 0 at the crossing of the i-th row and the j-th column, otherwise.

Observe that this requires a fixed ordering of complete subgraphs with a given
number of vertices. Such complete subgraphs are determined iteratively, and
their order is fixed along the way. Once it is fixed, the order should not be
changed. In particular, the numbering of complete subgraphs with p vertices
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should be the same in the construction of matrices of boundary operators ∂p and
∂p−1. In this way, we obtain at the end the list of all simplices in the simplicial
complex, as in Sect. 4.1.

The problem of finding all complete subgraphs in an arbitrary simple graph
is computationally highly demanding. However, the software graphs are not, and
should not, be arbitrary. Larger complete subgraphs in a software graph would
indicate a high level of communication between many different parts of software,
which is not appropriate for design, testing, verification and maintenance of
software. Software design principles specify that such communication should be
avoided. Therefore, in the special case of software graphs, the search for complete
subgraphs is feasible.

The list S1 of edges may and will serve as the list of 1-simplices with the fixed
order, as above in the construction of the incidence matrix ∂1. The iterative
computation of differentials requires to keep track of the p-simplices in each
dimension p, and their fixed order. The list Sp of p-simplices is a matrix with
np rows and p+1 columns, where np is the number of complete subgraphs with
p+ 1 vertices (i.e. p-simplices) such that each row contains p+ 1 integers which
are labels of points that form a p-simplex.

As the first iterative step, one should determine the matrix ∂2 and the list
S2 of complete subgraphs with 3 vertices (i.e. 2-simplices) from the matrix ∂1
and the list S1 of edges (i.e. 1-simplices) using the adjacency matrix A. This is
done as follows.

1. Consider the first previously unused row in the list S1 of edges (1-simplices)
2. Check in the adjacency matrix A if all the vertices of the 1-simplex defined

by that row have a vertex as a common neighbor, that is, if all the vertices
of the 1-simplex are connected by an edge to the same vertex of a graph.

3. For each common neighbor determined in Step 2, adding such a common
neighbor to the 1-simplex gives a 2-simplex (a triangle in the graph), which
is stored in the list S2 of 2-simplices.

4. For each 2-simplex determined in Step 2, add a column on the right-hand
side of the 2-boundary operator matrix ∂2 which contains ones in the rows
of edges of that 2-simplex.

5. Go back to Step 1, unless there are no more unused rows in S1.

In this way, adding all possible neighbors to the 1-simplices, we obtain the list
S2, and the order of the list is fixed once and for all. At the same time, for each
2-simplex, a column on the right-hand side of the 2-boundary operator matrix
∂2 is added. The outcome of the algorithm is the ordered list S2 and the matrix
∂2 obtained simultaneously.

In the running example the list of 2-simplices (i.e., triangles in the graph)
are the following

S2 =

[
2 3 1
1 3 4

]
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and the 2-boundary operator matrix is

∂2 =


1 0
1 1
1 0
0 1
0 1

 .

There are only two triangles in the graph, so that the list S2 has two rows and
the matrix ∂2 has two columns.

In general, how to determine the p-boundary operator matrix ∂p and the list
Sp of p-simplices from the (p − 1)-boundary operator matrix ∂p−1 and the list
Sp−1 of (p − 1)-simplices using the adjacency matrix A? In precisely the same
way!

Go through the rows of the list Sp−1 of (p− 1)-simplices, and for each row of
Sp−1, check in the adjacency matrix A if all the vertices of the (p − 1)-simplex
defined by that row have a common neighbor. Adding such common neighbor
to the (p − 1)-simplex gives a p-simplex, which should be stored in the list Sp

of p-simplices. When a p-simplex is detected, at the same time, add a column
in the p-boundary operator matrix ∂p. This added column contains ones in the
rows of (p− 1)-simplex faces of that p-simplex.

In the running example, as small as it is, there are no 3-simplices (i.e. comlete
subgraphs with four vertices). Hence, the list S3 is empty, and there is no matrix
∂3.

5.5 Step 3 – rank of a matrix over Z2

All the information required for the calculation of homology groups and their
ranks, introduced in Sect. 4.9, are encoded in the matrix ∂p of the p-boundary
operator for all p, which are defined in Sect. 4.6. In particular, the rank of
the matrices ∂p contains the information regarding the rank of the cycle and
boundary groups, as defined in Sect. 4.8, which are required for computing the
Betti numbers, i.e., the rank of homology groups, as in Sect. 4.9.

This information can be read off from a normal form of a matrix. The re-
duction of a matrix to a normal form can be made using the well-known Gauss
elimination method. The students learn this algorithm in the basic linear algebra
course, and over Z2 it is even simpler.

The Gauss elimination over Z2 consists of the following steps, where the input
is any matrix with entries in Z2 = {0, 1}.

1. Set the considered part of the matrix to be the whole matrix.
2. Find a place in the considered part of the matrix containing 1. If it does not

exist, the matrix is already in a normal form, exit the algorithm.
3. Exchange two rows and two columns, so that this 1 appears in the upper-left

corner of the considered part of the matrix.
4. Find 1’s in the first column of the considered part of the matrix.
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5. Add the first row of the considered part of the matrix to those rows that
contain 1’s in the first column of the considered part of the matrix. The
addition is made mod 2, so that these 1’s are canceled.

6. Change the considered part of the matrix by removing its first row and its
first column. Go through steps 2–5 with this new considered part of the
matrix.

The outcome of the Gauss elimination is the matrix of the form

M =



1 ∗ . . . ∗ ∗ . . . ∗

0 1
. . .

...
...

...
...

. . . . . . ∗
...

...
0 . . . 0 1 ∗ . . . ∗
0 . . . . . . 0 0 . . . 0
...

...
0 . . . . . . 0 0 . . . 0


.

The rank of the matrix M is defined as the number of 1’s along the diagonal.
The defect of the matrix M is the number of remaining columns. Although we
did not define the rank and defect in general, note that the rank and defect of
any matrix is equal to the rank and defect of its normal form as defined for the
matrix M .

It turns out that in the case of the matrix ∂p of the p-boundary operator

the rank of ∂p equals the rank bp−1 of the boundary group Bp−1, as defined
in Sect. 4.8,
the defect of ∂p equals the rank zp of the cycle group Zp, as defined in
Sect. 4.8.

Thus, the rank and defect of ∂p for all p provides all the necessary information
to compute the Betti numbers of the given graph, that is, the Betti numbers of
the considered software.

In the running example, the Gauss elimination of the matrix ∂1 is performed
as follows. In the first step we move the 1 at the crossing of the second row and
first column to the upper-left corner. This is achieved by replacing the first two
rows of the matrix. In the second step, the first row is added to the third row to
cancel the 1 in the first column.

∂1 =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 1
0 0 0 1 1

 ∼


1 0 1 0 0
0 1 1 1 0
1 1 0 0 1
0 0 0 1 1

 ∼


1 0 1 0 0
0 1 1 1 0
0 1 1 0 1
0 0 0 1 1

 .

Now the considered part of the matrix is obtained by removing the first row and
the first column. In the considered part of the matrix, there is 1 already in the
upper-left corner (which is the crossing of the second row and the second column
of the whole matrix), so that no replacing of rows and columns is necessary. Thus,
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the next step is to add the second row to the third row, which cancels the 1 in the
second column below the upper-left corner of the considered part of the matrix.
We obtain

∂1 ∼


1 0 1 0 0
0 1 1 1 0
0 0 0 1 1
0 0 0 1 1

 .

Now the considered part of the matrix is obtained by removing again the first
row and the first column. In other words, we consider the matrix above with
the first two rows and the first two columns removed. In the remaining part of
the matrix, there is 0 in the upper-left corner (which is the crossing of the third
row and the third column). Hence, we must replace the third and the fourth
columns of the matrix, and then add the third row to the fourth row to cancel
the 1 below.

∂1 ∼


1 0 0 1 0
0 1 1 1 0
0 0 1 0 1
0 0 1 0 1

 ∼


1 0 0 1 0
0 1 1 1 0
0 0 1 0 1
0 0 0 0 0

 .

The last line has become zero, so we are done. The final matrix is in the normal
form, and we can read off the rank and defect of ∂1. The rank is 3, because there
are 3 ones along the diagonal, and the defect is 2, because there are two columns
remaining. Thus,

b0 = 3,

z1 = 2,

is the rank of the group B0 of 0-boundaries, and the rank of the group Z1 of
1-cycles, respectively.

Similarly, we perform the Gauss elimination method for the matrix ∂2 of the
2-boundary operator in the running example. In the first step, the first row is
added to the second and the third row to cancel the 1’s below the upper-left
corner. Then, the considered part of the matrix is obtained by removing the first
row and the second column. The 1 at the crossing of the second row and the
second column is used to cancel all the 1’s below it by adding the second row to
fourth and fifth row.

∂2 =


1 0
1 1
1 0
0 1
0 1

 ∼


1 0
0 1
0 0
0 1
0 1

 ∼


1 0
0 1
0 0
0 0
0 0


The last matrix is the normal form of ∂2. Hence, the rank and defect of ∂2 is
read off that matrix. It gives

b1 = 2,

z2 = 0,

is the rank of the group B1 of 1-boundaries, and the rank of the group Z2 of
2-cycles, respectively.



44 T. Galinac Grbac et al.

5.6 Final step – Betti numbers in homology

Finally, all the acquired information is combined to obtain the Betti numbers in
homology of the simplicial complex assigned to a software graph, as in Sect. 4.9.
In general,

z0 = n0 as always,
bp−1 and zp are obtained from ∂p for 1 ≤ p ≤ t,
bt = 0,

where t is the top dimension such that there are no (t+1)-simplices from which
the t-boundaries could come from. From these values, as in Sect. 4.9, the Betti
numbers are

βp = zp − bp

for all p = 0, 1, . . . , t.
In the case of the running example, we have calculated the following

z0 = n0 = 4 as always,
b0 = 3 is obtained from ∂1,
z1 = 2 is obtained from ∂1,
b1 = 2 is obtained from ∂2,
z2 = 0 is obtained from ∂2,
b2 = 0 because 2 is the top dimension, as there are no 3-simplices.

Therefore, the Betti numbers are

β0 = z0 − b0 = 4− 3 = 1,

β1 = z1 − b1 = 2− 2 = 0,

β2 = z2 − b2 = 0− 0 = 0.

6 Exercise

The goal of the following exercise is to write a code performing the algorithm
described in the previous sections. The idea is that writing the code will make
the abstract topological notions more familiar to students, and testing the code
on different types of graphs will give them the flavor of the difficulties in terms
of computational power and sustainability of the algorithm. It is important that
the solution is fast enough to handle software graphs, which do not contain too
large complete subgraphs.

Exercise: Given a software graph in the form described below, write a code in
the programming language of your choice, which computes the Betti numbers,
i.e., the ranks of homology groups, for that software.

The input to your code is a software graph given as a list of edges. The
vertices are labeled by positive integers up to n0, which denotes the number of
vertices. The edges are pairs of such integers. Let n1 denote the number of edges.
The list of edges is a matrix (an array) with three columns and n1 rows, where
each row represents an edge:
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The first integer in a row is the starting vertex of an edge.
The second integer in a row is the ending vertex of an edge.
The third number in a row is the weight of an edge.

For our task the directions of the edges are ignored, multiple edges are ignored
and the weights are ignored. Hence, the code should first clean up the list of
edges by removing the weights, i.e., erasing the third column, and removing the
duplicate edges in the list. Note that the order of vertices of an edge is irrelevant
as the graph is unordered.

The steps of the algorithm described in Sect. 5 should be implemented in the
code as the solution of the exercise. These steps lead to the solution.

Step 0 Write the code which transforms the cleaned up input list of edges into
the adjacency matrix A of a given graph.

Step 1 Write the code which transforms the cleaned up input list of edges into
the incidence matrix of a given graph, which is at the same time the matrix
∂1 of the 1-boundary operator.

Step 2 Write the code which computes iteratively the matrix of higher-dimen-
sional boundary operators ∂p and at the same time the ordered list Sp of
p-simplices.

Step 3 Write the code which implements the Gauss elimination algorithm and
determines the normal form of a given matrix. Apply it to the matrices of
boundary operators ∂p.

Final step Write the code that reads off the rank and defect from a normal
form of a matrix. Apply it to the normal forms of the boundary operators
∂p and compute the Betti numbers.

The code that solves the exercise can be tested on any simple graph. How-
ever, for arbitrary graphs there is no solution that is fast enough to determine
the Betti numbers for the simplicial complex assigned to a graph as in the pre-
vious sections. The problem occurs if the graph is highly connected in terms of
complete subgraphs. The solution code should work fast enough to handle the
software graphs, in which there are usually only smaller complete subgraphs.

At the summer school, the attendees were given a sample software graph as
the test input. It was a software graph with 3833 vertices and 17602 edges. The
top dimension of the graph turned out to be only t = 3, so that there are no
complete subgraphs with more than 4 vertices. The Betti numbers are

β0 = 7,

β1 = 12591,

β2 = 1995,

β3 = 46.

The interested reader who solved the exercise is urged to either contact the
authors for the sample graph input to test their solution, or test the solution on
any other software graph available.
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7 Conclusion

Software is the main technology driving digitalization in many domains as sup-
port in decision-making processes. It abstracts the physical world and manages
such abstract resources and it implements machine learning and artificial intel-
ligence algorithms to provide analysis of big data. The way how we engineer
software solutions has a significant impact on addressing sustainability goals in
the application domain where software is implemented but also within the soft-
ware engineering industry. Engineering sustainable software is becoming crucial
for future technology advancements. The main obstacle in engineering sustain-
able software is the human ability to engineer complex systems.

In this lecture, we define complex systems and specific challenges of modeling
modern software systems and their consequences on sustainable software behav-
ior. We explain the problem of modeling complex software behavior from the
perspective of modeling local system properties that are measured on software
parts and global system properties that are measured in the system operation.
Furthermore, we introduce the software structure as one of the key instruments
we model relations between local and global system properties and explain its
graph representation.

Finally, we introduce students to Topological Data Analysis (TDA) as an
analysis tool that may be very useful in modeling complex systems as a comple-
mentary tool to various existing graph algorithms. TDA is capable of describing
the topological space of structure that may introduce an additional useful dimen-
sion to explain algorithmic decisions in various applications. Here we introduce
the key concepts of TDA and guide students on how to implement these abstract
topological notions.

In our running case, we showed how TDA may be used in the analysis of
software structures with the help of TDA aiming to address concerns of sustain-
able software evolution. The results of our case of using TDA to model software
structures in evolution are presented in [37]. By experimenting with different
graphs the students may understand the difficulties in terms of computational
power and sustainability of the algorithm by testing the code on different types
of graphs, and how this implementation may impact sustainable software struc-
tures.
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