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Abstract. Let U/Q be a unitary group of Q-rank one so that the group of real points U(R) ∼=
U(n, 1). The group U is only quasi-split over Q if and only if n = 1, 2. The cohomology of a
congruence subgroup of U is closely related to the theory of automorphic forms. This relation is
best captured in the so-called automorphic cohomology spaces H∗(U,C), a natural module under
the action of the group U(Af ). This paper gives a structural account of the U(Af )-module structure
of that part of the cohomology which is generated by residues or derivatives of Eisenstein series. In
particular, we determine a set of arithmetic conditions, mainly given in terms of partial automorphic
L-functions, subject to which residues of Eisenstein series may give rise to non-vanishing cohomology
classes. The main task is, although the usual method due to Langlands-Shahidi is not applicable,
to analyze the analytic behavior of suitable Eisenstein series and to determine the location of their
possible poles.

Introduction

0.1. Let F/Q be an imaginary quadratic extension of the field of rational numbers, and let (V, h)
be a non-degenerate hermitian space over F of dimension n+1, endowed with the hermitian form h.
Suppose that (V, h) is not anisotropic, and that the conjugate of h under the conjugation of F with
respect to Q is of signature (n, 1). We denote by U = U(V, h) the unitary group attached to the
hermitian space (V, h). It is a connected reductive algebraic group defined over Q of Q-rank one.1

The group U is quasi-split over Q if and only if n = 1 or n = 2. We fix a good maximal compact
subgroup K ⊂ U(A), where A is the ring of adèles of Q, decomposed in its archimedean component
K∞ and its non-archimedean component Kf . Given an open compact subgroup C ⊂ U(Af ), where
Af is the subring of finite adèles in A, the deRham cohomology H∗(YC ,C) of the orbit space
YC := U(Q)\U(A)/K∞C is defined. Passing over to the inductive limit

H∗(U,C) := colimCH
∗(YC ,C)

over all open compact subgroups C of U(Af ) defines a natural object to study the cohomology
of congruence subgroups of G. Indeed, the cohomology H∗(U,C) is a U(Af )-module in a natural
way, and the cohomology of the congruence subgroup Γ = U(Q) ∩ C is obtained by taking the
C-invariants, that is, H∗(Γ,C) = H∗(U,C)C . Thus, we are in the realm of the study of Picard
modular varieties and their arithmetic.
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The cohomology groups H∗(U,C) are closely related to the theory of automorphic forms. Let
J be the annihilator of the (conjugate dual) of the trivial representation in the center Z of the
universal enveloping algebra of g∞, where g∞ is the Lie algebra of U(R) ∼= U(n, 1). Then, J is an
ideal of finite codimension in Z, and we denote by

A = AJ (U(Q)\U(A))

the (g∞,K∞;U(Af ))-module of all smooth K-finite complex-valued functions of uniform moderate
growth on the orbit space U(Q)\U(A) which are annihilated by some power of J (see [3] resp. [27,
Sect. I.2.3]). Due to Franke [6], there is an isomorphism

H∗(U,C)−̃→H∗(g∞,K∞;A)

with the relative Lie algebra cohomology attached to the (g∞,K∞;U(Af ))-module A.
The decomposition of the module A with respect to the cuspidal support of the automorphic rep-

resentations in question, as obtained in [20] in general, gives rise to a corresponding decomposition
in cohomology. In this case, since there is just one associate class of proper parabolic Q-subgroups
in U , say represented by P0 with Levi component M0, it takes the following form:

H∗(U,C) ∼= H∗(g∞,K∞;Acusp)⊕
⊕
π

H∗(g∞,K∞;Aπ)

∼= H∗
cusp(U,C)⊕H∗

Eis(U,C).

The first summand, called the cuspidal cohomology, is the cohomological counterpart of the sub-
module Acusp ⊂ A of cuspidal automorphic forms. The second summand accounts for the modules
Aπ of automorphic forms with cuspidal support in the associate class of a (not necessarily unitary)
cuspidal representation π of M0(A). Roughly spoken, the module Aπ is spanned by all possible
residues or derivatives (with respect to a one-dimensional complex parameter) of Eisenstein series
attached to cuspidal automorphic forms of type π at values in the positive Weyl chamber defined by
P0 for which the infinitesimal character of the trivial representation is matched. Thus, as usual, we
call this part the Eisenstein cohomology of U , denoted H∗

Eis(U,C). In this case of a Q-group of rank
one, residues of Eisenstein series are necessarily square-integrable automorphic forms, thus, their
very existence leads to non-vanishing square-integrable classes in H∗(U,C) which are not cuspidal.

This paper is concerned with the structure of the cohomology spaces H∗(g∞,K∞;Aπ) as a
U(Af )-module. Aside from the study of the Franke filtration of the spaces Aπ and an analysis
of certain necessary conditions so that the cohomology spaces H∗(g∞,K∞;Aπ) are possibly non-
vanishing, the main task is to analyze the analytic behavior of Eisenstein series, in particular, to
determine the location of their poles. Note, since the group U is not quasi-split over Q for n > 2,
the usual methodological approach due to Langlands-Shahidi is not at hand.

The results of this paper can be easily generalized to a more general setting, but for simplicity
of exposition and to avoid technicalities which would not bring any new ideas, the paper is written
over Q. The analytic properties of the Eisenstein series hold, with the very same proof, for unitary
groups of relative rank one defined with respect to arbitrary imaginary quadratic extension of
algebraic number fields. The calculation of cohomology in the more general setting is slightly more
involved. If the unitary group of relative rank one is defined with respect to an imaginary quadratic
extension of a totally real algebraic number field, one may easily combine the results of this paper
with the Küneth rule to describe Eisenstein cohomology of such unitary groups.
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Similarly, the results may be generalized to the case of cohomology with respect to any non-trivial
local system of coefficients arising from a finite-dimensional algebraic representation of the unitary
group U . The finite-dimensional representation is given by its highest weight, which is zero for the
trivial representation. If the highest weight is non-zero, i.e., the local system of coefficients is non-
trivial, there is a slight modification of the necessary conditions for non-vanishing of cohomology in
Sect. 2.1, and the parametrization of cohomological representations of U(n, 1) in Sect. 3. Otherwise,
the computation of cohomology remains the same, and the analytic properties of the Eisenstein
series typically become simpler to determine. For instance, if the highest weight is regular, it is
proved in [30] that the point of evaluation of the Eisenstein series which matters for cohomology
is always in the domain of convergence of the Eisenstein series, and thus, the Eisenstein series is
holomorphic. In a sense, the case of the trivial coefficient system, which is considered in this paper,
is the most complicated case from the point of view of the analytic properties of the Eisenstein
series.

0.2. Analytic behavior of Eisenstein series – normalizing factor. The minimal parabolic
subgroup P0 has a Levi decomposition P0 = M0N0 where M0 is the Levi subgoup and N0 its
unipotent radical. The group M0 splits into a direct product

M0
∼= ResF/QGL1 × U ′,

where ResF/QGL1 is the algebraic group over Q obtained from GL1 over F by restriction of scalars,
and U ′ a unitary group with U ′(R) ∼= U(n−1), and (for a non-archimedean place) with local groups
U ′(Qp) of a form analogous to the case U .

Write π ∼= πu ⊗ | · |s0IF , where πu is a unitary cuspidal automorphic representation of M0(A), and
s0 is a real number. Changing the representative π if necessary, we may always assume s0 ≥ 0. Let
fs be a section of the induced representations

I(s, πu) = Ind
U(A)
P0(A)

(
πu ⊗ | · |sIF

)
as in [7]. The Eisenstein series associated to πu is defined as the analytic continuation from the
cone of absolute convergence of the series

E(fs, g) =
∑

γ∈P0(Q)\U(Q)

fs(γg).

It is meromorphic in s with only finitely many poles with s > 0 and all other poles lie in the
half-plane Re(s) < 0. Consider the Eisenstein series E(fs, g) evaluated at s = s0 > 0. The
possible pole at s = s0 is at most simple. In any case, there exists a polynomial F (s) such that
F (s)E(fs, g) is holomorphic at s = s0 for every section fs. Thus, we may write the Taylor expansion
of F (s)E(fs, g) around s = s0. Then the space Aπ is the span of all Taylor coefficients in that
expansion. If the Eisenstein series E(fs, g) has a pole at s = s0 > 0, then the residues span a
(g∞,K∞;U(Af ))-submodule Lπ of Aπ consisting of all square-integrable automorphic forms with
the cuspidal support in (the associate class of) π. It follows that the Franke filtration of the spaces
Aπ is (at most) a two-step filtration, namely, Lπ ⊂ Aπ. The successive quotients of the filtration
may be described as induced representations.

Let πu ∼= χ⊗σ be a cuspidal automorphic representation of the Levi factor M0(A) ∼= IF ×U ′(A),
where χ is a unitary Hecke character of the group of idèles IF , and σ a cuspidal automorphic
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representation of U ′(A). Let E(fs, g) be the Eisenstein series associated to a section fs of the
induced representation

I(s, πu) = Ind
U(A)
P0(A)

(
πu ⊗ | · |sIF

)
= Ind

U(A)
P0(A)

(
χ| · |sIF ⊗ σ

)
.

Our aim is to determine the poles of E(fs, g) at s such that Re(s) > 0, whose residues may pos-
sibly contribute to H∗(g∞,K∞;Aπ). Necessarily, this is carried through under certain simplifying
assumptions on πu which are aligned with the demand of cohomological relevance.

The poles of the Eisenstein series E(fs, g) are the same as the poles of its constant term E(fs, g)P0

along the parabolic subgroup P0. The constant term can be expressed as

E(fs, g)P0 =

∫
N0(Q)\N0(A)

E(fs, ng)dn = fs(g) +M(s, πu, w)fs(g),

where dn is the appropriate measure on the unipotent radical of P0 and M(s, πu, w) is the standard
intertwining operator on the induced representation I(s, πu), with w the unique non-trivial element
of the relative Weyl group of the unitary group U . Thus, the poles of E(fs, g) coincide with the
poles of the standard intertwining operator M(s, πu, w).

Let S be the finite set of places of Q, containing the archimedean place, and such that, for a
non-archimedean place p of Q, we have p ̸∈ S if and only if the following three assertions hold

• the extension F/Q is not ramified over p,
• the group U , viewed as an algebraic group over Qp, is quasi-split over Qp,
• the representation πu is unramified at p.

Now we can formulate the first main result which relates the possible poles E(fs, g) to the ones of
a certain normalizing factor precisely defined in Section 5. Given as a product of local factors

rS(s, πu, w) =
∏
p ̸∈S

r(s, πu
p , w),

it involves partial automorphic L-functions, some of Rankin-Selberg type, or linked with (twisted)
Asai L-functions attached to χ.

Theorem 0.1. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
such that σ is cohomological at the archimedean place. Suppose that σp is tempered for all non-
archimedean places p ∈ S. Then, the poles of the Eisenstein series E(fs, g) associated to πu at s
such that Re(s) > 0, coincide with the poles of the normalizing factor rS(s, πu, w).

The same conclusion regarding the poles of Eisenstein series may be deduced under a certain
assumption on a weak base change of σ. Although this assumption is of a different nature, in fact
it implies that σp is tempered for all non-archimedean places p ∈ S. Thus we can prove

Corollary 0.2. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF ×U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
such that σp is cohomological at the archimedean place p. Suppose that U ′, viewed as an algebraic
Qp-group, is quasi-split over Qp for all non-archimedean p ∈ S, and that a weak base change of
σ, as constructed by Shin [5, Thm. A.1], is a cuspidal automorphic representation of GLn−1(AF ).
Then, the poles of the Eisenstein series E(fs, g) associated to πu at s such that Re(s) > 0, coincide
with the poles of the normalizing factor rS(s, πu, w).
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In a different approach, using a unitarity argument, we prove a variant under weaker conditions,
as it is neither assumed that the group U ′ is quasi-split at non-archimedean places p ∈ S, nor the
representation πu is assumed to be tempered at p ∈ S.

Theorem 0.3. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
such that σ is cohomological at the archimedean place. Suppose that a weak base change of σ,
constructed in [5, Thm. A.1], is a cuspidal automorphic representation of GLn−1(AF ). Then the
Eisenstein series E(fs, g), associated to πu, is holomorphic at s with Re(s) ≥ 3/2.

0.3. Analytic behavior of Eisenstein series – automorphic L-functions. These results
permit to determine the location of poles in terms of the analytic properties of the automorphic
L-functions appearing in the normalizing factor. Since in the case when χ is not conjugate self-
dual, the Eisenstein series is holomorphic in the region Re(s) > 0 (see Theorem 5.5 for details), we
assume now that χ is conjugate self-dual, that is, trivial on the norm subgroup NF/Q(IF ). Thus, χ
restricted to I is either trivial or the quadratic character δF/Q of I attached to the extension F/Q
by class field theory.

Theorem 0.4. Let n ≥ 3. Let πu ∼= χ ⊗ σ be a cuspidal automorphic representation of M0(A) ∼=
IF×U ′(A), where χ is a unitary Hecke character of IF which is conjugate self-dual, and σ a cuspidal
automorphic representation of U ′(A) such that σ is cohomological at the archimedean place. Suppose
that σp is tempered for all non-archimedean places p ∈ S. Then, the Eisenstein series E(fs, g),
associated to πu, is holomorphic for s such that Re(s) > 0, except for possible simple poles at
s ∈ {1/2, 1, 3/2, . . . , n/2}.

The pole at s = 1/2 occurs if and only if

• either condition Ceven, given by

Ceven ≡

 n+ 1 is even,
the restriction of χ to I is trivial,
LS(1/2, χ⊗ σ, r1) ̸= 0,

• or condition Codd, given by

Codd ≡


n+ 1 is odd,
the restriction of χ to I is the quadratic character δF/Q of I

attached to the extension F/Q by class field theory,
LS(1/2, χ⊗ σ, r′1) ̸= 0,

is satisfied. The pole at s = m+1
2 with 1 ≤ m ≤ n − 1 an integer occurs if and only if the weak

local lift Σ of σ to GLn−1(AF ) contains as a summand in the isobaric sum the discrete spectrum
representation of GLm(AF ) isomorphic to the unique irreducible quotient J(m,χc) of the induced
representation

Ind
GLm(AF )
Bm(AF )

(
χc| |

m−1
2

IF ⊗ χc| |
m−3

2
IF ⊗ · · · ⊗ χc| |−

m−1
2

IF

)
,

where Bm is a Borel subgroup of GLm, and χc is the conjugate of χ by the non-trivial Galois
automorphism c.

We treat the case n ≥ 3 separately, since in the low rank cases n = 1 and n = 2 we can provide
a more precise description due to some simplifications in the conditions (see Theorems 5.7, 5.8).

Finally, in the general case, we deal with the case of the trivial representation of M0(A).
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Theorem 0.5. Let πu ∼= 1IF ⊗ 1U ′(A) be the trivial representation of the Levi factor M0(A) ∼=
IF ×U ′(A), where 1IF is the trivial character of IF and 1U ′(A) is the trivial representation of U ′(A).
Then, the Eisenstein series E(fs, g), associated to πu, has a simple pole at s = n/2. The space Lπ

spanned by the residues, where π ∼= πu ⊗ | · |n/2IF , is isomorphic to the trivial representation 1U(A) of

U(A).

0.4. Eisenstein cohomology – preliminary considerations. In a first step, given the real Lie
group U(n, 1), the archimedean component of U(A), we have to recall the known parametrization
(by θ-stable parabolic subalgebras q of g), of unitary representations of U(n, 1) with non-zero
cohomology (with respect to trivial coefficients). Then it is necessary to adjust this parametrization
to the needs of the actual construction of Eisenstein cohomology classes, as exhibited in [29]. In
this work the notion of a cuspidal representations of type (π,w), where w ranges through the set
WP0 of minimal coset representatives for the right cosets WP0\W , with W the absolute Weyl group
of U , WP0 the absolute Weyl group of M0, plays a decisive role. Given an irreducible unitary
representation Aq, there is a corresponding minimal coset representative wk,l ∈ WP0 , uniquely
determined by a pair of integers (k, l) such that 1 ≤ k, l ≤ n+1 and k > l. In turn, this procedure
permits to determine the Langlands data of Aq. We may rewrite the cohomology of Aq in these
terms. Let Aq correspond to the Weyl group element wk,l ∈ WP0 with 1 ≤ l < k ≤ n+ 1. Then,

H∗(g,K;Aq) =

{
C, if q = ℓ(wk,l) + 1− 2j with 0 ≤ j ≤ ℓ(wk,l) + 1− n,
0, otherwise.

In particular, the set of degrees in which the contribution is non-trivial is symmetric around the
middle degree q = n.

Note that, given a cuspidal representations of type (π,wk,l), wk,l ∈ WP0 , the evaluation point
swk,l

and the highest weight µwk,l
, associated with the corresponding Eisenstein series (see [29,

Sects. 3 and 4], or [22, Sect. 3]), are given by the formulas

swk,l
= −wk,l(ρ)

∣∣
ǎ
, µwk,l

= wk,l(ρ)− ρ,

where ǎ is the dual of the Lie algebra of a maximal split torus in the center of M , and ρ is the
half-sum of positive roots for the root system of g with respect to t. The second equation tells us
that the infinitesimal character χπ∞ of the archimedean component of π is equal to χ−wk,l(ρ).

In a second step (see Section 4), we have to take into account certain compatibility conditions for
the cuspidal support which assure the possible non-vanishing of the Eisenstein cohomology spaces
H∗(g∞,K∞;Aπ). These conditions afford the link to the parametrization of unitary representations
of U(n, 1) with non-zero cohomology (with respect to trivial coefficients) discussed in the first step.

0.5. Eisenstein cohomology – final results. In Section 6, using the results concerning the
analytic properties of Eisenstein series, we finally determine in a precise way the structure of the
spaces H∗(g∞,K∞;Aπ) as a U(Af )-module. The final results depend on arithmetic data as laid
out in the statements regarding the location of poles of the Eisenstein series to be considered. The
proofs use the long exact sequence in cohomology induced by the Franke filtration Lπ ⊂ Aπ.

In Theorem 6.2 we deal with the contributions H∗(g∞,K∞;Aπ) that are related to the point of
evaluation s0 = 1/2 and that may contain residual Eisenstein cohomology classes. The existence of

the latter classes depends on the existence of cuspidal automorphic representations π ∼= χ| · |1/2IF ⊗σ

of M0(A), where χ is a unitary conjugate self-dual Hecke character of IF and σ a unitary cuspidal
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automorphic representation of U ′(A), with σp tempered for all non-archimedean places p ∈ S
such that the necessary cohomological conditions and one of the two conditions Ceven and Codd in
Theorem 0.4 are satisfied.

Theorem 6.3 concerns the general case, that is, the points of evaluation are at s = m+1
2 with

1 ≤ m ≤ n− 1.

Finally, as proved in Theorem 6.4, if π ∼= | · |n/2IF ⊗ 1U ′(A) is the trivial representation of the Levi

factor M0(A) twisted by the character | · |n/2IF , then the summand in the Eisenstein cohomology

supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


1U(Af ), if q = 0, 2, . . . , 2n− 2,

non-trivial submodule of Ifin(n/2,1M0(A)), if q = 2n− 1,

either 1U(Af ), or 0, if q = 2n,

0, otherwise.

Moreover, H2n(g∞,K∞;Aπ) ∼= 1U(Af ) if and only if H2n−1(g∞,K∞;Aπ) ∼= Ifin(n/2,1M0(A)), and

if H2n(g∞,K∞;Aπ) is trivial, then H2n−1(g∞,K∞;Aπ) is the submodule of Ifin(n/2,1M0(A)) for
which the quotient is the trivial representation.

We conclude Section 6 with a complete description of the Eisenstein cohomology of relative rank
one unitary groups in two and three variables. Recall that these groups are quasi-split over Q. Our
approach provides a different proof of results of Harder [15].

1. Unitary groups of rank one

Let F be an imaginary quadratic extension of the field Q of rational numbers, with Galois group
Gal(F/Q). We denote by c the non-trivial element of Gal(F/Q). Given an archimedean or non-
archimedean place p, let Qp be the completion of Q at p. For the archimedean place p = ∞, we
have Q∞ ∼= R. For a non-archimedean place p, let Zp be the ring of integers in Qp. Let A, resp. AF ,
be the ring of adèles, and I, resp. IF , the group of idèles of Q, resp. F . The subring of finite adèles
in A is denoted Af .

We now introduce the unitary groups of relative rank one we are concerned with in this paper.
Let n be a positive integer. Let V be a non-degenerate hermitian space over F of dimension n+ 1
with the hermitian form h. We assume that V is not anisotropic, and that the conjugate of V by
the complex embedding given by the archimedean place is of signature (n, 1). Let

U = U(V )

be the unitary group preserving the hermitian form on V , viewed as an algebraic group defined over
Q. It is of Q-rank one. Observe that our setting is not restrictive, because all unitary groups over
Q of Q-rank one, arise in this way. This is clear from the classification of unitary groups over local
and global fields (of characteristic zero), which we now recall. See [25, Chap. I] for more details
about classification of classical groups.

By our assumption, at the archimedean place p = ∞, we have U(R) ∼= U(n, 1) is the unitary
group of signature (n, 1). The Hasse invariant ϵ(U(n, 1)) attached to U(n, 1) is

ϵ(U(n, 1)) =

{
1, if n+ 1 is odd,

(−1)
n−1
2 , if n+ 1 is even.
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If p is a non-archimedean place that splits in F , then U(Qp) ∼= GLn+1(Qp). If p does not split in F ,
let P be the unique place of F lying above p. Then, for n+1 odd, U(Qp) is the quasi-split unitary
group in n+ 1 variables given by the quadratic extension FP/Qp. The Hasse invariant in this case
is ϵ(U(Qp)) = 1. However, for n + 1 even, there are two non-isomorphic possibilities for U(Qp).
Either U(Qp) is the quasi-split unitary group in n + 1 variables given by the quadratic extension
FP/Qp, or the conjugate of V at place P has an anisotropic subspace of dimension two and U(Qp)
is the non-quasi-split unitary group preserving the hermitian form. In the former case, the Hasse
invariant is ϵ(U(Qp)) = 1, while in the latter case, it is ϵ(U(Qp)) = −1. By the classification of
unitary groups over a number field, given U = U(V ), the group U(Qp) is quasi-split at all but
finitely many places, and the product of the Hasse invariants over all places of Q that do not split
in F , including the archimedean place, equals one.

We fix, once and for all, a maximal compact subgroup K of U(A) of the form K =
∏

pKp,

where Kp is a maximal compact subgroup of U(Qp), and we have Kp
∼= U(Zp) for almost all p, and

K∞ ∼= U(n)× U(1).
Since the algebraic group U is of Q-rank one, a maximal isotropic subspace of V is one-

dimensional. Its stabilizer is a representative of the unique conjugacy class of proper parabolic
Q-subgroups of U . We fix, once and for all, one such representative P0. We assume, as we may, that
P0 is in good position with respect to the fixed maximal compact subgroup K (cf. [27, Sect. I.1.4]).

If x is a non-zero vector in the isotropic space defining P0, let y be another isotropic vector such
that h(x, y) ̸= 0. Let V ′ be the orthogonal complement of the span of x and y. It is a hermitian
space over F , of dimension n − 1, with the hermitian form obtained from h by restriction. We
denote by

U ′ = U(V ′)

the unitary group preserving the hermitian form on V ′. Then, for the archimedean place p = ∞,
we have U ′(R) = U(n − 1) is the compact unitary group in n − 1 variables. For non-archimedean
places p, the local groups U ′(Qp) are of the same form as in the case of the unitary group U above.

The parabolic subgroup P0 has a Levi decomposition P0 = M0N0, where M0 is the Levi factor
stabilizing the hermitian space V ′ and the one-dimensional isotropic subspaces spanned by x and
y, and N0 is the unipotent radical. Then

M0
∼= ResF/QGL1 × U ′,

where ResF/QGL1 is the algebraic group over Q obtained from GL1 over F by restriction of scalars.

2. Automorphic cohomology, Eisenstein series, and the Franke filtration

In this section, we introduce the main objects of concern in this paper. We are quite brief, and
for more details we urge the reader to follow the references in the text.

2.1. Automorphic cohomology. Let J be the annihilator of the (conjugate dual) of the trivial
representation in the center Z of the universal enveloping algebra of g∞, where g∞ is the Lie algebra
of U(R) ∼= U(n, 1). Then, J is an ideal of finite codimension in Z, and we denote by

A = AJ (U(Q)\U(A))

the (g∞,K∞;U(Af ))-module of all automorphic forms on U(A), in the sense of [3], which are
annihilated by a power of J . Then, the automorphic cohomology H∗(U,C) of U , with respect to
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the trivial coefficient system, may be defined as the relative Lie algebra cohomology

H∗(U,C) = H∗(g∞,K∞;A).

Observe that this cohomology space is in fact the same as the relative Lie algebra cohomology of
the (g∞,K∞;U(Af ))-module of all automorphic forms on U(A), but due to Wigner’s lemma [4,
Sect. I.4], only automorphic forms that match the infinitesimal character of the trivial representation
may contribute non-trivially to the automorphic cohomology.

This cohomology space is obtained as a direct limit over all open compact subgroups of U(Af ) of
the de Rham cohomology of certain locally symmetric spaces. Since there is a U(Af )-action on the
directed system, the resulting automorphic cohomology H∗(U,C) carries the structure of a U(Af )-
module. As explained in the introduction, one should have in mind that this object captures the
cohomology of congruence arithmetic subgroups of U , as follows from [4], [2], [6]. See [22, Sect. 2]
for more details.

There is a decomposition of the (g∞,K∞;U(Af ))-module A along the cuspidal support. More
precisely, let Acusp denote the submodule of all cuspidal forms in A. The complement of Acusp in A
exhibits a decomposition with respect to (associate classes) of cuspidal automorphic representations
of the Levi factor M0(A). Let

A ∼= Acusp ⊕
⊕

π
Aπ

be the decomposition of A along the cuspidal support, where Aπ is the (g∞,K∞;U(Af ))-module of
automorphic forms with cuspidal support in the associate class of a (not necessarily unitary) cus-
pidal automorphic representation π of M0(A), as defined in [27, Sect. III.2.6] and, in an equivalent
way, in [7, Sect. 3.1]. The sum is actually only over those π which are compatible with the trivial
coefficient system (cf. [22, Sect. 1.3]).

The decomposition of the space A gives rise to the corresponding decomposition in cohomology.
Namely,

H∗(U,C) ∼= H∗
cusp(U,C)⊕

⊕
π

H∗(g∞,K∞;Aπ)

∼= H∗(g∞,K∞;Acusp)⊕H∗
Eis(U,C),

where the cuspidal cohomology H∗
cusp(U,C) is the cohomology of the module Acusp, and its natural

complement H∗
Eis(U,C) is the Eisenstein cohomology, which is the main concern of this paper.

There are certain necessary conditions for non-vanishing of the individual summands in the
Eisenstein cohomology. In other words, the cohomology space H∗(g∞,K∞;Aπ) vanishes, except
possibly if these necessary conditions are satisfied. In order to state them, we need more notation.

LetW be the absolute Weyl group of U , and letWP0 be the absolute Weyl group of the Levi factor
M0. Every right coset in WP0\W has a unique representative of minimal length in its right coset.
Let WP0 be the set of such minimal coset representatives, also called the Kostant representatives
(cf. [17]).

Write π ∼= πu ⊗ | · |s0IF , where πu is a unitary cuspidal automorphic representation of M0(A), and
s0 is a real number. Changing the representative π if necessary, we may always assume s0 ≥ 0.

Now the necessary non-vanishing conditions for H∗(g∞,K∞;Aπ) say that there exists w ∈ WP0

such that

NV1 s0 corresponds to sw = −w(ρ)
∣∣
ǎ∞

(see Sect. 3),

NV2 the highest weight of the archimedean component πu
∞ of πu is µw = w(ρ)− ρ,
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where ǎ∞ is the dual of the Lie algebra of a maximal split torus in the center of M0(R), and ρ is
the half-sum of positive roots in the complexification of g∞. We make these conditions explicit in
Sect. 3.4. Note that, for a given π, there is at most one w ∈ WP0 such that the two non-vanishing
conditions are satisfied. In the terminology of [22], the cohomology classes in a non-trivial summand
H∗(g∞,K∞;Aπ) originate with classes of type (π,w) (in the sense of [29]), where w ∈ WP0 is such
that the necessary non-vanishing conditions are satisfied for π.

2.2. Eisenstein series and the Franke filtration. Let π ∼= πu ⊗ | · |s0IF , with s0 > 0, be a

cuspidal automorphic representation of M0(A), as in Sect. 2.1. Let

I(s, πu) = Ind
U(A)
P0(A)

(
πu ⊗ | · |sIF

)
be the induced representation, where s ∈ C. Note that the induction is normalized, and we always
assume that πu is trivial on the connected component of the real points of the maximal split torus
in M0. The latter is not restricting and assures that the poles of the Eisenstein series will be real.

Let fs be a section of the induced representations I(s, πu) as in [7]. The Eisenstein series
associated to πu is defined as the analytic continuation from the cone of absolute convergence of
the series

E(fs, g) =
∑

γ∈P0(Q)\U(Q)

fs(γg).

It is meromorphic in s with only finitely many poles with s > 0 and all other poles lie in the
half-plane Re(s) < 0. See [27, Sect. IV.1] for these facts.

Consider the Eisenstein series E(fs, g) evaluated at s = s0 > 0. The possible pole at s = s0 is at
most simple. In any case, there exists a polynomial F (s) such that F (s)E(fs, g) is holomorphic at
s = s0 for every section fs. Thus, we may write the Taylor expansion of F (s)E(fs, g) around s = s0.
We define the space Aπ as the span of all Taylor coefficients in that expansion. If the Eisenstein
series E(fs, g) has a pole at s = s0 > 0, then the residues span a (g∞,K∞;U(Af ))-submodule
Lπ of Aπ consisting of all square-integrable automorphic forms with the cuspidal support in (the
associate class of) π.

The Franke filtration is a finite filtration of the spaces Aπ, first defined in [6, Sect. 6], and refined
with respect to cuspidal support in [7, Thm. 1.4]. The successive quotients of the filtration may be
described as induced representations. The explicit description of the Franke filtration in the case
of cuspidal support in a maximal proper parabolic subgroup is given in [10].

The Franke filtration of Aπ, where π ∼= πu ⊗ | · |s0IF , depends on the existence of the pole of

the Eisenstein series E(fs, g) attached to πu at s = s0 > 0. If the Eisenstein series E(fs, g) is
holomorphic at s = s0, then the Franke filtration is trivial, and we have

Aπ
∼= I(s0, π

u)⊗ S(ǎ∞,C),

where S(ǎ∞,C) is the symmetric algebra of the complexification ǎ∞,C of ǎ∞.
On the other hand, if the Eisenstein series E(fs, g) has a pole at s = s0 for some section fs, then

the Franke filtration is a two-step filtration

Lπ ⊂ Aπ.

We have

Lπ
∼= J(s0, π

u),
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where J(s0, π
u) is the quotient of the induced representation I(s0, π

u) obtained as the image of the
residue of the standard intertwining operator in the constant term of Eisenstein series. According
to [10], the filtration quotient is isomorphic to

Aπ/Lπ
∼= I(s0, π

u)⊗ S(ǎ∞,C).

See Sect. 5 for more details concerning constant terms and analytic properties of Eisenstein series
for rank one unitary groups.

3. Cohomological representations of U(n, 1) – various parameterizations

In this section we recall the classification of cohomological unitary representations of the real Lie
group U(n, 1), the archimedean component of the unitary group U(A), introduced in Sect. 1. In the
whole section, we are dealing only with the archimedean component, so we simplify the notation
accordingly. In particular, we suppress the subscript ∞ in the whole section.

Unitary cohomological representations of a real connected semisimple Lie group (with finite
center) are classified in [34], up to infinitesimal equivalence. Their classification, in terms of certain
Aq(λ), is made explicit for unitary groups in [33, Sect. 2], [1, Chap. 5], and in the special case of
rank one in [4, Sect. VI.4]. We have to adjust the parameterizations given there to the needs of the
actual construction of Eisenstein cohomology classes attached to cuspidal representations of type
(π,w), with w ∈ WP0 a minimal coset representative.

3.1. Classification of Aq. Let G = U(n, 1) be the unitary real Lie group of signature (n, 1). We
fix the basis of the underlying hermitian space in such a way that the matrix of the hermitian form
is (

In 0
0 −1

)
,

where In is the n × n identity matrix. We let K be the maximal compact subgroup U(n) × U(1)
of U(n, 1). Let g0, resp. k0, be the real Lie algebra of G, resp. K. Then, g0 = u(n, 1), and

k0 =

{(
X1 0
0 x2

)
: X1 ∈ u(n), x2 ∈ u(1)

}
∼= u(n)⊕ u(1).

Let g, resp. k, be the complexification of g0, resp. k0. We have g = gl(n + 1,C), and k is the
subalgebra of block diagonal matrices with blocks of size n×n and 1×1. Let θK denote the Cartan
involution, and

g0 = k0 ⊕ p0

be the corresponding Cartan decomposition, where

p0 =

{(
0 Y

−Y ∗ 0

)
: Y ∈ Mn,1(C)

}
,

with Y ∗ the conjugate transpose of the matrix Y . Then

p =

{(
0 Y
Z 0

)
: Y ∈ Mn,1(C), Z ∈ M1,n(C)

}
is the complexification of the real Lie algebra p0.

Given any (g,K)-module Y , we denote by H∗(g,K;Y ) the relative Lie algebra cohomology of
Y (with respect to the trivial coefficient system), as defined in [4, Chap. I]. We will now make
explicit the classification of unitary (g,K)-modules with non-zero relative Lie algebra cohomology.
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In the case of trivial coefficients, the main result of [34] is that the unitary (g,K)-modules with
non-zero relative Lie algebra cohomology are parameterized by the θK-stable parabolic subalgebras
of g. Given such subalgebra q, the corresponding (g,K)-module is denoted by Aq.

According to [33, Thm. 2.4], the θK-stable parabolic subalgebras q are in one-to-one correspon-
dence with ordered partitions of n into r non-negative integers of the form

n = 1 + · · ·+ 1︸ ︷︷ ︸
i−1

+(n− r + 1) + 1 + · · ·+ 1︸ ︷︷ ︸
r−i

,

where r ≤ n+1, and n−r+1 is at the ith place in the sum. Given such partition with 1 ≤ r ≤ n+1
and 1 ≤ i ≤ r, the corresponding θK-stable parabolic subalgebra q of g is given as

q = l⊕ u,

where l is the Levi subalgebra, and q consists of all matrices of the form

∗ . . . ∗ ∗ . . . . . . ∗ ∗ . . . . . . ∗ ∗
. . .

. . .
...

...
. . . . .

. ...
...

. . . . .
. ...

...
. . . ∗

... . .
. . . .

...
... . .

. . . .
...

...

∗ . . . . . . ∗ ∗ . . . . . . ∗ ∗
∗ . . . . . . ∗
...

. . . . .
. ...

... . .
. . . .

...

∗ . . . . . . ∗
∗ . . . ∗
. . .

. . .
...

. . . ∗

∗ . . . . . . ∗



∈ g,

i− 1

n− r + 1

r − i

1

i− 1 n− r + 1 r − i 1

where squares and rectangles are parts of l and ∗’s are parts of u. Empty cells represent zeros. The
numbers on the right-hand side and below the matrix indicate the sizes of blocks. Note that the
Levi subalgebra l is the complexification of a real Lie algebra

l0 ∼= u(1)⊕ · · · ⊕ u(1)⊕ u(n− r + 1, 1),

where u(1) appears r − 1 times.



EISENSTEIN SERIES FOR RANK ONE UNITARY GROUPS 13

3.2. Cohomology of Aq. According to [34, p. 58], Aq is discrete series, resp. tempered, if and
only if l ⊂ k, resp. [l, l] ⊂ k. Hence, in our case, Aq is discrete series if and only if q corresponds to
an ordered partition of n into r = n + 1 pieces, and depending on the position 1 ≤ i ≤ n + 1 of
n+ r− 1 = 0 in that partition we obtain n+1 discrete series with non-zero cohomology. However,
these are of no interest here, because discrete series representations are never local components of
non-cuspidal square-integrable automorphic representations, hence, cannot contribute to Eisenstein
cohomology. For completeness, we mention here that the cohomology

Hq(g,K;Aq) =

{
C, if q = n,
0, otherwise,

for all discrete series Aq.
The remaining Aq, that is, those corresponding to partitions of n with 1 ≤ r ≤ n, are non-

tempered. If q corresponds to the partition of n given by 1 ≤ r ≤ n and 1 ≤ i ≤ r, according to
[34, Thm. 3.3], the cohomology

Hq(g,K;Aq) ∼= Hq−R(q)(l, l ∩ k;C),
where C is the trivial module, and, given q, R(q) is the dimension of u ∩ p. It is clear, from the
description of q, that R(q) = r− 1. In fact, it is the number of ∗’s outside of the n×n block in the
left upper corner. This last cohomology can be calculated, for example, using [33, Cor. 2.16]. We
obtain

Hq(g,K;Aq) =

{
C, if q = r − 1 + 2j with 0 ≤ j ≤ n− r + 1,
0, otherwise.

Note that the non-vanishing degrees are symmetric with respect to the middle degree q = n, that
is, half the dimension of the unipotent radical of the only proper parabolic subgroup of U(n, 1).

3.3. Langlands data for Aq. We have recalled the classification of the (g,K)-modules Aq with
non-zero cohomology (with respect to trivial coefficients), and the calculation of their cohomology
in cases that matter for describing the Eisenstein cohomology. However, in order to relate them to
possible poles of Eisenstein series, it is convenient to know the standard module which Aq is the
Langlands quotient of (cf. [21]). We follow [1, Chap. 5].

The unitary group G = U(n, 1) is of rank one, so it has a unique conjugacy class of proper
parabolic subgroups. Let P be a representative of that class. Write P = MN for the Levi
decomposition of P , where M is the Levi factor and N the unipotent radical. Then M ∼= C× ×
U(n− 1), where U(n− 1) is the compact unitary group in n− 1 variables.

Given Aq with q corresponding to a pair (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r, we now specify a
complex number s′, with Re(s′) > 0, a unitary character η of C×, and an irreducible representation
τ of U(n− 1), such that Aq is the Langlands quotient of the induced representation

IndGP (η| · |s
′ ⊗ τ),

where |z| =
√
z · z, for z ∈ C, is the non-normalized2 absolute value on C. The parabolic induction

is normalized. The condition Re(s′) > 0 assures that this induced representation is a standard
module. According to the construction in [1, Chap. 5], the exponent s′ is the positive integer

s′ = n− r + 1,

2We always write |z| for the non-normalized absolute value on C. The normalized absolute value is denoted either
by |z|C or |z|∞. We have |z|C = |z|∞ = |z|2 for z ∈ C.
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and the unitary character η is given by the assignment

η(z) =

(
z

|z|

)r−2i+1

, for z ∈ C.

The irreducible representations of the compact unitary group U(n−1) are classified by their highest
weights. The highest weight for U(n − 1) is given by a sequence of integers (λ1, . . . , λn−1) such
that λ1 ≥ · · · ≥ λn−1. The representation τ is the representation of U(n− 1) corresponding to the
highest weight

µ = (1, . . . , 1︸ ︷︷ ︸
i−1

, 0, . . . , 0︸ ︷︷ ︸
n−r

,−1, . . . ,−1︸ ︷︷ ︸
r−i

).

3.4. Kostant representatives for Aq. For future reference, we determine now explicitly the
minimal coset representatives, which produce the Langlands data for Aq, as in [29] and [22, Sect. 3].
Their lengths are required when computing Eisenstein cohomology in Sect. 4.

Let W be the absolute Weyl group of U(n, 1). It is the Weyl group of the root system of the
complexified Lie algebra g = gl(n + 1,C) with respect to the diagonal Cartan subalgebra t. The
group W is isomorphic to the symmetric group Sn+1. Let WP be the absolute Weyl group of the
Levi factor M . Since the complexified Lie algebra m of M is block diagonal, with blocks of size
1 × 1, (n − 1) × (n − 1) and 1 × 1 along the diagonal, we have WP

∼= Sn−1. As in Sect. 2.1, let
WP be the set of minimal coset representatives for WP \W . Note that this is the same as WP0 of
Sect. 2.1.

Let fj , for j = 1, . . . , n+ 1, denote the projection of t on the jth coordinate. Then, the fj form
the basis of the dual ť of t. The action of W on ť is by permutation of this basis. In a similar way as
in [13, Sect. 3] and [12, Sect. 7], we may parameterize the set WP of Kostant representatives by two
integers. Namely, if we write (s1, . . . , sn+1) for elements of ť in the basis (f1, . . . , fn+1), the action
of a Kostant representative w ∈ WP is determined by a pair of indices indicating which coordinates
are moved to the first and the last place in the (n + 1)-tuple. The remaining coordinates should
remain in the original order, because the identity is the shortest element in WP , and we need the
minimal coset representative.

Thus, we parameterize WP by pairs of integers (k, l) such that 1 ≤ k, l ≤ n + 1 and k ̸= l.
The action of the Kostant representative wk,l ∈ WP , parameterized by (k, l), on ť is given by the
formula

wk,l(s1, . . . , sn+1) =

{
(sk, s1, . . . , ŝk, . . . , ŝl, . . . , sn+1, sl), if k < l,
(sk, s1, . . . , ŝl, . . . , ŝk, . . . , sn+1, sl), if k > l,

where ŝj indicates that sj is removed from its natural position in the sequence. As explained in
Sect. 2.1 (cf. [22, Sect. 3]), the evaluation point swk,l

and the highest weight µwk,l
, attached to

wk,l ∈ WP , are given by the formulas

swk,l
= −wk,l(ρ)

∣∣
ǎ
,

µwk,l
= wk,l(ρ)− ρ,

where ǎ is the dual of the Lie algebra of a maximal split torus in the center of M , and

ρ =
(n
2
,
n

2
− 1, . . . ,−n

2

)
∈ ť

is the half-sum of positive roots for the root system of g with respect to t.



EISENSTEIN SERIES FOR RANK ONE UNITARY GROUPS 15

By a direct calculation, using the formula for the action of wk,l, we obtain that the Langlands
data for Aq, given by 1 ≤ r ≤ n and 1 ≤ i ≤ r, is obtained for the Kostant representative wk,l such
that

k = i+ n− r + 1,

l = i.

In particular, since n−r+1 > 0, only wk,l with k > l appear as Kostant representatives providing the
Langlands data for Aq. In what follows, we need the length ℓ(wk,l) of such Kostant representatives.
It is the length of the corresponding permutation. The length is

ℓ(wk,l) = n+ k − l − 1 = 2n− r,

because we need k−1 transpositions to put sk in front, and then (n+1)−l−1 = n−l transpositions
to put sl to the back. Note that −1 in the second part comes from the condition k > l, so that sk
has been already moved, when we start moving sl.

We remark that the Langlands data for all Aq are obtained from the Kostant representatives
wk,l with k > l. The remaining Kostant representatives, namely those with k < l, cannot provide
additional contributions to Eisenstein cohomology because their evaluation point would be negative.
The Langlands data for Aq, written in terms of the corresponding wk,l ∈ WP with 1 ≤ l < k ≤ n+1,
are given as

s′ = ℓ(wk,l) + 1− n = k − l,

η(z) =

(
z

|z|

)n−(k+l)+2

, for z ∈ C,

and

µ = (1, . . . , 1︸ ︷︷ ︸
l−1

, 0, . . . , 0︸ ︷︷ ︸
k−l−1

,−1, . . . ,−1︸ ︷︷ ︸
n−k+1

)

is the highest weight of τ .
Since we will formulate the final result in terms of wk,l and its length, let us rewrite the cohomol-

ogy of Aq in these terms. Let Aq correspond to the Weyl group element wk,l with 1 ≤ l < k ≤ n+1.
Then,

H∗(g,K;Aq) =

{
C, if q = ℓ(wk,l) + 1− 2j with 0 ≤ j ≤ ℓ(wk,l) + 1− n,
0, otherwise.

In particular, the set of degrees in which the contribution is non-trivial is symmetric around the
middle degree q = n.

3.5. Relation between our description of Aq and the one given in [4]. We finish this
section with the account of the relationship between our description of Aq, which are not discrete
series, in terms of 1 ≤ r ≤ n and 1 ≤ i ≤ r as in [1, Chap. 5], and that of [4, Sect. VI.4]. In the
latter, these Aq are denoted Ji′,j′ , parameterized by pairs of integers (i′, j′) such that i′, j′ ≥ 0 and
i′ + j′ ≤ n− 1. Given a representation Aq, attached to the pair (r, i), the relation is given by

i′ = i− 1,

j′ = r − i,
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that is, Aq = Ji−1,r−i. The Kostant representative giving this Aq is wk,l ∈ WP , where

k = n+ 1− j′,

l = i′ + 1.

Then

ℓ(wk,l) = 2n− i′ − j′ − 1

is the length of wk,l in terms of the parametrization in [4, Sect. VI.4].

4. Eisenstein cohomology – non-vanishing conditions and filtration quotients

We are now ready to compute explicitly the summands

H∗(g∞,K∞;Aπ)

in the decomposition of Eisenstein cohomology along the cuspidal support (see Sect. 2.1). The
strategy is to use the Franke filtration and the long exact sequence in cohomology induced by the
filtration, in a way first used in [11] for the split symplectic group of rank two over a totally real
number field. The final results depend on the position of poles of Eisenstein series with the given
cuspidal support. This topic is discussed in Sect. 5.

4.1. Necessary conditions for non-vanishing. We start by reducing the possible cuspidal
supports that may contribute to cohomology. By the construction of Eisenstein cohomology classes
in [22, Sect. 3], as already explained in Sect. 2.1, the cohomology space

H∗(g∞,K∞;Aπ)

is trivial, except possibly if the cuspidal support π satisfies certain compatibility conditions. These
necessary conditions for non-vanishing of the cohomology of Aπ are already made explicit in
Sect. 3.4.

It turns out, writing π ∼= χ| · |s0IF ⊗ σ as in Sect. 2.1, where χ is a unitary Hecke character of

IF and σ a unitary cuspidal automorphic representation of U ′(A), and s0 > 0, that the necessary
conditions for non-vanishing imply for the archimedean components χ∞ = η and σ∞ = τ , and the
evaluation point3 s0 = s′/2, where the possible data η, τ and s′ are those given in Sect. 3.3. In
particular, the representation of U(n, 1), parabolically induced from the archimedean component
π∞, is a standard module, whose Langlands quotient is one of Aq.

Therefore, in what follows, we consider only cuspidal supports π satisfying these necessary condi-
tions. As already mentioned in Sect. 2.1, given a cuspidal support π, there is a unique wk,l ∈ WP0 ,
with 1 ≤ l < k ≤ n + 1, giving these necessary conditions, that is, such that there are non-trivial
cohomology classes of type (π,wk,l), which form the launch pad for possible Eisenstein cohomology
classes. This also determines uniquely the parameters 1 ≤ r ≤ n and 1 ≤ i ≤ r for Aq. All the
results in this section are stated in terms of representatives wk,l ∈ WP0 , with 1 ≤ l < k ≤ n+1, as
well as the parameters (r, i), with 1 ≤ r ≤ n and 1 ≤ i ≤ r, for Aq.

3The factor of 1
2
appears here due to different normalizations of absolute value on C. The local component | · |∞

of the adèlic absolute value | · |IF is not the same as the absolute value | · | used in Sect. 3.3. In fact, |z|∞ = |z|2, for
z ∈ C.
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4.2. Cohomology of filtration quotients. Let π be a cuspidal automorphic representation of
M0(A), satisfying the necessary conditions for non-vanishing with the minimal coset representative
wk,l ∈ WP0 , where 1 ≤ l < k ≤ n+ 1. Write π ∼= χ| · |s0IF ⊗ σ. According to Sect. 4.1, let 1 ≤ r ≤ n
and 1 ≤ i ≤ r be the parameters of the representation Aq, which appears as the Langlands quotient
of the representation parabolically induced from π∞ at the archimedean place.

Assume first that the Eisenstein series E(fs, g) attached to πu ∼= χ⊗ σ has a pole at s = s0 > 0.
Then, the space Lπ of square-integrable forms in Aπ is non-trivial, and as already mentioned in
Sect. 2.2, the Franke filtration of Aπ is the two-step filtration Lπ ⊂ Aπ. In this case,

Lπ
∼= J(s0, π

u) ∼= J∞(s0, π
u)⊗ Jfin(s0, π

u),

where J(s0, π
u) is the unique irreducible quotient of the induced representation I(s0, π

u), and we
have decomposed it into the archimedean and non-archimedean part. Note that in our setting
J∞(s0, π

u) = Aq for q parameterized by 1 ≤ r ≤ n and 1 ≤ i ≤ r. Hence, after factoring out the
non-archimedean part Jfin(s0, π

u), the cohomology of Lπ is already calculated in Sect. 3.2. The
final result is the following.

Proposition 4.1. Let π ∼= χ| · |s0IF ⊗ σ be a cuspidal automorphic representation of the Levi fac-

tor M0(A) satisfying the necessary non-vanishing conditions with the minimal coset representative
wk,l ∈ WP0, where 1 ≤ l < k ≤ n + 1, and with parameters (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r.
Assume that the Eisenstein series attached to πu ∼= χ⊗ σ has a pole at s = s0 > 0. Let Lπ be the
space spanned by the residues. Then,

Hq(g∞,K∞;Lπ) =

{
Jfin(s0, π

u), if q = ℓ(wk,l) + 1− 2j with 0 ≤ j ≤ ℓ(wk,l) + 1− n,
0, otherwise,

=

{
Jfin(s0, π

u), if q = r − 1 + 2j with 0 ≤ j ≤ n− r + 1,
0, otherwise,

as a U(Af )-module.

As explained in Sect. 2.2, the quotient Aπ/Lπ of the Franke filtration is isomorphic to

Aπ/Lπ
∼= I(s0, π

u)⊗ S(ǎ∞,C).

This holds even if the Eisenstein series attached to πu is holomorphic at s = s0. In that case Lπ

is trivial, and the full space Aπ is isomorphic to that representation. Our next task is to compute
the cohomology of the induced representation on the right-hand side.

Proposition 4.2. Let π ∼= χ| · |s0IF ⊗ σ be a cuspidal automorphic representation of the Levi fac-

tor M0(A) satisfying the necessary non-vanishing conditions with the minimal coset representative
wk,l ∈ WP0, where 1 ≤ l < k ≤ n + 1, and with parameters (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r.
Let Lπ be the (possibly trivial) space spanned by the residues of the Eisenstein series attached to
πu ∼= χ⊗ σ at s = s0 > 0. Then, the cohomology space

Hq(g∞,K∞;Aπ/Lπ) =

{
Ifin(s0, π

u), if q = ℓ(wk,l) = 2n− r,
0, otherwise,

as a U(Af )-module.

Proof. We follow closely the calculation in [11]. According to the description of the Franke filtration,
we must calculate the cohomology of

I(s0, π
u)⊗ S(ǎ∞,C).
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The induced representation I(s0, π
u) may be decomposed

I(s0, π
u) ∼= I∞(s0, π

u)⊗ Ifin(s0, π
u)

into the archimedean and the non-archimedean part. Factoring out the non-archimedean part in
cohomology, reduces the calculation to finding the dimension of the cohomology space

Hq
(
g∞,K∞; I∞(s0, π

u)⊗ S(ǎ∞,C)
)
.

Let wk,l ∈ WP0 be the Kostant representative, which determines the archimedean component
πu
∞ and the evaluation point s0, by the necessary non-vanishing conditions, as in Sect. 3.4. Then,

according to [4, Thm. III.3.3],

Hq
(
g∞,K∞; I∞(s0, π

u)⊗ S(ǎ∞,C)
) ∼= Hq−ℓ(wk,l)

(
m,K∞ ∩M ;πu

∞ ⊗ | · |s0 ⊗ S(ǎ∞,C)⊗ Fµwk,l

)
,

where ℓ(wk,l) is the length of wk,l, and Fµwk,l
the finite-dimensional representation of 0M of highest

weight µwk,l
(see Sect. 3.3). Then, applying the Künneth rule to the decomposition M = 0MA,

and using [6, p. 256], we obtain

Hq
(
g∞,K∞; I∞(s0, π

u)⊗ S(ǎ∞,C)
) ∼= Hq−ℓ(wk,l)

(
0m,K∞ ∩ 0M ;πu

∞ ⊗ Fµwk,l

)
,

and by compatibility of the cuspidal support π with the Kostant representative wk,l, the last
cohomology space is one-dimensional in degree zero, and vanishes in all other degrees. Since the
length ℓ(wk,l) = 2n − r, in terms of parameters r and i, is given in Sect. 3.4, the proposition
follows. �

4.3. Full Eisenstein cohomology. Having calculated the cohomology of the quotients of the
Franke filtration, we are now in position to determine the full Eisenstein cohomology. As in Sect. 2.1,
the decomposition along the cuspidal support, gives rise to

H∗
Eis(U) =

⊕
π

H∗(g∞,K∞;Aπ),

where the sum is over all cuspidal supports π compatible with the trivial coefficients. As already
explained above, every such π gives rise to a minimal coset representative wk,l ∈ WP0 , where
1 ≤ l < k ≤ n + 1, and a pair (r, i) of parameters 1 ≤ r ≤ n and 1 ≤ i ≤ r, which determine
π∞ uniquely. We fix one such π and calculate the corresponding summand in the Eisenstein
cohomology.

Theorem 4.3. Let U be a unitary group in n+1 variables defined over Q and of Q-rank one. Let
P0 = M0N0 be the Levi decomposition of a representative of the unique conjugacy class of parabolic
Q-subgroups of U . Let π ∼= χ| · |s0I ⊗σ be a cuspidal automorphic representation of M0(A), satisfying
the necessary conditions for non-vanishing with the minimal coset representative wk,l ∈ WP0, where
1 ≤ l < k ≤ n+1, and with parameters (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r. Then, the summand
in the Eisenstein cohomology with support in π is given as follows.

A. If the Eisenstein series attached to πu ∼= χ⊗σ is holomorphic at s = s0, then the cohomology
space

Hq(g∞,K∞;Aπ) ∼=
{

Ifin(s0, π
u), if q = ℓ(wk,l) = 2n− r,

0, otherwise,

as a U(Af )-module.
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B. If the Eisenstein series attached to πu ∼= χ⊗σ has a pole at s = s0, then the cohomology space

Hq(g∞,K∞;Aπ) ∼=
Hq

(sq)(g∞,K∞;Aπ) ∼= Jfin(s0, π
u), if q = ℓ(wk,l)− 1− 2j with 0 ≤ j ≤ ℓ(wk,l)− n,

non-trivial submodule of Ifin(s0, π
u), if q = ℓ(wk,l),

Hq
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin(s0, π

u), if q = ℓ(wk,l) + 1,

0, otherwise,
Hq

(sq)(g∞,K∞;Aπ) ∼= Jfin(s0, π
u), if q = r − 1 + 2j with 0 ≤ j ≤ n− r,

non-trivial submodule of Ifin(s0, π
u), if q = 2n− r,

Hq
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin(s0, π

u), if q = 2n− r + 1,

0, otherwise,

as a U(Af )-module, where the quotient in degree q = ℓ(wk,l)+1 = 2n−r+1 is possibly trivial.
In particular, the map in cohomology, induced by the inclusion Lπ ↪→ Aπ, is injective, except
possibly in degree q = ℓ(wk,l) + 1 = 2n− r + 1.

Proof. In case A there is nothing to prove, as the cohomology of Aπ has already been computed
in Proposition 4.2. In case B, the proof just uses the long exact sequence in cohomology, obtained
from the short exact sequence

0 −→ Lπ −→ Aπ −→ Aπ/Lπ −→ 0

given by the Franke filtration. Using Propositions 4.1 and 4.2, the long exact sequence can be
written explicitly.

In all degrees except q = ℓ(wk,l) and q = ℓ(wk,l) + 1 we immediately get the result. For the
remaining two degrees we get the exact sequence

0 −→ Hℓ(wk,l)(g∞,K∞;Aπ) −→ Ifin(s0, π
u) −→ Jfin(s0, π

u) −→ Hℓ(wk,l)+1(g∞,K∞;Aπ) −→ 0.

It is clear that Hℓ(wk,l)(g∞,K∞;Aπ) embeds into Ifin(s0, π
u), and that Jfin(s0, π

u) is mapped sur-

jectively onto Hℓ(wk,l)+1(g∞,K∞;Aπ), so that Hℓ(wk,l)+1(g∞,K∞;Aπ) is a quotient of Jfin(s0, π
u).

Suppose now that Hℓ(wk,l)(g∞,K∞;Aπ) is trivial. This means that the map Ifin(s0, π
u) →

Jfin(s0, π
u) is injective. But we know that Jfin(s0, π

u) is a proper quotient of Ifin(s0, π
u), as it is

the non-archimedean part of Lπ, obtained as the image of the intertwining operator in the residue
of the constant term of the Eisenstein series at the pole. This is a contradiction, showing that the
cohomology space in degree q = ℓ(wk,l) is indeed non-trivial. �

5. On the analytic behavior of Eisenstein series

The explicit description of Eisenstein cohomology for the unitary group of relative rank one,
obtained in Theorem 4.3, is given in terms of analytic properties of the Eisenstein series. In this
section we study those properties in some relevant cases.

Having in mind cohomological applications, we work in this section with the unitary groups of
Q-rank one associated to imaginary quadratic extensions of Q, as in Theorem 4.3. However, all
the results regarding the analytic behavior of Eisenstein series hold, with the same proofs, for a
more general setting of unitary groups of relative rank one obtained from any imaginary quadratic
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extension of algebraic number fields. The reason for our restriction is that the description of
cohomology is less technical and more clear when working over Q, and the general case may be
approached by the same methods and using the Küneth rule, although the computations and the
final result are more tedious.

Let πu ∼= χ⊗σ be a cuspidal automorphic representation of the Levi factor M0(A) ∼= IF ×U ′(A),
where χ is a unitary Hecke character of IF , and σ a cuspidal automorphic representation of U ′(A).
As in Sect. 2.2, for s ∈ C a complex parameter, let

I(s, πu) = Ind
U(A)
P0(A)

(
πu ⊗ | · |sIF

)
= Ind

U(A)
P0(A)

(
χ| · |sIF ⊗ σ

)
be the induced representation. Given a section fs of induced representations, let E(fs, g) be the
Eisenstein series associated to πu, as introduced in Sect. 2.2. Our aim in this section is to determine
the poles of E(fs, g) at s such that Re(s) > 0, whose residues may possibly contribute to Eisenstein
cohomology, under certain simplifying assumptions on πu which are specified below.

5.1. Constant term of Eisenstein series. According to [25, Chapter 1], the parabolic subgroup
P0 is self-associate. From the general theory of Eisenstein series (cf. [20], [27]), the poles of the
Eisenstein series E(fs, g) are the same as the poles of its constant term E(fs, g)P0 along the parabolic
subgroup P0. The constant term can be expressed as

E(fs, g) =

∫
N0(Q)\N0(A)

E(fs, ng)dn

= fs(g) +M(s, πu, w)fs(g),

where dn is the appropriate measure on the unipotent radical of P0 and M(s, πu, w) is the standard
intertwining operator on the induced representation I(s, πu), with w the unique non-trivial element
of the relative Weyl group of the unitary group U . Thus, the poles of E(fs, g) coincide with the
poles of the standard intertwining operator M(s, πu, w)fs.

Let S be the finite set of places of Q, containing the archimedean place, and such that, for a
non-archimedean place p of Q, we have p ̸∈ S if and only if the following three assertions hold

• the extension F/Q is not ramified over p,
• the group U , viewed as an algebraic group over Qp, is quasi-split over Qp,
• the representation πu is unramified at p.

Let M(s, πu
p , w) be the local standard intertwining operator at a place p of Q. For p ̸∈ S, let

f◦
p,s be the unique unramified vector in the local induced representation I(s, πu

p ) normalized by the
condition that it takes value one on the identity. The action of M(s, πu

p , w) on the normalized
unramified vector f◦

p,s is calculated in [19]. It is given by a ratio of L-functions

M(s, πu
p , w)f

◦
p,s = r(s, πu

p , w)f̃
◦
p,−s·,
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where

r(s, πu
p , w) =



L(s, πu
p , r1)L(2s, χp, rA)

L(1 + s, πu
p , r1)L(1 + 2s, χp, rA)

, for n+ 1 even and n > 1,

L(s, πu
p , r

′
1)L(2s, χp, r

′
A)

L(1 + s, πu
p , r

′
1)L(1 + 2s, χp, r′A)

, for n+ 1 odd,

L(2s, χp, rA)

L(1 + 2s, χp, rA)
, for n = 1.

In the above, f̃◦
p,−s is the unique normalized unramified vector in the induced representation

I(−s, w(πu
p )), and w(πu

p ) is the conjugate of πu
p by w. The automorphic L-functions appearing

in the formula are the Asai (resp. twisted Asai) L-function L(s, χp, rA) (resp. L(s, χp, rA)) at-
tached to the character χ, and the automorphic L-functions of Rankin–Selberg type L(s, πu

p , r1)
and L(s, πu

p , r
′
1) attached to the pair χ and σ, where the finite-dimensional representations r1 and

r′1 are the other irreducible summands in the decomposition of the adjoint action of the L-group of
the Levi factor on the Lie algebra of the L-group of the unipotent radical of P0. See [8] for more
details.

The unramified calculation motivates a definition of normalized intertwining operators. For
p ̸∈ S, we define the local normalized intertwining operator N(s, πu

p , w) by the relation

M(s, πu
p , w) = r(s, πu

p , w)N(s, πu
p , w).

Let

rS(s, πu, w) =
∏
p ̸∈S

r(s, πu
p , w).

The product converges in some right half-plane, and admits analytic continuation to a meromorphic
function on C. It is given in terms of partial L-functions.

For a decomposable section fs = ⊗fp,s of the induced representation I(s, πu), let T (f) be a finite
set of places, containing all the places in S, and such that for all p ̸∈ T (f) we have fp,s = f◦

p,s. The
action of the standard intertwining operator on a decomposable section f decomposes over places
of Q. Hence, we have

M(s, πu, w)fs(g) =

rS(s, πu, w) ·
[
⊗p∈SM(s, πu

p , w)fp,s(gp)⊗p∈T (f)\S N(s, πu
p , w)fp,s(gp)⊗p̸∈T (f) f̃

◦
p,−s

]
. (⋆)

Having this expression for the action of the intertwining operator, we are ready to relate the poles
of the Eisenstein series E(fs, g) for s such that Re(s) > 0 to the poles of the factor rS(s, πu, w)
involving partial automorphic L-functions.

5.2. Poles of Eisenstein series I – relation to automorphic L-functions. We now study the
poles of Eisenstein series E(fs, g) associated to πu, under the simplifying assumption on ramified
non-archimedean places. More precisely, we assume that the local component πu

p of πu is a tempered
representation for all non-archimedean places p ∈ S. Under this assumption, the following theorem
relates the relevant poles of Eisenstein series to those of the normalizing factor.

Theorem 5.1. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
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such that σ is cohomological at the archimedean place. Suppose that σp is tempered for all non-
archimedean places p ∈ S. Then, the poles of the Eisenstein series E(fs, g) associated to πu at s
such that Re(s) > 0, coincide with the poles of the normalizing factor rS(s, πu, w).

Proof. Looking at the formula (⋆), proving the theorem amounts to proving that, for all s such
that Re(s) > 0, the expression in the square-bracket is holomorphic for all fs, and that there is a
function fs for which it is non-zero. This means that one should prove that

• the local intertwining operator M(s, πu
p , w) at every place p ∈ S is holomorphic and not

identically vanishing for Re(s) > 0, and
• the local normalized intertwining operator N(s, πu

p , w) at every place p ̸∈ S is holomorphic
and not identically vanishing for Re(s) > 0.

Consider first a place p ∈ S. If p is the archimedean place, the group U ′(Qp) = U(n − 1) is
compact, so σp is a discrete series. If p is non-archimedean, then by the assumption of the theorem,
σp is tempered. In any case, the induced representation I(s, πu

p ) for s such that Re(s) > 0 is a
standard module of the Langlands classification. Since M(s, πu

p , w) is the long intertwining operator
acting on I(s, πu

p ), it is holomorphic and non-vanishing for Re(s) > 0, as its image is isomorphic to
the Langlands quotient.

Now let p ̸∈ S be a place of Q that splits in F . Then σp is a unitary unramified irreducible
representation of GLn−1(Qp) and I(s, πu

p ) is a representation of GLn+1(Qp). Thus, we may apply
[26, Prop. I.10] to show that N(s, πu

p , w) is holomorphic and non-vanishing for Re(s) > 0.
It remains to consider the case of a place p ̸∈ S that does not split in F . To do that, we first

need to understand a weak base change lift of σ to a representation of GLn−1(AF ). The most
precise result is due to Shin in the appendix to [9], which is a slight improvement of the work of
Morel [28]. The result we need is also contained in Labesse [18, Cor. 5.3], because in our case the
condition (∗) in loc. cit. is satisfied, although he makes the assumption that the base field is not Q.
According to [9, Thm. A.1] of Shin, since σp is cohomological at the archimedean place, there exists
an automorphic representation Σ of GLn−1(AF ), which is a weak base change of σ to GLn−1(AF )
given as a local base change at all p ̸∈ S and all split non-archimedean places p ∈ S. Moreover,
Σ is conjugate self-dual and isomorphic to an isobaric sum Σ1 � · · · � Σd of conjugate self-dual
representations Σi in the discrete spectrum of (smaller) general linear groups.

For p ̸∈ S which does not split in F , we look at the Satake parameters of the local component
ΣP of Σ, at the place P of F lying above p. By the classification of the discrete spectrum of the
general linear group [26], each Σi is the unique irreducible quotient of an induced representation of
the form

Ind
GLmi (AF )

Qi(AF )

(
Πi| det |

li−1

2
IF ⊗Πi|det |

li−3

2
IF ⊗ · · · ⊗Πi|det |

− li−1

2
IF

)
where

• mi = kili,
• Qi is the standard parabolic subgroup of GLmi with the Levi factor isomorphic to a product
GLki × · · · ×GLki of li copies of GLki ,

• Πi is a cuspidal automorphic representation of GLki(AF ).

For a non-split p ̸∈ S, the local component Πi,P is a unitary generic unramified representation of
GLmi(FP). Hence, by [32] and [35], it is a fully induced representation of the form

Πi,P
∼= Ind

GLki
(FP)

Bki
(FP)

(
⊗j(ηj | |αj ⊗ ηj | |−αj )⊗j′ η

′
j′
)
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where Bki is a Borel subgroup of GLki , the characters ηj and η′j′ of F
×
P are unitary and unramified,

and 0 < αj < 1/2. Hence, the Satake parameters of ΣP are given by sequences of characters of the
following form

η| |α+
l−1
2 , . . . , η| |α−

l−1
2 ,

where η is a unitary unramified character of F×
P , l a positive integer, and |α| < 1/2.

Since ΣP is the unramified base change of σp, using [23, Sect. 4], we determine the Satake

parameters of σp. They consist of sequences of characters of F×
P of the following forms:

• η| |
1
2
+α, . . . , η| |

l−1
2

+α, with |α| < 1/2;

• η| |α, . . . , η| |
l−1
2

+α, with 0 ≤ α < 1/2;

• η| |1−α, . . . , η| |
l−1
2

−α, with 0 ≤ α < 1/2;

where η is a unitary unramified character of F×
P .

On the other hand, as an irreducible unramified representation of U ′(Qp), by the Langlands
classification, σp is the unique irreducible subrepresentation of an induced representation of the
form

σp ↪→ Ind
U ′(Qp)
R(Qp)

(
µ1| |−s1 ⊗ · · · ⊗ µm| |−sm ⊗ τ

)
,

where R is the appropriate standard parabolic subgroup of U ′, viewed as a quasi-split Qp-group,
µi are unitary unramified characters of F×

P , τ is a tempered unramified representation of a smaller
quasi-split unitary group over Qp, and s1 ≥ s2 ≥ · · · ≥ sm > 0 are the non-zero exponents
appearing in the Satake parameters of σp, that is, the non-zero exponents appearing in the three
possible sequences listed above.

The induced representation

Ind
GL2(FP)

B(FP)

(
µ| |s ⊗ µ′| |s′

)
of GL2(FP), where B is a Borel subgroup of GL2, µ and µ′ unitary characters of F×

P and s, s′ ∈ R,
is reducible if and only if µ = µ′ and s− s′ ∈ {±1}. Hence, we may permute the characters in the
induced representation

Ind
U ′(Qp)
R(Qp)

(
µ1| |−s1 ⊗ · · · ⊗ µm| |−sm ⊗ τ

)
,

in such a way that we put together all the characters with the same unitary part and the exponent
in the same class modulo Z. The induced representation obtained in this way is isomorphic to the
original one, so it contains σp as the unique irreducible subrepresentation. Taking into account the
three possible sequences of characters that may appear in the Satake parameter of σp, a typical
block with the same unitary character and the exponents in the same class modulo Z is of the form

η| |−x−k ⊗ · · · ⊗ η| |−x−k︸ ︷︷ ︸
jk times

⊗ η| |−x−k+1 ⊗ · · · ⊗ η| |−x−k+1︸ ︷︷ ︸
jk−1 times

⊗ · · · ⊗ η| |−x ⊗ · · · ⊗ η| |−x︸ ︷︷ ︸
j0 times

,

where k ≥ 0 is an integer, x ∈ R is such that 0 < x ≤ 1, and j0 ≥ j1 ≥ · · · ≥ jk.
According to the Zelevinsky classification [35] of unramified representations of the p-adic general

linear group, the induced representation

Ind
GLl+1(FP)

B(FP)

(
η| |−x−l ⊗ η| |−x−l+1 ⊗ · · · ⊗ η| |−x

)
,
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where B is now a Borel subgroup of GLl+1, contains a unique irreducible subrepresentation. Since
η is unramified, this subrepresentation is unramified. It is called the Zelevinsky representation
attached to the segment [−x− l,−x] and η. We denote it by

J(η,−x− l,−x),

following [26].
Using the irreducibility criterion for Zelevinsky representations (cf. [35]), one may show that

the representation of the general linear group induced from a typical block as above contains as a
subrepresentation the representation induced from

Jk(η, x)⊗ · · · ⊗ Jk(η, x)︸ ︷︷ ︸
jk times

⊗ Jk−1(η, x)⊗ · · · ⊗ Jk−1(η, x)︸ ︷︷ ︸
jk−1−jk times

⊗ · · · ⊗ J0(η, x)⊗ · · · ⊗ J0(η, x)︸ ︷︷ ︸
j0−j1 times

,

where Jl(η, x) denotes J(η,−x− l,−x) for l = 0, . . . , k.
Combining such subrepresentations of all typical blocks we obtain a subrepresentation of the

form

Ind
U ′(Qp)
R′(Qp)

(J1 ⊗ · · · ⊗ Jm′ ⊗ τ) ↪→ Ind
U ′(Qp)
R(Qp)

(
µ1| |−s1 ⊗ · · · ⊗ µm| |−sm ⊗ τ

)
,

where R′ is a parabolic subgroup of U ′ viewed as a quasi-split Qp-group, and Jj are Zelevinsky
representations attached to segments given by sequences of characters of the three possible forms
as above appearing in the Satake parameters of σp. Note that for the second sequence and α = 0
the first character η| |α is unitary, so it is a part of cuspidal support of τ , and does not appear in
the segments for Jj ’s.

Since σp is the unique irreducible subrepresentation of the induced representation

Ind
U ′(Qp)
R(Qp)

(
µ1| |−s1 ⊗ · · · ⊗ µm| |−sm ⊗ τ

)
,

it is also a subrepresentation of

σp ↪→ Ind
U ′(Qp)
R′(Qp)

(J1 ⊗ · · · ⊗ Jm′ ⊗ τ) .

Thus, by induction in stages,

I(s, πu
p ) = Ind

U(Qp)
P (Qp)

(χP| |s ⊗ σp) ↪→ Ind
U(Qp)
P ′(Qp)

(χP| |s ⊗ J1 ⊗ · · · ⊗ Jm′ ⊗ τ) ,

where P ′ is the standard parabolic subgroup of U , viewed as a quasi-split Qp-group, with the Levi
factor isomorphic to F×

P ×MR′(Qp), where MR′ is the Levi factor of R′.

Finally, we are ready to prove the holomorphy and non-vanishing for s such that Re(s) > 0
of the normalized intertwining operator N(s, πu

p , w) acting on I(s, πu
p ) for non-split p ̸∈ S. Since

N(s, πu
p , w) is the restriction of the corresponding normalized operator acting on

Ind
U(Qp)
P ′(Qp)

(χP| |s ⊗ J1 ⊗ · · · ⊗ Jm′ ⊗ τ) ,

it is sufficient to show holomorphy on this larger induced representation. By Zhang’s lemma [36],
the non-vanishing follows from holomorphy. Thus, we may decompose the normalized operator
into a composition of intertwining operators, and prove the holomorphy of each of them. The
composition of holomorphic operators would again be holomorphic.
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We decompose the operator on the larger induced representation as follows.

I(s, πu
p ) ↪→ Ind (χP| |s ⊗ J1 ⊗ · · · ⊗ Jm′ ⊗ τ)

↓ (1)

Ind (J1 ⊗ · · · ⊗ Jm′ ⊗ χP| |s ⊗ τ)
N(s,πu

p ,w) ↓ ↓ (2)

Ind
(
J1 ⊗ · · · ⊗ Jm′ ⊗ χc

P| |−s ⊗ τ
)

↓ (3)

I(−s, w(πu
p )) ↪→ Ind

(
χc
P| |−s ⊗ J1 ⊗ · · · ⊗ Jm′ ⊗ τ

)
Here χc

P is the conjugate by the non-trivial Galois automorphism c of the complex conjugate χP

of the character χP. We must show that the three normalized operators, drawn as vertical arrows
denoted (1), (2) and (3), are holomorphic.

For (1) the holomorphy for Re(s) > 0 follows from the fact that Jj = J(η,−x− l,−x) for some
unitary character η, integer l ≥ 0 and 0 < x ≤ 1, so that

Jj = J(η,−l/2, l/2)| det |−x−l/2,

which is a twist of a unitary Zelevinsky representation J(η,−l/2, l/2) by a negative exponent
−x− l/2 < 0. Since we are interested in s with Re(s) > 0, we have Re(s− (−x− l/2)) > 0 and it
follows from [26, Prop. I.10] that the operator (1) is holomorphic.

The operator (2) is holomorphic because τ is tempered, χP unitary, and Re(s) > 0, so it acts on
the standard module of the Langlands classification.

For (3), we use [26, Lemme I.8]. First of all, if the segment of Jj is not linked (in the sense
of Zelevinsky [35]) to the segment of χP| |−s, which is just a singleton consisting of −s, then the
induction is irreducible and the normalized operator is holomorphic. Since the segments [−x−l,−x]
of all Jj end with −x ∈ [−1, 0⟩, and Re(−s) < 0, the linking cannot happen on that side of the
segment. But if the linking happens on the other side of the segment, that is, −s = −x − l − 1,
then the segment [−x − l,−x] dominates −s, so that condition (P) of [26, Sect. I.8] is satisfied.
Thus, by [26, Lemme I.8], the operator (3) is also holomorphic. �

The same conclusion as in Theorem 5.1 regarding the poles of Eisenstein series may be deduced
under a certain assumption on a weak base change of σ. Although this assumption is of different
nature, in fact it implies that σp is tempered for all non-archimedean places p ∈ S. This is explained
in the following corollary.

Corollary 5.2. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF ×U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
such that σp is cohomological at the archimedean place p. Suppose that U ′, viewed as an algebraic
Qp-group, is quasi-split over Qp for all non-archimedean p ∈ S, and that a weak base change of σ is
cuspidal. Then, the poles of the Eisenstein series E(fs, g) associated to πu at s such that Re(s) > 0,
coincide with the poles of the normalizing factor rS(s, πu, w).

Proof. As in the proof of Theorem 5.1, a weak base change Σ of σ to GLn−1(AF ) exists according
to Shin [9, Thm. A.1]. The additional assumption that Σ is cuspidal, and that U ′ is quasi-split at
all p ∈ S, allows us to apply [18, Th. 5.9] of Labesse. The conclusion is that the weak base change
Σ is in fact the strong base change of σ, that is, it is compatible with local base change at all p ∈ S.
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Moreover, Σ is cohomological at the archimedean place, and conjugate self-dual, i.e., Σ̃c = Σ, where

Σ̃ denotes the contragredient representation and c stands for conjugation by the non-trivial Galois
automorphism c. Recall that in our setting the condition (∗) of Labesse is satisfied because U ′(R)
is compact (cf. [18, Remarque 5.2]).

By the result of Caraiani [5, Thm. 1.2], generalizing the earlier work of Shin [31], the local
components of a cuspidal automorphic representation of GLn−1(AF ), which is conjugate self-dual
and cohomological at the archimedean place, are tempered at all non-archimedean places of F . As
Σ satisfies these requirements, we have that ΣP is tempered for all non-archimedean places P of
F .

For p a non-archimedean place of Q which splits in F , this means that σp is tempered. Since Σ
is a strong base change of σ, if p is a non-archimedean place of Q which does not split in F , then
ΣP is the local base change of σp, where P is the place of F lying above p. By the description of
the local base change, due to Mœglin [24], if the base change ΣP is tempered, then σp is necessarily
tempered as well. Thus, we have that σp is tempered for all non-archimedean places p of Q, so that
the assumptions of Theorem 5.1 are satisfied. �

Remark 5.3. In the corollary we may have assumed that there exists a strong base change of σ
to GLn−1(AF ), which is cuspidal, conjugate self-dual and cohomological at the archimedean place.
This would have been sufficient to apply the result of Caraiani, and prove the corollary. In fact,
our assumption implies these requirements by the work of Labesse.

5.3. Poles of Eisenstein series II – unitarity argument. In this subsection, we determine
certain regions of holomorphy for the Eisenstein series E(fs, g), using a unitarity argument, that
goes back to Shahidi and Kim, as in [14, Sect. 4.3], where the case of the Siegel parabolic subgroup
of a quasi-split unitary group was considered. The assumptions of the theorem below are slightly
more general than those in Corollary 5.2, as it is not assumed that the group U is quasi-split at
non-archimedean places p ∈ S.

Theorem 5.4. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A)
such that σ is cohomological at the archimedean place. Suppose that a weak base change of σ,
constructed in [5, Thm. A.1], is a cuspidal automorphic representation of GLn−1(AF ). Then the
Eisenstein series E(fs, g), associated to πu, is holomorphic at s with Re(s) ≥ 3/2.

Proof. The strategy of the proof is the following. If the Eisenstein series E(fs, g), associated to
πu, had a pole at s = s0 with Re(s0) > 0, then the residues would generate an automorphic
representation in the residual spectrum of U(A). In particular, this automorphic representation
would be unitary, and thus, its local components would be unitary at every place.

On the other hand, the space of residues is isomorphic to the image of some intertwining operator
acting on the induced representation I(s0, π

u). Therefore, if the Eisenstein series had a pole at
s = s0, then the induced representation I(s0, π

u
p ) would have a unitary subquotient for every place

p of Q. Thus, proving that I(s0, π
u
p ) has no unitary subquotients for any place p of Q, implies the

holomorphy of E(fs, g) at s = s0.
Let p be a place of Q that splits in F and such that p ̸∈ S. As in the proof of Theorem 5.1,

according to [5, Thm. A.1] of Shin, there exists a weak base change Σ of σ to GLn−1(AF ). By the
assumption of the theorem, the base change Σ is cuspidal.
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Hence, at the place p, the representation σp is an unramified local component of a cuspidal
automorphic representation of GLn−1(AF ). In particular, it is generic and unitary. By the classifi-
cation of the generic unitary dual of the p-adic general linear group (cf. [32]), σp is a fully induced
representation of the form

σp ∼= Ind
GLn−1(Qp)
Bn−1(Qp)

(
η1| |β1 ⊗ · · · ⊗ ηn−1| |βn−1

)
where, for j = 1, . . . , n−1, ηj are unitary characters of Q×

p , βj are real numbers such that |βj | < 1/2,
and Bk is a Borel subgroup of GLk, for k a positive integer. Since p splits in F , the local component
of χ at p is a product of two characters χP1 and χP2 , where P1 and P2 are the two places of F
lying above p.

Hence, I(s, πu
p ) is of the form

I(s, πu
p )

∼= Ind
GLn+1(Qp)
Bn+1(Qp)

(
χP1 | |s ⊗ η1| |β1 ⊗ · · · ⊗ ηn−1| |βn−1 ⊗ χP2 | |−s

)
.

This induced representation is irreducible for Re(s) ≥ 3/2, because the exponents satisfy inequal-
ities s ± βj > 1 and |βj − βj′ | < 1, so that no pair of characters can produce reducibility, by the
representation theory of GL2(Qp). By the classification of the unitary dual of the general linear
group over a non-archimedean field (cf. [32]), this induced representation is not unitary, since the
exponents s and −s satisfy |Re(s)| ≥ 1/2. This shows that the induced representation I(s, πu

p )
has no unitary subquotients for Re(s) ≥ 3/2, and thus, the Eisenstein series E(fs, g) is indeed
holomorphic for Re(s) ≥ 3/2 as claimed. �

5.4. Poles of Eisenstein series III – non-self-conjugate case. We begin now with describing
the poles of Eisenstein series E(fs, g) in the half-plane Re(s) > 0. First we consider the case in
which χ is not conjugate self-dual, that is, χ is non-trivial on the norm subgroup NF/Q(IF ). In
that case the Eisenstein series E(fs, g) is holomorphic for Re(s) > 0 by a general result which we
now recall. Note that in this case there is no assumption on σ.

Theorem 5.5. Let πu ∼= χ⊗ σ be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A),
where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation of U ′(A).
Suppose that χ is non-trivial on the norm subgroup NF/Q(IF ). Then the Eisenstein series E(fs, g),
constructed from πu, is holomorphic in the half-plane Re(s) > 0.

Proof. By [27, Sect. IV.3.12], a necessary condition for the Eisenstein series E(fs, g) to have a pole
at s with Re(s) > 0 is that πw ∼= π. In our case, πw = (χc)−1 ⊗ σ, so that if (χc)−1 ̸= χ, this
necessary condition is not satisfied. But the latter condition in fact says that χ is non-trivial on
the norm group NF/Q(IF ). Thus, for such χ the Eisenstein series E(fs, g) is holomorphic at s such
that Re(s) > 0, as claimed. �

5.5. Poles of Eisenstein series IV – conclusions. In this section, we provide an explicit
description of poles at s such that Re(s) > 0 of the Eisenstein series E(fs, g), associated to πu ∼=
χ ⊗ σ where χ is a unitary Hecke character of IF and σ a cuspidal automorphic representation
of U ′(A), in terms of the analytic properties of the automorphic L-functions appearing in the
normalizing factor rS(s, πu, w).

Since in the case when χ is not conjugate self-dual, the Eisenstein series is holomorphic in the
region Re(s) > 0 by Theorem 5.5, we will assume now that χ is conjugate self-dual, that is, trivial
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on the norm subgroup NF/Q(IF ). Thus, χ restricted to I is either trivial or the quadratic character
δF/Q of I attached to the extension F/Q by class field theory.

We treat first the case n ≥ 3, because in the low rank cases n = 1 and n = 2 we provide a more
precise description below.

Theorem 5.6. Let n ≥ 3. Let πu ∼= χ ⊗ σ be a cuspidal automorphic representation of M0(A) ∼=
IF×U ′(A), where χ is a unitary Hecke character of IF which is conjugate self-dual, and σ a cuspidal
automorphic representation of U ′(A) such that σ is cohomological at the archimedean place. Suppose
that σp is tempered for all non-archimedean places p ∈ S. Then, the Eisenstein series E(fs, g),
associated to πu, is holomorphic at s such that Re(s) > 0, except for possible simple poles at
s ∈ {1/2, 1, 3/2, . . . , n/2}.

The pole at s = 1/2 occurs if and only if

• either condition Ceven, given by

Ceven ≡

 n+ 1 is even,
the restriction of χ to I is trivial,
LS(1/2, χ⊗ σ, r1) ̸= 0,

• or condition Codd, given by

Codd ≡


n+ 1 is odd,
the restriction of χ to I is the quadratic character δF/Q of I

attached to the extension F/Q by class field theory,
LS(1/2, χ⊗ σ, r′1) ̸= 0,

is satisfied. The pole at s = m+1
2 with 1 ≤ m ≤ n − 1 an integer occurs if and only if the weak

local lift Σ of σ to GLn−1(AF ) contains as a summand in the isobaric sum the discrete spectrum
representation of GLm(AF ) isomorphic to the unique irreducible quotient J(m,χc) of the induced
representation

Ind
GLm(AF )
Bm(AF )

(
χc| |

m−1
2

IF ⊗ χc| |
m−3

2
IF ⊗ · · · ⊗ χc| |−

m−1
2

IF

)
,

where Bm is a Borel subgroup of GLm, and χc is the conjugate of χ by the non-trivial Galois
automorphism c.

Proof. According to Theorem 5.1, the poles of E(fs, g) in the region Re(s) > 0 coincide with the
poles of rS(s, πu, w). Recall that

rS(s, πu, w) =


LS(s, πu, r1)L

S(2s, χ, rA)

LS(1 + s, πu, r1)LS(1 + 2s, χ, rA)
, for n+ 1 even,

LS(s, πu, r′1)L
S(2s, χ, r′A)

LS(1 + s, πu, r′1)L
S(1 + 2s, χ, r′A)

, for n+ 1 odd.

As already explained in the proof of Theorem 5.1, the assumptions on σ imply, according to [5,
Thm. A.1], that there is a weak lift Σ of σ to GLn−1(AF ), which is an isobaric sum Σ = Σ1�· · ·�Σd

of conjugate self-dual discrete spectrum representations Σi of general linear groups. Since the Satake
parameters of σ and Σ match, the first L-function in the formula for rS(s, πu, w) may be written
as the Rankin–Selberg L-function of pairs

LS(s, πu, r1) = LS(s, χ× Σ),
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and similarly for LS(s, πu, r′1). On the other hand, the Asai L-function of a Hecke character is just
the Hecke L-function of the restriction

LS(s, χ, rA) = LS
(
s, χ

∣∣
I
)
,

and similarly for the twisted Asai L-function

LS(s, χ, r′A) = LS(s, χ⊗ δ̂, rA) = LS(s, δF/Qχ
∣∣
I),

where δ̂ is any extension of δF/Q to a quadratic character of IF (see [8]).
By the classification of the discrete spectrum of the general linear group [26], Σi is isomorphic

to the unique irreducible quotient of

Ind
GLmi (AF )

Qi(AF )

(
Πi|det |

li−1

2
IF ⊗Πi|det |

li−3

2
IF ⊗ · · · ⊗Πi|det |

− li−1

2
IF

)
,

where mi = kili, Πi is a cuspidal automorphic representation of GLki(AF ), and Qi is a parabolic
subgroup of GLmi with the Levi factor isomorphic to the product of li copies of GLki . By the
well-known formulas for Rankin–Selberg L-functions of pairs (cf. [16]), we have

LS(s, χ× Σ)

LS(1 + s, χ× Σ)
=

d∏
i=1

LS(s, χ× Σi)

LS(1 + s, χ× Σi)

=

d∏
i=1

LS(s− li−1
2 , χ×Πi)

LS(1 + s+ li−1
2 , χ×Πi)

.

In the second line of this equation, all terms in the formula for the Rankin–Selberg L-functions
cancel, except the first in the numerator and the last in the denominator. Since the Rankin–Selberg
and Hecke L-functions have no zeroes in Re(s) > 1, the denominator of rS(s, πu, w) cannot produce
a pole in the half-plane Re(s) > 0. It remains to describe the pole of the numerator.

Poles of the partial L-functions are always among the poles of the complete L-function, since
local L-factors have no zeroes. In our case, the complete Hecke L-function L(s, µ), where µ is a
unitary Hecke character of either I or IF , is holomorphic, except for possible simple poles at s = 0
and s = 1. The poles occur if and only if µ is trivial. Since S is not empty (contains at least the
archimedean place), and the local L-function of the trivial character has a pole at s = 0, it follows
that the partial L-function LS(s, µ) has a simple pole at s = 1 if and only if µ is trivial, and it
is holomorphic elsewhere. Similarly, the complete Rankin–Selberg L-function L(s, χ × Π), where
χ is a unitary Hecke character of IF and Π a cuspidal automorphic representation of GLk(AF ), is
holomorphic except for possible simple poles at s = 0 and s = 1. The poles occur if and only if Π
is in fact a unitary Hecke character of GL1(AF ), that is, k = 1, and Π = χ−1. But in that case,
this Rankin–Selberg L-function is just a Hecke L-function of the trivial character. Thus, as before,
the partial L-function LS(s, χ×Π) has a pole at s = 1 if and only Π = χ−1, and it is holomorphic
elsewhere.

From these properties of partial L-functions we deduce the theorem. The pole at s = 1/2 occurs
if and only if the Asai (resp. twisted Asai) L-function has a pole at 2s = 1 and the Rankin–Selberg
L-function does not cancel that pole, that is, it is non-zero at s = 1/2. The pole of the Asai
(resp. twisted Asai) L-function is given in terms of the restriction of χ to I due to the formula
above relating it to the Hecke L-function of the restriction.
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The pole at s = m+1
2 arises from the Rankin–Selberg L-functions. It occurs if and only if there

is a Σi such that the associated cuspidal automorphic representation Πi introduced above is equal
to χ−1 and the corresponding li = m, because then s− m−1

2 = 1 gives the pole, that is, s = m+1
2 .

Since χ is conjugate self-dual, χ−1 = χc. This gives the last claim of the theorem. �

Consider now the low rank cases n = 1 and n = 2. In these cases the relative rank one unitary
group U is quasi-split as an algebraic Q-group. Hence, we may be more precise in describing the
poles of Eisenstein series.

Theorem 5.7. Let U be the quasi-split unitary group in two variables, i.e., n = 1. Let χ be
a unitary Hecke character of the Levi factor M0(A) ∼= IF . Then, the Eisenstein series E(fs, g),
associated to χ, is holomorphic for s such that Re(s) > 0, except for a possible simple pole at
s = 1/2. The pole at s = 1/2 occurs if and only if the restriction of χ to I is trivial.

Proof. In the case n = 1, the poles of the Eisenstein series E(fs, g) for s such that Re(s) > 0
coincide with the poles of the normalizing factor rS(s, χ, w), without any assumptions because
there is no σ in the representation of M0(A). In the case n = 1, recall that

rS(s, χ, w) =
LS(2s, χ, rA)

LS(1 + 2s, χ, rA)
.

As in the proof of Theorem 5.6, the properties of the Asai L-functions imply that the normalizing
factor is holomorphic for s such that Re(s) > 0, except possibly for s = 1/2, and that the pole at
s = 1/2 occurs if and only if the restriction of χ to I is trivial. �

Theorem 5.8. Let U be the quasi-split unitary group in three variables, i.e., n = 2. Let πu ∼= χ⊗σ
be a cuspidal automorphic representation of M0(A) ∼= IF × U ′(A), where χ is a unitary Hecke
character of IF , and σ is a character of the unitary group U ′(A) in one variable, that is, a norm-
one subgroup of IF . Then, the Eisenstein series E(fs, g), associated to πu, is holomorphic for s
such that Re(s) > 0, except for possible simple poles at s = 1/2 and s = 1. The pole at s = 1/2
occurs if and only if the restriction of χ to I is the quadratic character δF/Q of I attached to the

extension F/Q by class field theory, and LS(1/2, πu, r′1) ̸= 0. The pole at s = 1 occurs if and only
if the character χ is equal to the conjugate Σc of a base change Σ of σ.

Proof. The proof of this low rank example is the same as the proof of Theorem 5.6 in the case of
n+1 odd. The reason for stating the result separately is that the assumption on σ in Theorem 5.6
is always satisfied, and that the necessary and sufficient conditions for the poles are a bit simplified,
because the Rankin–Selberg L-function in the constant term becomes the Hecke L-function. �

5.6. Poles of Eisenstein series V – the case of the trivial representation. We consider
here the case of the trivial representation of U(A), and show how it is realized in the residual
spectrum of U(A).

Theorem 5.9. Let πu ∼= 1IF ⊗ 1U ′(A) be the trivial representation of the Levi factor M0(A) ∼=
IF ×U ′(A), where 1IF is the trivial character of IF and 1U ′(A) is the trivial representation of U ′(A).
Then, the Eisenstein series E(fs, g), associated to the trivial representation πu, has a simple pole

at s = n/2, and the space Lπ spanned by the residues, where π ∼= πu ⊗ | · |n/2IF , is isomorphic to the

trivial representation 1U(A) of U(A).
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Proof. The proof is similar to the proof of Theorem 5.1. The idea is again to show that the pole
of the Eisenstein series at s = n/2 coincides with the pole of the normalizing factor rS(s, πu, w) at
s = n/2. In view of formula (⋆), as in the proof of Theorem 5.1, one must prove that

• the local intertwining operator M(s, πu
p , w) at every place p ∈ S is holomorphic and not

identically vanishing at s = n/2, and
• the local normalized intertwining operator N(s, πu

p , w) at every place p ̸∈ S is holomorphic
and not identically vanishing at s = n/2.

Observe that the trivial representation of any quasi-split group is unramified. Hence, in the case of
the trivial representation, the finite set S consists of the archimedean place and all non-archimedean
places p of Q such that p does not split in F and U ′ as a Qp-group is not quasi-split over Qp.

The same proof as in Theorem 5.1 shows that the local intertwining operator M(s, πu
p , w) at

the archimedean place, as well as the local normalized intertwining operator N(s, πu
p , w) at every

place p ̸∈ S, is holomorphic and not identically vanishing for Re(s) > 0, which includes the point
s = n/2. The image in both cases is isomorphic to the trivial representation of the local group, i.e.,
U(R) at the archimedean place and U(Qp) at the non-archimedean place p ̸∈ S.

It remains to show that the local intertwining operator M(s, πu
p , w) at every non-archimedean

place p ∈ S is holomorphic at s = n/2 and to determine its image. As already mentioned above,
for a non-archimedean place p ∈ S, we have that p does not split in F and that U ′ is not quasi-split
as a Qp-group. By the classification of unitary groups over a p-adic field, recalled in Section 1, this
means that n− 1 is even, and that the minimal parabolic Qp-subgroup P ′

min(Qp) of U
′(Qp) has the

Levi factor

M ′
min(Qp) ∼= F×

P × · · · × F×
P︸ ︷︷ ︸

n−3

×U◦,

where P is the place of F lying above p, and U◦ is the unitary group of the unique (up to isomor-
phism) anisotropic two-dimensional hermitian space over Qp. In this case, the trivial representation
of U ′(Qp) is the Langlands quotient of the induced representation

Ind
U ′(Qp)

P ′
min(Qp)

(
| · |

n
2
−1

P ⊗ · · · ⊗ | · |
3
2
P ⊗ 1U◦

)
.

Hence, the local intertwining operator M(s, πu
p , w) for s = n/2 fits into the following diagram

Ind
U(Qp)
Pmin(Qp)

(
| · |

n
2
P ⊗ | · |

n
2
−1

P ⊗ · · · ⊗ | · |
3
2
P ⊗ 1U◦

)
↓ Mlong,U′

Ind
U(Qp)
P0(Qp)

(
| · |

n
2
P ⊗ 1U ′(Qp)

)
↪→ Ind

U(Qp)
Pmin(Qp)

(
| · |

n
2
P ⊗ | · |−

n
2
+1

P ⊗ · · · ⊗ | · |−
3
2

P ⊗ 1U◦

)
↓ M(n/2,πu

p ,w)

Ind
U(Qp)
P0(Qp)

(
| · |−

n
2

P ⊗ 1U ′(Qp)

)
↪→ Ind

U(Qp)
Pmin(Qp)

(
| · |−

n
2

P ⊗ | · |−
n
2
+1

P ⊗ · · · ⊗ | · |−
3
2

P ⊗ 1U◦

)
,

where Pmin is a minimal parabolic Qp-subgroup of U , and Mlong,U ′ is the longest intertwining opera-
tor of the Langlands classification for the trivial representation of U ′(Qp), viewed as an intertwining
operator on U(Qp). Clearly, the composition of two vertical arrows,

M(n/2, πu
p , w) ◦Mlong,U ′ = Mlong,U
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is the longest intertwining operator of the Langlands classification for the trivial representation of
U(Qp). Hence, M(s, πu

p , w) is holomorphic at s = n/2 and its image is the trivial representation of
U(Qp).

Thus, we have proved that the possible pole at s = n/2 of the Eisenstein series E(fs, g), associated
to the trivial representation πu of M0(A), is determined by the analytic behavior of the normalizing
factor rS(s, πu, w) at s = n/2 for the trivial representation πu. Recall that

rS(n/2, πu, w) =


LS(n/2, πu, r1)L

S(n,1IF , rA)

LS(1 + n/2, πu, r1)LS(1 + n,1IF , rA)
, for n+ 1 even,

LS(n/2, πu, r′1)L
S(n,1IF , r

′
A)

LS(1 + n/2, πu, r′1)L
S(1 + n,1IF , r

′
A)

, for n+ 1 odd,

where 1IF is the trivial character of IF . Since the Asai L-function LS(s, µ, rA), and the twisted
Asai L-function LS(s, µ, r′A), are holomorphic and non-zero for s such that Re(s) > 1 (cf. [8] and
Section 5.5), the pole does not arise from these L-functions, as long as n > 1. The case n = 1 is
treated in Theorem 5.7. For the Rankin–Selberg type L-function, we have

LS(s, πu, r1) = LS(s,1IF × 1GLn−1(AF )),

and similarly for L(s, πu, r′1), because the base change of the trivial representation of U ′(A) is the
trivial representation of GLn−1(AF ). According to [16], the Rankin–Selberg L-function equals

LS(s,1IF × 1GLn−1(AF )) =
n−1∏
j=1

LS(s+
n

2
− j,1IF ),

where the L-functions on the right-hand side are the Hecke L-functions of the trivial character of
IF , so that the quotient, after cancellations, becomes

LS(s,1IF × 1GLn−1(AF ))

LS(1 + s,1IF × 1GLn−1(AF ))
=

LS(s− n
2 + 1,1IF )

LS(s+ n
2 ,1IF )

.

By the analytic properties of Rankin–Selberg L-functions (cf. Section 5.5), the denominator is
holomorphic and non-zero at s = n/2, while the numerator has a simple pole at s such that
s − n/2 + 1 = 1, i.e., at s = n/2. This means that the Eisenstein series E(fs, g), associated to
the trivial representation of M0(A), has a simple pole at s = n/2. The residual representation Lπ,
spanned by the residues at s = n/2, is isomorphic to the restricted tensor product of the images
of local intertwining operators. But we have seen above that these images are isomorphic to the
trivial representation for every place p of Q. Thus, the representation Lπ is isomorphic to the trivial
representation of U(A). �

6. Eisenstein cohomology – final results

In this section we use the analytic properties of Eisenstein series, determined in Section 5, to
make the general Theorem 4.3 more precise in certain cases. All the results follow directly from
Theorem 4.3 using the analytic properties of Eisenstein series determined in Section 5.

We state all the results in this section for the evaluation points s0 such that the necessary
non-vanishing conditions are satisfied. Observe that for all other s0, i.e., those for which the non-
vanishing conditions are not satisfied, the corresponding summand in cohomology is trivial, and
thus there is nothing to describe.
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6.1. Contributions in the regions of holomorphy. We describe now the contribution to Eisen-
stein cohomology in the cases for which the Eisenstein series is holomorphic at the relevant point
of evaluation.

Theorem 6.1. Let π ∼= χ| · |
k−l
2

IF ⊗σ be a cuspidal automorphic representation of M0(A), where χ is

a unitary Hecke character of IF and σ a unitary cuspidal automorphic representation of U ′(A), such
that the necessary conditions for non-vanishing are satisfied with the minimal coset representative
wk,l ∈ WP0, where 1 ≤ l < k ≤ n + 1, and with parameters (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r.
Suppose that

• either χ is non-trivial on the norm subgroup NF/Q(IF ),
• or a weak base change of σ, constructed in [9, Thm. A.1], is cuspidal, and k − l ≥ 3.

Then, the summand in the Eisenstein cohomology supported in π is isomorphic as a U(Af )-module
to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin

(
k−l
2 , πu

)
, if q = ℓ(wk,l) = n+ k − l − 1 = 2n− r,

0, otherwise,

where πu ∼= χ⊗ σ is the unitary part of π.

Proof. According to Theorem 5.5, the Eisenstein series associated to πu ∼= χ ⊗ σ such that χ is
non-trivial on the norm subgroup NF/Q(IF ) is holomorphic in the half-plane Re(s) > 0. Hence, the
theorem in this case follows directly from part A of Theorem 4.3.

In the second case, according to Theorem 5.4, the Eisentein series associated to πu ∼= χ⊗σ such
that a weak base change of σ is cuspidal is holomorphic in the half-plane Re(s) ≥ 3/2. Hence, if
the evaluation point s0 =

k−l
2 ≥ 3/2, i.e., k − l ≥ 3, the Eisenstein series is holomorphic at s0, and

thus the claim again follows directly from part A of Theorem 4.3. �

6.2. Contributions related to arithmetic conditions. The most interesting part of Eisenstein
cohomology is the part in which residual Eisenstein cohomology classes may appear. This is gov-
erned by the arithmetic conditions given in terms of the analytic properties of certain automorphic
L-functions and their non-vanishing at the center of symmetry for the functional equation. The
precise description of this phenomenon is the subject of this section.

We first consider the contributions with the evaluation point s0 = 1/2. In that case, the analytic
properties of the Asai automorphic L-functions and the non-vanishing of the central value of certain
Rankin–Selberg automorphic L-function determine the contribution to Eisenstein cohomology.

Theorem 6.2. Let π ∼= χ| · |1/2IF ⊗σ be a cuspidal automorphic representation of M0(A), where χ is
a unitary Hecke character of IF which is conjugate self-dual and σ a unitary cuspidal automorphic
representation of U ′(A), such that the necessary conditions for non-vanishing are satisfied with the
minimal coset representative wk,l ∈ WP0, where 1 ≤ l < k ≤ n + 1, and with parameters (r, i),
where 1 ≤ r ≤ n and 1 ≤ i ≤ r. Then, k = l + 1 and r = n. Suppose that σp is tempered for all
non-archimedean places p ∈ S.

If

• either condition Ceven, given by

Ceven ≡

 n+ 1 is even,
the restriction of χ to I is trivial,
LS(1/2, χ⊗ σ, r1) ̸= 0,



34 NEVEN GRBAC AND JOACHIM SCHWERMER

• or condition Codd, given by

Codd ≡


n+ 1 is odd,
the restriction of χ to I is the quadratic character δF/Q of I

attached to the extension F/Q by class field theory,
LS(1/2, χ⊗ σ, r′1) ̸= 0,

is satisfied, then the summand in the Eisenstein cohomology supported in π is isomorphic as a
U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


Hn−1

(sq) (g∞,K∞;Aπ) ∼= Jfin (1/2, π
u) , if q = n− 1,

non-trivial submodule of Ifin (1/2, π
u) , if q = n,

Hn+1
(sq) (g∞,K∞;Aπ) ∼= quotient of Jfin (1/2, π

u) , if q = n+ 1,

0, otherwise,

where πu ∼= χ ⊗ σ is the unitary part of π, and the quotient in degree q = n + 1 may possibly be
trivial.

Otherwise, that is, if neither of the two sets of conditions above is satisfied, then the summand
in the Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin (1/2, π

u) , if q = n,

0, otherwise,

where πu ∼= χ⊗ σ is the unitary part of π.

Proof. Observe that the evaluation point s0 = 1/2 is obtained if and only if the minimal coset
representative wk,l is such that k = l+1. According to Theorem 5.6, the Eisenstein series associated
to πu has a pole at 1/2 if and only if one of the two sets of conditions in the theorem is satisfied.
In that case, the summand in Eisenstein cohomology is obtained directly from part B of Theorem
4.3, using the fact that the length ℓ(wl+1,l) = n. Otherwise, the Eisenstein series is holomorphic at
1/2 and thus part A of Theorem 4.3 gives the claim. �

Theorem 6.3. Let π ∼= χ| · |
m+1

2
IF ⊗ σ be a cuspidal automorphic representation of M0(A), where

1 ≤ m ≤ n−1 is an integer, χ is a unitary Hecke character of IF which is conjugate self-dual and σ
a unitary cuspidal automorphic representation of U ′(A), such that the necessary conditions for non-
vanishing are satisfied with the minimal coset representative wk,l ∈ WP0, where 1 ≤ l < k ≤ n+ 1,
and with parameters (r, i), where 1 ≤ r ≤ n and 1 ≤ i ≤ r. Then, k − l = m + 1 and r = n −m.
Suppose that σp is tempered for all non-archimedean places p ∈ S.

If a weak base change of σ, constructed in [9, Thm. A.1], contains as a summand in the isobaric
sum a representation isomorphic to J(m,χc), where χc is the conjugate of χ by the non-trivial Galois
automorphism c, then the summand in the Eisenstein cohomology supported in π is isomorphic as
a U(Af )-module to
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Hq(g∞,K∞;Aπ) ∼=
Hq

(sq)(g∞,K∞;Aπ) ∼= Jfin
(
m+1
2 , πu

)
, if q = n−m− 1 + 2j with 0 ≤ j ≤ m,

non-trivial submodule of Ifin
(
m+1
2 , πu

)
, if q = n+m,

Hq
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin

(
m+1
2 , πu

)
, if q = n+m+ 1,

0, otherwise,

where πu ∼= χ⊗ σ is the unitary part of π, and the quotient in degree q = n+m+ 1 may possibly
be trivial.

Otherwise, that is, if a weak base change of σ, constructed in [9, Thm. A.1], does not contain as
a summand in the isobaric sum a representation isomorphic to J(m,χc), then the summand in the
Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin

(
m+1
2 , πu

)
, if q = n+m,

0, otherwise,

where πu ∼= χ⊗ σ is the unitary part of π.

Proof. As in the proof of Theorem 6.2, the result is obtained from Theorem 4.3, using the description
of poles of Eisenstein series in Theorem 5.6. �

6.3. Contribution of the trivial representation. We now state the special case in which Lπ

is the trivial representation of U(A). The required analytic properties of Eisenstein series in this
case are determined in Theorem 5.9.

Theorem 6.4. Let π ∼= | · |n/2IF ⊗ 1U ′(A) be the trivial representation of the Levi factor M0(A)
twisted by the character | · |n/2IF . Then, the summand in the Eisenstein cohomology supported in π

is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


1U(Af ), if q = 0, 2, . . . , 2n− 2,

non-trivial submodule of Ifin(n/2,1M0(A)), if q = 2n− 1,

either 1U(Af ) or 0, if q = 2n,

0, otherwise.

Moreover, H2n(g∞,K∞;Aπ) ∼= 1U(Af ) if and only if H2n−1(g∞,K∞;Aπ) ∼= Ifin(n/2,1M0(A)), and

if H2n(g∞,K∞;Aπ) is trivial, then H2n−1(g∞,K∞;Aπ) is the submodule of Ifin(n/2,1M0(A)) for
which the quotient is the trivial representation.

Proof. Since the highest weight of the trivial representation corresponds to the zero highest weight,
it follows that the minimal coset representative wk,l ∈ WP0 corresponds to k = n + 1 and l = 1,
and the pair (r, i) of parameters is r = 1 and i = 1. Inserting these in Theorem 4.3, and taking into
account that, according to Theorem 5.9, the Eisenstein series associated to the trivial representation
1M0(A) of M0(A) has a simple pole at s = n/2, and that J(n/2,1M0(A)) is the trivial representation,
give all the claims of the theorem. �
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6.4. Cohomology of relative rank one unitary groups in two and three variables. In
this section we explicitly describe the cohomology in the case of unitary groups of relative rank one
in two and three variables, that is, the cases n = 1 and n = 2. These unitary groups are quasi-split
as algebraic Q-groups. The cohomology of these groups is already known from the work of Harder
[15], but our approach provides a different proof. We omit the proofs, as they follow directly from
Theorem 4.3, using the properties of Eisenstein series, obtained in Theorem 5.7 in the case n = 1,
and in Theorem 5.8 in the case n = 2.

For the relative rank one unitary group in two variables, i.e., for n = 1, the Levi factor M0
∼=

ResF/QGL1. Let π ∼= χ| · |s0IF be a unitary character χ of M0(A) ∼= IF twisted by | · |s0IF , where s0 ≥ 0.

From the necessary conditions for non-vanishing it follows that the summand Hq(g∞,K∞;Aπ) in
Eisenstein cohomology, supported in the associate class of π, is trivial, except in the case s0 = 1/2.
The case of the evaluation point s0 = 1/2 is explicitly described in the following theorem.

Theorem 6.5. Let U be the quasi-split unitary group in two variables, i.e., n = 1. Let π ∼= χ| · |1/2IF
be a unitary character χ of M0(A) ∼= IF twisted by | · |1/2IF .

If the restriction of χ to I is trivial, then the summand in Eisenstein cohomology supported in π
is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


H0

(sq)(g∞,K∞;Aπ) ∼= Jfin (1/2, χ) , if q = 0,

non-trivial submodule of Ifin (1/2, χ) , if q = 1,

H2
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin (1/2, χ) , if q = 2,

0, otherwise,

Otherwise, if the restriction of χ to I is not trivial, then the summand in Eisenstein cohomology
supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin (1/2, χ) , if q = 1,

0, otherwise,

For the relative rank one unitary group in three variables, i.e., for n = 2, the Levi factor
M0

∼= ResF/QGL1 × U ′, where U ′ is the unitary group in one variable. Let π ∼= χ| · |s0IF ⊗ σ be a

unitary character χ ⊗ σ of M0(A) ∼= IF × U ′(A), twisted by | · |s0IF , where U ′(A) is the norm one
subgroup of IF . As in the case n = 1 above, from the necessary conditions for non-vanishing it
follows that the summand Hq(g∞,K∞;Aπ) in Eisenstein cohomology, supported in the associate
class of π, is trivial, except in the cases s0 = 1/2 and s0 = 1. The case of the evaluation points
s0 = 1/2 and s0 = 1 are explicitly described in the following theorem.

Theorem 6.6. Let U be the quasi-split unitary group in three variables, i.e., n = 2. Let π ∼=
χ| · |s0IF ⊗ σ be a unitary cuspidal automorphic representation πu ∼= χ ⊗ σ of M0(A) ∼= IF × U ′(A),
twisted by | · |s0IF , where χ is a unitary Hecke character of IF , and σ is a character of the unitary

group U ′(A) in one variable, that is, a norm-one subgroup of IF .
(1) Let s0 = 1/2. If the restriction of χ to I is the quadratic character δF/Q of I attached

to the extension F/Q by class field theory, and LS(1/2, πu, r′1) ̸= 0, then the summand in
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Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


H1

(sq)(g∞,K∞;Aπ) ∼= Jfin (1/2, π
u) , if q = 1,

non-trivial submodule of Ifin (1/2, π
u) , if q = 2,

H3
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin (1/2, π

u) , if q = 3,

0, otherwise,

Otherwise, if any of the above two conditions regarding πu is not satisfied, then the summand
in Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin (1/2, π

u) , if q = 2,

0, otherwise.

(2) Let s0 = 1. If the character χ is equal to the conjugate Σc of a base change Σ of σ, then
the summand in Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=


Hq

(sq)(g∞,K∞;Aπ) ∼= Jfin (1, π
u) , if q = 0 and q = 2,

non-trivial submodule of Ifin (1, π
u) , if q = 3,

H4
(sq)(g∞,K∞;Aπ) ∼= quotient of Jfin (1, π

u) , if q = 4,

0, otherwise,

Otherwise, if the character χ is not equal to the conjugate Σc of a base change Σ of σ, then
the summand in Eisenstein cohomology supported in π is isomorphic as a U(Af )-module to

Hq(g∞,K∞;Aπ) ∼=

{
Ifin (1, π

u) , if q = 3,

0, otherwise.
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E-mail address: neven.grbac@unipu.hr

Joachim Schwermer, Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1,
A-1090 Vienna, Austria resp. Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn,
Germany

E-mail address: Joachim.Schwermer@univie.ac.at


