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Abstract

The Franke filtration is a finite filtration of the space of automorphic forms
on a connected reductive linear algebraic group defined over an algebraic number
field. The main feature of the filtration is that its quotients can be described in
terms of parabolically induced representations using the main values of derivatives
of Eisenstein series and the residues of these. The goal of this paper is to provide
a complete explicit description of the Franke filtration of the space of automorphic
forms on the symplectic group of rank two. The approach is different from the
original approach of Franke, and takes into account the full cuspidal support of
automorphic forms, that is, the cuspidal automorphic representation from which
the Eisenstein series is built and the evaluation point at which it is evaluated. This
considerably simplifies the exposition and makes it possible to obtain very explicit
results and reveal the phenomena present in the filtration. The considered low rank
case exhibits many of the properties and phenomena present in the cases of arbitrary
rank. The explicit description of the Franke filtration in this case has important
implications and applications in cohomology of congruence subgroups related to
the Hilbert–Siegel modular forms of degree two, the Hilbert–Siegel modular variety
of degree two and the corresponding Shimura variety.
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CHAPTER 1

Introduction

The Franke filtration. The Franke filtration is a finite descending filtration of
the spaces of automorphic forms on the adèlic points of a reductive linear algebraic
group defined over an algebraic number field, where the notion of automorphic forms
is the same as in [BJ79]. The filtration was defined by Jens Franke in [Fra98].
Its main property and advantage is that the quotients of the filtration may be
described in terms of representations parabolically induced from the cuspidal and
residual representations of the Levi factors of parabolic subgroups of the considered
group.

The representation theoretic description is obtained using the main values of
derivatives of the (degenerate) Eisenstein series associated to these representations
of the Levi factors. In particular, the construction of the Franke filtration implies
that any non-cuspidal automorphic form on an adèlic reductive linear algebraic
group over a number field is a derivative of an Eisenstein series. This fact, which
has several important consequences and applications, was previously known only
in the function field case by [MW95, App. II].

Consequences and applications of the filtration. The applications of the
Franke filtration and its construction are numerous. In particular, the fact that
any non-cuspidal automorphic form is a derivative of an Eisenstein series, implies
the existence of an Eisenstein spectral sequence that converges to the cohomology
of arithmetic congruence subgroups. This spectral sequence, constructed already
in Franke’s paper [Fra98] using Eisenstein series and their derivatives, implies that
the cohomology of an arithmetic congruence subgroup can be calculated as the
relative Lie algebra cohomology of the space of automorphic forms with respect to
the considered arithmetic group. This is an improvement of Borel’s regularization
theorem [Bor83], sometimes referred to as the Borel–Harder conjecture [Bor06],
[Har90].

Further consequence of the existence of the filtration, obtained in [Fra98] and
[FS98] in the case of the general linear group, is the rationality of the decomposition
along the cuspidal support in cohomology of the space of automorphic forms. This
result generalizes the rationality result of Clozel in the case of cuspidal automorphic
representations [Clo90]. Another result in [Fra98] is a certain trace formula for
Hecke operators in full cohomology, which is of different type than the Goresky–
MacPherson trace formula [GM92]. For a brief summary of Franke’s results see
the Seminaire Bourbaki exposition of Waldspurger [Wal97].

Although there exists a general construction of the Franke filteration, it is
highly demanding to write down the explicit description of the filtration in terms
of parabolic induction. The reason is that the combinatorics of the filtration is
quite involved, but also that the description depends on the analytic properties

1



2 1. INTRODUCTION

of Eisenstein series, which are not known in many cases. On the other hand, it
is very desirable to have such explicit description in particular cases, because of
possible applications in calculations of cohomology of the space of automorphic
forms, as in [GG13b], [GS21], [Gro13]. In view of the results of Jun Su [Su19],
[Su21], certain (p,K)-cohomology of spaces of automorphic forms is isomorphic to
the coherent cohomology of the admissible toroidal compactification of a Shimura
variety with respect to the canonical extension over the compactification of the
automorphic vector bundle. Hence, the explicit descriptions of the Franke filtration
may play a role in the study of such coherent cohomology of Shimura varieties in
future.

Motivation behind this paper. The Franke filtration is so far explicitly de-
scribed only in few special cases. In the case of the cuspidal support in a maximal
proper parabolic subgroup of any reductive group, the explicit description is pro-
vided in [Grb12]. Interesting cases of the Franke filtration for the general linear
group studied in [GG22] reveal certain unexpected phenomena present in the fil-
tration. A partial result in the case of the symplectic group of rank two, which is
the group also considered in this paper, is obtained in [GG13b]. It considers only
the cases of cuspidal support which may possibly contribute to cohomology, and
these are rather regular cases from the point of view of the Franke filtration.

The motivation for writing this paper is three-fold. Firstly, despite the partial
result in [GG13b], there is no complete description of the Franke filtration of the
spaces of automorphic forms on the symplectic group of rank two. Our first goal
here is to provide such a description.

Secondly, the original paper [Fra98] of Franke is written in wide generality,
technically highly demanding and the considered spaces of automorphic forms, al-
though appropriate for theoretical considerations, are not convenient for explicit
calculations and applications. Our second goal in this paper is to introduce a dif-
ferent approach, more convenient for applications, in which the Franke filtration is
described for spaces of automorphic forms supported in a given full cuspidal sup-
port. Using this approach, the Franke filtration can be described more clearly, and
in the case of the symplectic group of rank two very explicitly. The Franke filtration
of higher rank groups can also be tackled using this approach, and our motivation
for writing this paper is to foster such endeavours.

Thirdly, the explicit description of the Franke filtration in the case of the sym-
plectic group of rank two reveals interesting features and phenomena present in
the filtration in general. Hence, our third goal in this paper is to point out clearly
these features and explain the underlying reasons for their presence in the filtra-
tion. These are related to the functional equations and the analytic properties of
Eisenstein series used in the construction of the filtration.

In view of these motivating goals, the style of exposition in this paper is de-
liberately chosen to be highly explicit, as elementary and accessible as possible, in
order to reach a wider readership. Hopefully we provide a clearer picture of the
Franke filtration and pave the way towards further study of spaces of automorphic
forms and applications of the filtration.

The Franke filtration revisited. As mentioned above, one of the goals of
this paper is to provide the complete explicit description of the Franke filtration of
the space of automorphic forms with arbitrary cuspidal support on the symplectic
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group of rank two. This considerably improves the partial results of [GG13b]. Our
approach is different from the original approach of Franke in [Fra98], and the one
taken in [FS98] and [GG13b]. The main point is that we fix the full cuspidal
support, and describe the Franke filtration of the space of automorphic forms with
the fixed full cuspidal support.

In the original paper [Fra98], an ideal of finite codimension is fixed in the cen-
ter of the universal enveloping algebra of the complexification of the real Lie algebra
of the Lie group of real points of the considered algebraic group. The filtration is
then defined for the space of automorphic forms with cuspidal support in a given
associate class of parabolic subgroups and annihilated by a power of the fixed ideal,
without further notice regarding the cuspidal representation on the Levi factor.
This approach is appropriate for theoretical considerations of cohomological appli-
cations, because the ideal naturally arises from the coefficient system. However, it
is not so convenient for explicit calculations of cohomology and description of the
Franke filtration.

The papers [FS98] and [GG13b] consider the space of automorphic forms
with cuspidal support in an associate class of parabolic subgroups and the fixed
unitary part of a cuspidal automorphic representation of the Levi factor. This
approach is more convenient than the original one for explicit calculations, but still
the description depends on the analytic properties of Eisenstein series at several
points of evaluation. Therefore, it is not as clean as the approach taken here,
in which the full cuspidal support is fixed. Fixing the full cuspidal support of
automorphic forms makes it possible to formulate the results very explicitly and
reveal otherwise hidden phenomena of the filtration.

Reasons for considering the symplectic group of rank two. The moti-
vation for considering the symplectic group of rank two in this paper stems from
several reasons. It is an important group as the ambient group for the theory of
Hilbert–Siegel modular forms of degree two, related to the Hilbert–Siegel modular
variety of degree two, and the corresponding Shimura variety. Thus, it would be
useful to have the complete explicit description of the Franke filtration in this case.
The theory of Eisenstein series on the symplectic group of rank two is already rather
well understood by the work [Kim95] on the residual spectrum, as well as [Wat92],
[HM15]. The cohomology in that case is studied and explicitly calculated in the
works [Sch86], [OS90], [GG13b], [MG18].

The symplectic group of rank two is the group of low rank, in which the fea-
tures and properties of the Franke filtration can be pointed out more clearly than
in the case of larger groups. On the other hand, the Franke filtration of the space
of automorphic forms on that group exhibits several important properties of the
filtration in arbitrary rank, and is much more involved than the rank one cases.
Therefore, another goal of this paper is to point out clearly and explain in details
the underlying reasons for the features and phenomena present in the Franke fil-
tration of spaces of automorphic forms on the symplectic group of rank two. We
explain the general mechanisms, which are incorporated in the definition of the
filtration in order to settle certain issues in its construction using the Eisenstein
series. In particular, the functional equations of Eisenstein series are taken into
account using colimits of a certain functor. The problems arising from the analytic
properties of Eisenstein series, in particular, the problem of Eisenstein series that
is not holomorphic at the relevant value of its complex parameter, are settled using
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certain partial order on the contributions from various Eisenstein series to the same
space of automorphic forms.

And last, but not least, the author has learned from personal communication
and discussions with Joachim Schwermer, that Franke himself has often used the
case of the symplectic group of rank two in order to point out the underlying ideas
and properties of the filtration in his talks. However, the complete explicit descrip-
tion of the Franke filtration of the space of automorphic forms on the symplectic
group of rank two for all possible cuspidal supports is given in this paper for the
first time.

Extraordinary phenomena – a model case. As a model case which may
serve as a preview of the results of this paper and resembles the flavor of the phe-
nomena that occur in the Franke filtration, we formulate below case (4j) of Theorem
7.7. It describes the Franke filtration of the space of automorphic forms on the sym-
plectic group of rank two, with cuspidal support in the Borel parabolic subgroup
and a certain twist of the trivial character of the maximal split torus. This case of
the filtration is an example of the phenomenon in which two different quotients of
the filtration must be described as parabolically induced representations from the
parabolic subgroups of the same rank. It was apparently overlooked by Franke in
Remark 2 on page 242-243 of [Fra98], in which he claims that the only rank two
example of this phenomenon that he knows is in the case of the exceptional group
G2. My speculation would be that the cause of Franke’s omission of this example is
most likely arising from the following two difficulties. In his approach, Franke did
not consider the full cuspidal support to distinguish spaces of automorphic forms,
so that our example below is only a part of much larger space of automorphic forms
considered by Franke. Besides that, the cuspidal support in our example is such
that it does not contribute to cohomology of arithmetic groups with respect to any
coefficient system arising from a finite dimensional algebraic representation of G.
For more details regarding this and other phenomena occurring in the filtration see
Chapter 9.

Theorem. Let F be an algebraic number field with the ring of adèles A and
the group of idèles I. Let G = Sp2 be the symplectic group of rank two defined over
F . Let B be a Borel subgroup of G, and T a maximal split torus in B. Consider
the character

π ∼= | · |I ⊗ 1I

of T (A) ∼= I × I, where | · |I is the adèlic absolute value on I, and 1I is the trivial
character on I. The space of automorphic forms on G(A), with cuspidal support in
(the associate class of) B and π, is denoted A{B},φ(π). Then, the Franke filtration
of the space A{B},φ(π) is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼=
(
Ind

G(A)
P2(A)

(
1I ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)w121

A1
{B},φ(π)/A

2
{B},φ(π)

∼= Ind
G(A)
P1(A)

(
(1I ◦ det)| det |1/2I

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
Ind

G(A)
B(A)(| · |I ⊗ 1I)⊗ S(ǎB,C)

)w2
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where Ind stands for the parabolic induction, P1(A), resp. P2(A), is the standard
parabolic subgroup of G with the Levi factor isomorphic to GL2(A), resp. I×SL2(A),
and S(ǎR,C) is the symmetric algebra on the complexification ǎR,C of the Z-module
of rational characters of the parabolic subgroup R. The exponents w121 and w2

denote the space of invariant vectors for the action of certain intertwining operators
acting on the induced representations.

In this model theorem, observe that there are two quotients of the filtration
isomorphic to induced representations from a parabolic subgroup of the same rank.
The isomorphisms between the quotients of the filtration and the induced repre-
sentations are constructed using the main values of the derivatives of the Eisen-
stein series. The sample theorem exhibits the situation in which the degenerate
Eisenstein series associated to the residual representation 1 ◦ det of the Levi factor
L1(A) ∼= GL2(A) has a pole at the relevant value s = 1/2 of its complex parameter.
The main value of the derivatives of such degenerate Eisenstein series are not well
defined as elements of the full space of automorphic forms. The principal part of
the Laurent series, which is in this example only the residue, of the degenerate
Eisenstein series should contribute to a deeper filtration step, so that the main
values of the derivatives of the degenerate Eisenstein series can be well defined as
elements of the quotient of the filtration.

If the residues were square-integrable, then they would naturally form a deeper
filtration step isomorphic to an induced representation from a parabolic subgroup
of lower relative rank. However, this is not the case in our model theorem. The
residues of the degenerate Eisenstein series are not square-integrable, and still they
must contribute to a deeper filtration step. This is achieved by finding in the
associate class of the cuspidal support π ∼= | · |I ⊗ 1I another character of T (A),
which is the cuspidal support of a degenerate Eisenstein series, holomorphic at
the relevant value of its complex parameter, whose Taylor coefficients contain the
non-square-integrable residues in question.

In our example, we take the character 1I ⊗ | · |I, which is associate to π, and
which is the cuspidal support of the degenerate Eisenstein series associated to the
residual representation 1I⊗1SL2(A) with the relevant value of its complex parameter
s = 0. Since the Eisenstein series is holomorphic at s = 0, the main values of its
derivatives are well defined and contain the residues of the previous degenerate
Eisenstein series. This is the underlying reason for the existence of two different
quotients of the filtration isomorphic to the induced representations from parabolic
subgroups of the same rank. See Section 9.4 for more details.

The model theorem also exhibits the way in which the Franke filtration deals
with functional equations of the Eisenstein series. These functional equations relate
Eisenstein series associated to residual or cuspidal representations which are asso-
ciate under certain elements of the Weyl group, and the relationship is established
via the standard intertwining operators attached to these Weyl group elements.
Invariant vectors for these intertwining operators are taken in the first and the last
quotient to avoid taking twice into account the Eisenstein series which are equal by
the functional equation. For more details see Section 9.2.

Outline of the paper. At the end of the introduction, we outline the contents
of the paper. Following this Introduction, the structure of the symplectic group of
rank two is recalled in Chapter 2 and the basic notation is fixed. The prelimi-
naries regarding the automorphic forms, parabolically induced representations and
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Eisenstein series are collected in Chapter 3. The Franke filtration is introduced in
Chapter 4. Explicit description of the spaces of automorphic forms with cuspidal
support in maximal proper parabolic subgroups is given in Chapter 5. In the case
of the cuspidal support in the Borel subgroup, the analytic properties of Eisenstein
series required in the paper are summarized in Chapter 6, and the results regarding
the explicit description of the Franke filtration are stated in Chapter 7. The proofs
of these results are the subject of Chapter 8. Finally, Chapter 9 points out and
explains the underlying reasons for the properties and features of the Franke fil-
tration present in the case of the symplectic group of rank two. The calculation of
colimits required in the paper is made in the Appendix A at the end of the paper.

Acknowledgments. We would like to express our gratitude to Joachim Schw-
ermer for countless discussions, reading the early drafts of the manuscript and his
help in sharpening the scope of the final paper. We would also like to thank Harald
Grobner, Marcela Hanzer and Goran Muić for many useful conversations.



CHAPTER 2

The symplectic group of rank two

Let F be an algebraic number field. The set of places of F is denoted by V ,
the subset of all archimedean places by V∞ and the subset of all non-archimedean
places by Vf . For the place v ∈ V , let Fv denote the completion of F at v. If
v ∈ Vf , let Ov be the ring of integers of Fv. Let A be the ring of adèles of F , and
Af the subring of finite adèles. Let I be the group of idèles of F . Throughout the
paper, the adèlic absolute value on I is denoted by | · |.

Let G = Sp2 be the symplectic group of rank two defined over F . It is the
group of isometries of the symplectic form on a four-dimensional vector space over
F . As in [Tad94], we fix a basis of the vector space in which the matrix of the
symplectic form is

J =

(
0 J2

−J2 0

)
, where J2 =

(
0 1
1 0

)
.

Then, for any F -algebra R, we have

G(R) =
{
g ∈ GL4(R) : tgJg = J

}
,

where tg denotes the transpose of g.
We fix, once and for all, the choice of the Borel subgroup B of G such that

B(R) consists of all upper-triangular matrices in G(R). Let B = TU be the Levi
decomposition of B, where T is the maximal F -split torus of G such that T (R)
consists of all diagonal matrices in G(R), and U the unipotent radical. Then, T is
isomorphic to the product of two copies of GL1, that is,

T (R) =

t(x, y) =


x 0 0 0
0 y 0 0
0 0 y−1 0
0 0 0 x−1

 : x, y ∈ R×

 .

The Weyl group of G with respect to T is denoted by W . It is generated by two
simple reflections, which we denote by w1 and w2. They are given by their action
on T as

w1(t(x, y)) = t(y, x),

w2(t(x, y)) = t(x, y−1),

for x, y ∈ R×. The Weyl group is then

W = {1, w1, w2, w12, w21, w121, w212, w1212} ,
where we abbreviate the product wi1wi2 . . . wik by wi1i2...ik . The action of the Weyl
group on the torus T is given in Table 3.1 in Chapter 3 below.

The group G has two standard maximal proper parabolic F -subgroups, which
we denote by P1 and P2. By a standard parabolic F -subgroup we mean a parabolic

7



8 2. THE SYMPLECTIC GROUP OF RANK TWO

subgroup, defined over F , which contains the fixed Borel subgroup B. Let Pi =
LiNi, for i = 1, 2, be the Levi decomposition, where Li is the Levi factor and Ni

the unipotent radical of Pi. In our notation, as in [Kim95], the Levi factor L1 of
P1 is isomorphic to GL2, that is,

L1(R) =

{
l1(g) =

(
g 0
0 J2

tg−1J2

)
: g ∈ GL2(R)

}
,

while the Levi factor L2 of P2 is isomorphic to GL1 × SL2, that is,

L2(R) =

l2(x, h) =

 x 0 0
0 h 0
0 0 x−1

 : x ∈ R×, h ∈ SL2(R)

 ,

for any F -algebra R. We often use maps l1 and l2 to identify the Levi factors L1

and L2 with GL2 and GL1 × SL2, respectively.
For the moment, let P = LN be one of the standard parabolic F -subgroups

of G, i.e., P = B, P = P1, P = P2 or P = G. Let X∗(P ) be the Z-module of
F -rational characters of P . Let ǎP = X∗(P ) ⊗Z R, and ǎP,C its complexification.
The elements of ǎP,C may be identified with certain characters of L(A). We have
ǎP,C ∼= Cr, where r is the relative rank of P , i.e., r = 2 for P = B, and r = 1 for
P = P1 and P = P2, and r = 0 for P = G. The isomorphism is fixed in such a way
that, s = (s1, s2) ∈ C2, for P = B, corresponds to the character

t(x, y) 7→ |x|s1 |y|s2

of T (A), and s = s ∈ C corresponds for P = P1 to the character

l1(g) 7→ | det g|s

of L1(A), and for P = P2 to the character

l2(x, h) 7→ |x|s

of L2(A).
The restrictions of characters from L(A) to T (A) give rise to the inclusions of

ǎP,C into ǎB,C, which we denote by ιP . In particular, for P = P1 and s ∈ ǎP1,C, we
have

ιP1
(s) = (s, s) ∈ ǎB,C,

and for P = P2 and s ∈ ǎP2,C, we have

ιP2
(s) = (s, 0) ∈ ǎB,C.

For P = B, the inclusion ιB is the identity map on ǎB,C. Although ǎG,C is trivial,
it is convenient to denote its inclusion into ǎB,C by ιG.

The choice of the Borel subgroup determines the positive Weyl chamber in ǎB,C.
In coordinates, it consists of all (s1, s2) ∈ ǎB,C such that Re(s1) > Re(s2) > 0. We
denote by

C+ = {(s1, s2) ∈ ǎB : s1 > s2 > 0}
the real part of the positive Weyl chamber, and by

C+ = {(s1, s2) ∈ ǎB : s1 ≥ s2 ≥ 0}
the real part of its closure. The choice of the Borel subgroup also determines the
positive Weyl chamber in ǎP,C for P = P1 and P = P2. In both cases, the positive
Weyl chamber consists of all s ∈ ǎP,C such that Re(s) > 0, the real part of the
positive Weyl chamber is given by s > 0, and its closure by s ≥ 0.
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In the definition of the Franke filtration, the closure of the negative obtuse
Weyl chamber in ǎB is also required. It consists of all (s1, s2) ∈ ǎB such that

s1 ≤ 0

s1 + s2 ≤ 0

in coordinates as above.
We fix, once and for all, a maximal compact subgroup K of the adèlic group

G(A), which is the product K =
∏

v∈V Kv of the fixed maximal compact subgroups
Kv of G(Fv) such that Kv = G(Ov) for every place v ∈ Vf . Then, K is in good
position with respect to B in the sense of [MW95, Sect. I.1.4].

Let G∞ =
∏

v∈V∞
G(Fv) be the archimedean part of the adèlic group G(A).

Then the product K∞ =
∏

v∈V∞
Kv is a maximal compact subgroup of G∞. The

real Lie algebra of G∞ is denoted by g∞, and its complexification by g∞,C. The
universal enveloping algebra of g∞,C is denoted by U , and Z denotes its center.





CHAPTER 3

Spaces of automorphic forms

In this chapter we collect all the necessary preliminaries regarding automorphic
forms required in the rest of the paper. In particular, we recall briefly the definition
of automorphic forms following [BJ79], introduce parabolically induced represen-
tations and Eisenstein series, and discuss their basic properties. Finally, we define
the spaces of automorphic forms with a fixed cuspidal support. These are the main
objects of study in this paper.

Throughout this chapter, let P = LN be one of the three standard proper
parabolic F -subgroups of G, i.e., P = B, P = P1 or P = P2. We use freely the
notation introduced in the previous chapter.

3.1. Automorphic forms

Let A = A(G(F )\G(A)) be the space of automorphic forms on G(A), as defined
in [BJ79]. Recall that a function on G(A) is an automorphic form if it is

• smooth,
• left G(F )-invariant,
• K-finite,
• Z-finite, and
• of uniform moderate growth,

cf. loc. cit. Since K-finiteness is not preserved by the action of G∞, the space
A of automorphic forms carries only the structure of a (g∞,K∞;G(Af ))-module.
Nevertheless, we often refer to such modules as representations of G(A), although
strictly speaking there is no action of the full adèlic group.

Given a parabolic F -subgroup Q of G, the constant term of an automorphic
form f ∈ A along Q is defined as

fQ(g) =

∫
NQ(F )\NQ(A)

f(ng)dn,

where NQ is the unipotent radical of Q, and dn is an appropriate Haar mea-
sure, cf. [MW95, Sect. I.1.13]. An automorphic form f is cuspidal if its constant
term fQ = 0 along all proper parabolic F -subgroups of G. The space of cuspidal
automorphic forms on G(A) is denoted by Acusp = Acusp(G(F )\G(A)). It is a
(g∞,K∞;G(Af ))-submodule of A, which exhibits a direct sum decomposition into
irreducible modules [GGPS90]. The irreducible summands in this decomposition
are referred to as cuspidal automorphic representations of G(A).

The space of automorphic forms and cuspidal automorphic forms on the Levi
factors L(A) are defined in the same way as on the full group G(A). Hence, we may
talk about cuspidal automorphic representations of L(A).

11



12 3. SPACES OF AUTOMORPHIC FORMS

Table 3.1. The action of the Weyl group on the torus and the
character χ1| · |s1 ⊗ χ2| · |s2 of T (A).

w ∈ W w(t(x, y)) w(s1, s2) w(χ1 ⊗ χ2) w (χ1| · |s1 ⊗ χ2| · |s2)

1 t(x, y) (s1, s2) χ1 ⊗ χ2 χ1| · |s1 ⊗ χ2| · |s2

w1 t(y, x) (s2, s1) χ2 ⊗ χ1 χ2| · |s2 ⊗ χ1| · |s1

w2 t(x, y−1) (s1,−s2) χ1 ⊗ χ−1
2 χ1| · |s1 ⊗ χ−1

2 | · |−s2

w12 t(y−1, x) (−s2, s1) χ−1
2 ⊗ χ1 χ−1

2 | · |−s2 ⊗ χ1| · |s1

w21 t(y, x−1) (s2,−s1) χ2 ⊗ χ−1
1 χ2| · |s2 ⊗ χ−1

1 | · |−s1

w121 t(x−1, y) (−s1, s2) χ−1
1 ⊗ χ2 χ−1

1 | · |−s1 ⊗ χ2| · |s2

w212 t(y−1, x−1) (−s2,−s1) χ−1
2 ⊗ χ−1

1 χ−1
2 | · |−s2 ⊗ χ−1

1 | · |−s1

w1212 t(x−1, y−1) (−s1,−s2) χ−1
1 ⊗ χ−1

2 χ−1
1 | · |−s1 ⊗ χ−1

2 | · |−s2

Let πu be a unitary cuspidal automorphic representation of L(A). We may
write

πu ∼= χ1 ⊗ χ2, for L = T,

where χ1 and χ2 are unitary Hecke characters of I, and

πu ∼= χ⊗ σ, for L = L2,

where χ is a unitary Hecke character of I and σ a unitary cuspidal automorphic
representation of SL2(A). For L = L1

∼= GL2, we have πu is a unitary cuspidal
automorphic representation of GL2(A). We always assume that πu is normalized in
such a way that it is trivial on the connected component of the archimedean part of
the center of the Levi subgroup L. This assumption is not restricting, as explained
in [Kim04, page 121]. It is just a convenient choice of coordinates, which makes,
in what follows, the relevant poles of the Eisenstein series associated to πu real.

The action of the Weyl group W on T gives rise to the action of the Weyl group
on ǎB,C and on the unitary characters πu ∼= χ1 ⊗χ2 of T (A). Combining these two
actions gives rise to the action of the Weyl group on characters π ∼= χ1|·|s1⊗χ2|·|s2 .
All these actions are given in Table 3.1.

3.2. Induced representations and Eisenstein series

Let s ∈ ǎP,C. We denote by IP (s, π
u) the representation of G(A) parabolically

induced from the representation πu of the Levi factor L(A) twisted by the character
corresponding to s and extended trivially on N(A), as in [Sha10], [MW95]. More
precisely,

IP (s, π
u) =



Ind
G(A)
B(A) (χ1| · |s1 ⊗ χ2| · |s2) , for

P=B,
πu∼=χ1⊗χ2,
s=(s1,s2),

Ind
G(A)
P1(A) (π

u| det |s) , for P=P1,
s=s,

Ind
G(A)
P2(A) (χ| · |

s ⊗ σ, ) for
P=P2,

πu∼=χ⊗σ,
s=s.
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The parabolic induction is always normalized by ρP , so that it preserves unitariz-
ability, where ρP denotes the half-sum of positive roots of G with respect to T that
appear in the unipotent radical N of P . It equals

ρB = (2, 1), ρP1
= 3/2, ρP2

= 2,

viewed as an element of ǎP,C ∼= Cr.
For a unitary cuspidal automorphic representation πu as above, let Vπu be

the submodule of the space of cuspidal automorphic forms on L(A) isomorphic
to πu. Since the multiplicity one theorem holds for the cuspidal spectrum of the
Levi factors [Sha74], [Ram00], such Vπu is well defined. Let Wπu be the space of
K-finite smooth functions

f : L(F )N(A)\G(A) → C

such that the function given by the assignment m 7→ f(mg) belongs to Vπu for all
g ∈ G(A).

For f ∈ Wπu , and an element s ∈ ǎP,C, let

fs(g) = f(g) · (s+ ρP )(lg)

for g ∈ G(A), where s + ρP on the right-hand side, abusing the notation, stands
for the character of L(A) corresponding to s + ρP ∈ ǎP,C under the isomorphism
introduced above, and lg is an element in L(A), which appears in the decomposition
g = nglgkg of g according to the Iwasawa decomposition of G, i.e., ng ∈ N(A),
lg ∈ L(A), kg ∈ K. Although such lg ∈ L(A) is not uniquely determined by g, the
value (s+ ρP )(lg) of the character on lg is independent of that choice.

The Eisenstein series associated to πu are defined, at least formally, as

E(f, s)(g) =
∑

γ∈P (F )\G(F )

fs(γg),

where f ranges over Wπu . The defining series is absolutely and locally uniformly
convergent for s in a positive cone deep enough in the positive Weyl chamber defined
by P . It can be analytically continued to a meromorphic funtion of s in the whole
space ǎP,C. For these and other properties of Eisenstein series, we refer the reader to
[MW95, Chap. IV] and [Lan76, Sect. 7]. The analytic properties of the Eisenstein
series associated to πu are crucial for the description of the Franke filtration of the
space of automorphic forms with the cuspidal support in the associate class of πu

twisted by a character corresponding to some s0 ∈ ǎP , which is defined in the
following section.

However, in the description of the Franke filtration, besides the Eisenstein series
associated to the cuspidal automorphic representation πu, we must deal with the
Eisenstein series associated to certain residual representations Π of the Levi factor
LR(A) of standard parabolic subgroups R of G. These Eisenstein series are referred
to as the degenerate Eisenstein series. They are constructed in the same way as
the Eisenstein series associated to πu. The function f is chosen in the space WΠ,
which is the analogue of Wπu , and the complex parameter is taken from ǎR,C.

3.3. Decomposition along the cuspidal support

We now recall the definition of the space of automorphic forms with a given
cuspidal support following [FS98, Sect. 1.3]. An alternative definition is provided
in [MW95, Chap. III], and it is proved in [FS98, Sect. 1.4] that the two definitions
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are equivalent. In fact, the Franke filtration of the space of automorphic forms is
precisely the underlying reason for the equivalence of the two definitions. It allows
the definition of the space of automorphic forms with a given cuspidal support in
terms of Eisenstein series.

We first fix a cuspidal support. Let P be one of the three standard proper
parabolic F -subgroups of G with the Levi decomposition P = LN . We denote by
{P} the associate class of parabolic F -subgroups represented by P . It consists of
all parabolic F -subgroups of G such that its Levi factor is conjugate to L. We also
consider the associate class {G} of the full group G, which is a singleton.

Let πu be a unitary cuspidal automorphic representation of the Levi factor
L(A), as above. Let s0 ∈ ǎP . The associate class of cuspidal automorphic repre-
sentations represented by π = πu ⊗ s0, i.e., π

u twisted by the character of L(A)
corresponding to s0, is denoted by φ(π), cf. [FS98, Sect. 1.2]. More precisely, φ(π)
is a finite family of finite sets φQ(π), indexed by parabolic F -subgroups Q in the
associate class {P}, such that φQ(π) consists of cuspidal automorphic representa-
tions of the Levi factor LQ(A) of Q, constructed as follows. For Q ∈ {P}, if w is an
element of the Weyl group W such that the Levi factors are conjugate by w, i.e.,
wLQw

−1 = L, then the conjugate w(π) of π by w is in φQ(π). We will choose, as
we may, the representative of the associate class φ(π) in such a way that s0 ∈ ǎP
belongs to the closure of the positive Weyl chamber determined by P . Hence, we
always assume that π is chosen in such a way. For the special case of the associate
class {G}, we take π = πu to be a unitary cuspidal automorphic representation of
G(A).

We refer to the pair ({P}, φ(π)) as the (full) cuspidal support, where {P} is
an associate class of parabolic F -subgroups and φ(π) an associate class of cuspidal
automorphic representations of the Levi factors of parabolic subgroups in {P}.
We now define the space A{P},φ(π) of automorphic forms supported in a given
cuspidal support ({P}, φ(π)), where π ∼= πu⊗s0. Stating the results on the Franke
filtration with regard to the full cuspidal support π, instead of only its unitary
part πu, is an important improvement in making the statements simpler and more
comprehensible.

Let E(f, s) be the Eisenstein series associated to πu, where f ranges over the
space Wπu , as defined in Section 3.2. According to the analytic properties of the
Eisenstein series, cf. [MW95, Chap. IV], the poles of the Eisenstein series E(f, s)
in the closure of the positive Weyl chamber determined by P all lie along a locally
finite family of singular hyperplanes. Hence, we may find a polynomial p on ǎP
such that

p(s)E(f, s)

is holomorphic around s0 for all f ∈ Wπu . The spaceA{P},φ(π) is defined as the span
of all the coefficients in the Taylor expansions around s = s0 of these holomorphic
functions, as f ranges over Wπu . It carries the structure of a (g∞,K∞;G(Af ))-
module.

In the special case of the associate class {G} and a cuspidal automorphic repre-
sentation π = πu of G(A), the above construction of the Eisenstein series is empty,
and the space A{G},φ(π) is the space of cuspidal automorphic forms on which the
representation π acts. This special case gives rise to the space of cuspidal automor-
phic forms on G(A), which decomposes into a direct sum of irreducible cuspidal
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automorphic representations [GGPS90], and thus the Franke filtration of each
summand is trivial.

The goal of this paper is to provide an explicit description of the Franke fil-
tration for the (g∞,K∞;G(Af ))-modules A{P},φ(π), with P 6= G, for all possible
cuspidal supports. Since the space A of automorphic forms on G(A) exhibits a
direct sum decomposition indexed by the cuspidal support, cf. [FS98, Sect. 1.4],
[MW95, Sect. III.2.6], this is sufficient to completely describe the Franke filtration
of A.





CHAPTER 4

Definition of the Franke filtration

The Franke filtration is a filtration of spaces of automorphic forms, defined
in [Fra98, Sect. 6], such that the successive quotients of the filtration may be
described in terms of parabolically induced representations. In this chapter we
recall the definition, but take a different approach than the original one. The main
point is to fix the full cuspidal support of the considered automorphic forms.

4.1. Fixing the full cuspidal support

The Franke filtration was first defined in [Fra98, Sect. 6] in a slightly different
setting than the one taken here. More precisely, in loc. cit. only the associate
class of parabolic F -subgroups, but not the full cuspidal support, is fixed. Instead
of the full cuspidal support, an ideal J of finite codimension in the center Z of
the universal enveloping algebra is fixed. Then the space AJ of all automorphic
forms on G(A) which are annihilated by a power of J is considered. This is not
restrictive, because the condition of Z-finiteness in the definition of an automorphic
form implies that, for any automorphic form, there is an ideal of finite codimension
in Z which annihilates it. From the cohomological point of view, the approach taken
by Franke is natural, because the coefficient system for the cohomology determines
the ideal J , cf. [BW00]. The space AJ carries the structure of a (g∞,K∞;G(Af ))-
module. Franke defines in [Fra98, Sect. 6] the filtration for submodules AJ ,{P} of
AJ of automorphic forms annihilated by a power of J and with the cuspidal support
in the associate class {P}, without further reference to a cuspidal automorphic
representation of the Levi factor.

In our setting, the fixed full cuspidal support ({P}, φ(π)) provides the nec-
essary finiteness condition for the description of the Franke filtration, as well as
the possibility to make the description very explicit. In fact, given such full cus-
pidal support, there exists an ideal J of finite codimension in Z, although not
unique, such that A{P},φ(π) is a submodule of AJ and AJ ,{P}. The approach
taken here was already applied in the calculation of residual Eisenstein cohomology
in [GG13b], [GS21], [Gro13], and also implicitly in [FS98], [GS11b], [GS11a],
[GS10], [GS14], [GS19], [GG13a], [Grb18], in the description of the Franke fil-
tration for spaces of automorphic forms supported in a maximal proper parabolic
subgroup in [Grb12], and in the study of certain phenomena in the Franke fil-
tration of the spaces of automorphic forms on the general linear group [GG22].
Observe that the paper [GG13b] also considers the symplectic group of rank two.
However, in that paper, the Franke filtration is determined only for those cusp-
idal supports which may possibly contribute to cohomology. This simplifies the
description considerably, as the possible values of s0 are quite regular. Many of the
interesting features of the filtration do not occur in such regular situations. Note
that in [GG13b], we only fix the unitary cuspidal support πu, and the possible

17
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values of s0 are determined by the coefficient system for the cohomology through
the ideal J . Fixing also the character corresponding to s0 makes the exposition
much more comprehensive.

4.2. The category of triples

We now describe the Franke filtration of the space A{P},φ(π) in terms of the
cuspidal support ({P}, φ(π)). Essentially, we follow [Fra98, Sect. 6], with the
addition of keeping track of the cuspidal support, as in [Grb12]. Let M{P},φ(π)

be the set of triples (R,Π, z), where

• R is a standard parabolic F -subgroup of G containing an element of the
associate class {P}, with the Levi factor LR,

• Π is a discrete spectrum representation of the Levi factor LR(A),
• z is an element of the closure of the positive Weyl chamber in ǎR, such that
the twisted representation Π⊗z, by the character of LR(A) corresponding
to z, has cuspidal support in ({P}, φ(π)).

The infinitesimal character zΠ of Π and z may be viewed as elements of ǎB under
inclusions arising from restrictions of characters as in [FS98, page 769] and Chapter
2. The third requirement in the definition imposes that the sum of zΠ and z belongs
to the Weyl group orbit of ιP (s0). Observe that the set of possible z that appear in
the triples, for a given cuspidal support, is finite. This is because it is certainly a
subset of the finite set of all natural projections of the elements of the Weyl group
orbit of ιP (s0) to ǎQ for all standard parabolic F -subgroups Q of G. We denote by
S{P},φ(π) the finite set of natural inclusions ιR(z) into ǎB of all z that appear as
the last entry in the triples in M{P},φ(π).

Given a non-negative integer k not greater than the rank of G, i.e., k ∈ {0, 1, 2},
let Mk

{P},φ(π) be the subset of triples (R,Π, z) in M{P},φ(π) such that the rank of R

is k. Consider the set Mk
{P},φ(π) as the set of objects of a groupoid, with morphisms

defined as follows. Given a parabolic F -subgroup Q of G, with the Levi factor LQ,
let WLQ

be the Weyl group of LQ, and let WQ denote the set of minimal coset
representatives for right cosets in WLQ

\W . By the minimal coset representative,
also known as the Kostant representative, we mean the unique element of minimal
length in its right coset [Kos61]. Let W (LQ) denote the set of all w ∈ WQ such
that the conjugate of LQ by w is the Levi factor of a standard parabolic subgroup
of G, as in [MW95, Sect. I.1.7]. If (R,Π, z) and (R′,Π′, z′) are two (possibly equal)
triples in M{P},φ(π), the set of morphisms between them is the set of all w ∈ W (R)

such that wLRw
−1 = LR′ , and the conjugates w(π) = π′ and w(z) = z′.

Having organized the set Mk
{P},φ(π) into a groupoid, we may define a functor

M from that groupoid to the category of (g∞,K∞;G(Af ))-modules. It acts on the
objects as

M
(
(R,Π, z)

)
= IR(z,Π)⊗ S(ǎR,C),

where IR(z,Π) is the induced representation as above, and S(ǎR,C) is the symmetric
algebra of ǎR,C. The action of g∞, K∞ and G(Af ) is defined as in [Fra98, page
218]. The action of the functor M on a morphism w is defined in terms of the
intertwining operator associated to w and its derivatives, as in [Fra98, page 234].
We omit the precise formula, as it is not required for the purposes of this paper.

In order to define the filtration, we need some way to organize the contributions
of triples in M{P},φ(π). On the finite set S{P},φ(π) of inclusions ιR(z) into ǎB , we



4.3. DEFINITION AND CONSTRUCTION OF THE FILTRATION 19

define a partial order in which

ιR(z) � ιR′(z′)

if and only if ιR(z) 6= ιR′(z′) and ιR(z)−ιR′(z′) belongs to the closure of the negative
obtuse Weyl chamber in ǎB introduced in Chapter 2. If we write in coordinates
ιR(z) = (ζ1, ζ2) and ιR′(z′) = (ζ ′1, ζ

′
2), then ιR(z) � ιR′(z′) if and only if

ζ1 ≤ ζ ′1

ζ1 + ζ2 ≤ ζ ′1 + ζ ′2

and (ζ1, ζ2) 6= (ζ ′1, ζ
′
2).

Let T{P},φ(π) be a function on the finite set S{P},φ(π), taking integer values,
such that

T{P},φ(π)(ιR(z)) > T{P},φ(π)(ιR′(z′))

whenever ιR(z) � ιR′(z′). Such function is not unique, but any choice of T{P},φ(π)

defines equivalent filtrations in the following sense. If a non-trivial quotient of
the filtration obtained by certain choice of the function T{P},φ(π) is a direct sum

of (g∞,K∞;G(Af ))-modules arising from several triples in Mk
{P},φ(π), then some

other choice of T{P},φ(π) may result in the filtration in which the summands appear
as different quotients. Examples of this phenomenon are provided below, see also
Chapter 9. Except for this minor deviation, the non-trivial quotients are the same
and appear in the same order.

We now fix a function T = T{P},φ(π) satisfying the condition above. Given

an integer i, let Mk,T,i
{P},φ(π) denote the set of triples (R,Π, z) in Mk

{P},φ(π) such

that T (ιR(z)) = i. Then the set Mk,T,i
{P},φ(π) determines a full subcategory of the

groupoid Mk
{P},φ(π).

4.3. Definition and construction of the filtration

We are now ready to state the main theorem of [Fra98] regarding the Franke
filtration. Our statement slightly differs from the original one, because we take into
account the full cuspidal support, as explained in Section 4.1.

Theorem 4.1. [Fra98, Thm. 14] There exists a descending filtration

· · · ⊇ Ai
{P},φ(π) ⊇ Ai+1

{P},φ(π) ⊇ . . .

of the (g∞,K∞;G(Af ))-module A{P},φ(π), indexed by the integers, such that

Ai
{P},φ(π)/A

i+1
{P},φ(π)

∼=
2⊕

k=0

colim
(R,Π,z)∈Mk,T,i

{P},φ(π)

M
(
(R,Π, z)

)
∼=

2⊕
k=0

colim
(R,Π,z)∈Mk,T,i

{P},φ(π)

IR(z,Π)⊗ S(ǎR,C),

where the colimit is the colimit in the category of (g∞,K∞;G(Af ))-modules of the

functor M , restricted to Mk,T,i
{P},φ(π), in the sense of [Mac71, Sect. III.3] and Ap-

pendix A below. Since T is defined on a finite set, only finitely many quotients of
the filtration are non-trivial.
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The isomorphisms in the above theorem are constructed using the main values
of the derivatives of the Eisenstein series. More precisely, given a triple (R,Π, z)

in Mk,T,i
{P},φ(π), the degenerate Eisenstein series E(f, s), associated to the residual

representation Π of LR(A), are constructed in the same way as the Eisenstein series
associated to πu in Section 3.2. Here f ∈ WΠ and s ∈ ǎR,C, so that fs is a section
of the family of induced representations IR(s,Π). The elements of the symmetric
algebra S(ǎR,C) are viewed as linear combinations of iterative derivatives. We
denote by ∂α/∂sα the iterative derivative given in coordinates by a multi-index
α, and view it as an element of S(ǎR,C). The isomorphism is then given by the
assignment

fs ⊗
∂α

∂sα
7→ MVs=z

(
∂αE(f, s)

∂sα

)
.

The main value MV at s = z of the derivative of the Eisenstein series is defined as
the constant term in its Laurent expansion around s = z along any line in generic
position passing through z. However, the main value at s = z is well-defined only
if the Eisenstein series is holomorphic at s = z. Otherwise, the main value is only
well-defined as an element of the quotient

Ai
{P},φ(π)/A

i+1
{P},φ(π).

The underlying reason is that the coefficients in the principal part of the Laurent
series should have already been assigned into deeper quotients of the filtration.
Hence, whenever the Eisenstein series associated to (R,Π, z) have a pole at s = z,
there should be other triples which contribute to deeper quotients of the filtration,
i.e., those with larger i’s, such that the coefficients in the principal part of the
Laurent series already occur as main values of derivatives of Eisenstein series asso-
ciated to these other triples. For more details see [Fra98, Sect. 6] and [FS98, page
775]. This interesting phenomenon occurs in the Franke filtration of G = Sp2, as
exhibited below, as well as in the case of the general linear group [GG22], and the
exceptional group G2 as observed in [Fra98].



CHAPTER 5

Filtration for the support in a maximal parabolic
subgroup

Let Pi, i = 1, 2, be one of the maximal proper parabolic F -subgroups of G,
as in Chapter 2. Let Pi = LiNi be its Levi decomposition, where Li is the Levi
factor, and Ni the unipotent radical. Recall that in our notation L1

∼= GL2 and
L2

∼= GL1 ⊗ SL2.
We fix the cuspidal support ({Pi}, φ(π)), where π ∼= πu ⊗ s0 is a unitary

cuspidal automorphic representation πu of Li(A) twisted by the character of Li(A)
corresponding to s0 ∈ ǎPi

in the real part of the closure of the positive Weyl
chamber, i.e., s0 ≥ 0, as in Section 3.3.

We form the Eisenstein series E(f, s) associated to πu, as in Section 3.2. The
analytic properties of these Eisenstein series are crucial for the explicit description
of the Franke filtration of the (g∞,K∞;G(Af ))-module A{Pi},φ(π). The Franke
filtration in the case of cuspidal support in a maximal proper parabolic F -subgroup
of any connected reductive linear algebraic group G is described in [Grb12] in terms
of the analytic properties of the Eisenstein series E(f, s) at the value s = s0 of its
complex parameter. Observe that the condition F = Q in loc. cit. is not really
necessary, it only slightly simplifies the notation, and the results hold, with the
same proof, for any algebraic number field F . We now recall the main theorem of
loc. cit. in our setting.

Theorem 5.1. [Grb12, Thm. 3.1] Let G = Sp2 be the symplectic group of rank
two defined over F . Let ({Pi}, φ(π)) be a fixed cuspidal support, where π ∼= πu⊗s0 is
a unitary cuspidal automorphic representation πu of Li(A) twisted by the character
of Li(A) corresponding to s0 ∈ ǎPi with s0 ≥ 0.

Then, the Franke filtration of the (g∞,K∞;G(Af ))-module A{Pi},φ(π) is at most
a two-step filtration

A{Pi},φ(π) % L{Pi},φ(π) ⊇ {0},
where L{Pi},φ(π) is the (possibly trivial) space of automorphic forms spanned by the
residues at s = s0 of the Eisenstein series E(f, s) associated to πu. This space
is precisely the space of square-integrable automorphic forms in A{Pi},φ(π). The
quotient is always non-trivial and isomorphic to

A{Pi},φ(π)/L{Pi},φ(π)
∼=

 (IPi(0, π
u)⊗ S(ǎPi,C))

w
, if s0 = 0 and w(πu) ∼= πu,

IPi
(s0, π

u)⊗ S(ǎPi,C), otherwise,

as a (g∞,K∞;G(Af ))-module, where w(πu) denotes the representation conjugate
to πu by the unique non-trivial element w ∈ W (Li), and (IPi(0, π

u)⊗ S(ǎPi,C))
w

stands for the space of invariant vectors for the action of the operator M(w) on
IPi

(0, πu)⊗ S(ǎPi,C), where M is the functor introduced in Section 4.2.

21
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5.1. Analytic properties of Eisenstein series supported in a maximal
parabolic subgroup

The analytic properties of the Eisenstein series E(f, s), associated to a unitary
cuspidal automorphic representation πu of Li(A) as in Section 3.2, are determined
by Kim in [Kim95]. He also describes the space of automorphic forms spanned
by their residues at a pole. We now recall two of his results, which are required to
make Theorem 5.1 explicit in the case of the symplectic group of rank two.

Theorem 5.2. [Kim95, Thm. 3.3] Let G = Sp2 be the symplectic group of
rank two. Let P1 be the standard parabolic F -subgroup of G with the Levi factor
L1

∼= GL2. Let πu be a unitary cuspidal automorphic representation of L1(A) ∼=
GL2(A). Suppose that s0 is in the real part of the closure of the positive Weyl
chamber in ǎP1,C, i.e., s0 ≥ 0.

Then, the Eisenstein series E(f, s), associated to πu, is holomorphic at s = s0
for all f ∈ Wπu , except in the case

• s0 = 1/2,
• the central character of πu is trivial, and
• the principal automorphic L-function L(s, πu), attached to πu, is non-zero

at s = 1/2.

In that case, for all f ∈ Wπu the pole at s = 1/2 is at most of order one, and the
space spanned by the residues of the Eisenstein series E(f, s), associated to πu, is
the residual representation of G(A) isomorphic to

span
{
Ress=1/2E(f, s) : f ∈ Wπu

} ∼= JP1
(1/2, πu),

as a (g∞,K∞;G(Af ))-module, where JP1(1/2, π
u) ∼= ⊗v∈V JP1(1/2, π

u
v ) is isomor-

phic to the restricted tensor product over all places v of F of irreducible repre-
sentations JP1

(1/2, πu
v ) of G(Fv). The representation JP1

(1/2, πu
v ) is the unique

irreducible quotient of the induced representation IP1
(1/2, πu

v ).

Before stating the second result of [Kim95], we need a technical remark. Let σ
be a cuspidal automorphic representation of SL2(A). According to [Fli92, Lemma
1.9.2], see also [LL79], σ is an irreducible summand in the restriction from GL2(A)
to SL2(A) of a unitary cuspidal automorphic representation σ′ of GL2(A). The
representation σ is called monomial if σ′ is monomial, i.e., if there exists a non-
trivial character η of I such that σ′ ⊗ η ∼= σ′. Then η is quadratic, and hence
determines a quadratic extension E/F by class field theory. The main result of
[LL79], see also [GJ78, Sect. 3.7], associates to σ′ a (not necessary unitary) Hecke
character Ω of the group of idèles IE of E. Let Ωc be the Hecke character of IE
conjugate to Ω.

If Ω(Ωc)−1 factors through the norm map NE/F as

Ω(Ωc)−1 = η′ ◦NE/F ,

then η′ is another quadratic Hecke character of the group of idèles of I. In this case
there are three quadratic characters η, η′ and ηη′ such that

σ′ ∼= σ′ ⊗ η ∼= σ′ ⊗ η′ ∼= σ′ ⊗ ηη′,

that is, σ′ twisted by one of these characters is again isomorphic to σ′. Otherwise,
that is, if Ω(Ωc)−1 does not factor through the norm map NE/F , then η is the
unique such character determined by σ.
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Theorem 5.3. [Kim95, Thm. 4.1] Let G = Sp2 be the symplectic group of
rank two. Let P2 be the standard parabolic F -subgroup of G with the Levi factor
L2

∼= GL1×SL2. Let πu ∼= χ⊗σ be a unitary cuspidal automorphic representation
of L2(A) ∼= I×SL2(A), where χ is a unitary Hecke character of the group of idèles
I, and σ a cuspidal automorphic representation of SL2(A). Suppose that s0 is in
the real part of the closure of the positive Weyl chamber in ǎP2,C, i.e., s0 ≥ 0.

Then, the Eisenstein series E(f, s), associated to πu, is holomorphic at s = s0
for all f ∈ Wπu , except in the case

• s0 = 1,
• the representation σ is monomial, and
• the character χ is determined by σ, more precisely, in the notation intro-

duced before the statement of the theorem, χ is one of the quadratic char-
acters η, η′ and ηη′ if the character Ω(Ωc)−1 factors through the norm
map NE/F , and χ = η otherwise.

In that case, for all f ∈ Wπu the pole at s = 1 is at most of order one, and the
space spanned by the residues of the Eisenstein series E(f, s), associated to πu, is
the residual representation of G(A) isomorphic to

span {Ress=1E(f, s) : f ∈ Wπu} ∼= JP2(1, π
u),

as a (g∞,K∞;G(Af ))-module, where JP2
(1, πu) ∼= ⊗v∈V JP2

(1, πu
v ) is the restricted

tensor product over all places v of F of irreducible representations JP2
(1, πu

v ) of
G(Fv). The representation JP2

(1, πu
v ) is the unique irreducible quotient of the in-

duced representation IP2
(1, πu

v ).

5.2. Results for the support in a maximal parabolic subgroup

As a consequence of these two theorems of Kim, we can make Theorem 5.1
explicit. We omit the proofs, as they follow directly from the general description
of the Franke filtration, once the analytic properties of the Eisenstein series are
known. Note that the condition π̃u ∼= πu in Theorem 5.4 below, where π̃u is the
representation contragredient to πu, and the condition that χ2 is trivial in Theorem
5.5 below, arise from the fact that the conjugate of πu by w is

w(πu) ∼=
{

π̃u, for i = 1
χ−1 ⊗ σ, for i = 2,

where w is the unique non-trivial element in W (Li) with i = 1, 2. Thus, the
condition w(πu) ∼= πu in Theorem 5.1, becomes π̃u ∼= πu in Theorem 5.4, and
χ−1 = χ, i.e., χ2 = 1 in Theorem 5.5.

Theorem 5.4. Let G = Sp2 be the symplectic group of rank two. Let P1

be the standard parabolic F -subgroup of G with the Levi factor L1
∼= GL2. Let

({P1}, φ(π)) be a fixed cuspidal support, where π ∼= πu⊗| det |s0 is a unitary cuspidal
automorphic representation πu of L1(A) ∼= GL2(A) twisted by the character of
L1(A) corresponding to s0 ∈ ǎP1 with s0 ≥ 0.

(1) If the following assertions
• s0 = 1/2,
• the central character of πu is trivial, and
• the principal automorphic L-function L(s, πu) is non-zero at s = 1/2,
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are all satisfied, then the Franke filtration of the (g∞,K∞;G(Af ))-module
A{P1},φ(π) is a two-step filtration

A{P1},φ(π) % L{P1},φ(π) % {0},

where, in the notation of Theorem 5.2,

L{P1},φ(π)
∼= JP1(1/2, π

u),

and

A{P1},φ(π)/L{P1},φ(π)
∼= IP1

(1/2, πu)⊗ S(ǎP1,C),

as (g∞,K∞;G(Af ))-modules.
(2) Otherwise, that is, if one of the three assertions above is not satisfied, the

Franke filtration is only one-step filtration, and the full space A{P1},φ(π)

is isomorphic to

A{P1},φ(π)
∼=

 (IP1
(0, πu)⊗ S(ǎP1,C))

w
, if s0 = 0 and π̃u ∼= πu,

IP1
(s0, π

u)⊗ S(ǎP1,C), otherwise,

as a (g∞,K∞;G(Af ))-module, where π̃u is the representation contragre-
dient to πu, and (IP1

(0, πu)⊗ S(ǎP1,C))
w
stands for the space of invariant

vectors for the action of the operator M(w) on IP1(0, π
u)⊗S(ǎP1,C), where

w = w212 is the unique non-trivial element in W (L1) and M is the functor
introduced in Section 4.2.

Theorem 5.5. Let G = Sp2 be the symplectic group of rank two. Let P2 be
the standard parabolic F -subgroup of G with the Levi factor L2

∼= GL1 × SL2.
Let ({P2}, φ(π)) be a fixed cuspidal support, where π ∼= χ| · |s0 ⊗ σ is a unitary
cuspidal automorphic representation πu ∼= χ ⊗ σ of L2(A) ∼= I × SL2(A) twisted
by the character of L2(A) corresponding to s0 ∈ ǎP2

with s0 ≥ 0, where χ is a
unitary Hecke character of the group of idèles I, and σ is a cuspidal automorphic
representation of SL2(A).

(1) If the following assertions
• s0 = 1,
• σ is a monomial representation, and
• χ is one of the characters determined by σ as in Theorem 5.3,

are all satisfied, then the Franke filtration of the (g∞,K∞;G(Af ))-module
A{P2},φ(π) is a two-step filtration

A{P2},φ(π) % L{P2},φ(π) % {0},

where, in the notation of Theorem 5.3,

L{P2},φ(π)
∼= JP2(1, π

u),

and

A{P2},φ(π)/L{P2},φ(π)
∼= IP2(1, π

u)⊗ S(ǎP2,C),

as (g∞,K∞;G(Af ))-modules.
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(2) Otherwise, that is, if one of the three assertions above is not satisfied, the
Franke filtration is only one-step filtration, and the full space A{P2},φ(π)

is isomorphic to

A{P2},φ(π)
∼=

 (IP2(0, π
u)⊗ S(ǎP2,C))

w
, if s0 = 0 and χ2 is trivial,

IP2
(s0, π

u)⊗ S(ǎP2,C), otherwise,

as a (g∞,K∞;G(Af ))-module, where (IP2(0, π
u)⊗ S(ǎP2,C))

w
stands for

the space of invariant vectors for the action of the operator M(w) on
IP2

(0, πu) ⊗ S(ǎP2,C), where w = w121 is the unique non-trivial element
in W (L2) and M is the functor introduced in Section 4.2.





CHAPTER 6

Analytic properties of Eisenstein series supported
in the Borel subgroup

In this chapter, the Eisenstein series supported in the Borel subgroup B are
studied. The Borel subgroup B of G, with the Levi decomposition B = TU , is
fixed as in Chapter 2. We retain the notation of previous chapters.

Let πu ∼= χ1 ⊗ χ2 be a unitary character of T (A) ∼= I × I, where χ1 and χ2

are unitary Hecke characters of the group of idèles I. We fix an element s0 =

(s0,1, s0,2) ∈ C+, i.e., s0,1 ≥ s0,2 ≥ 0. Let

π = χ1| · |s0,1 ⊗ χ2| · |s0,2

be the unitary character πu of T (A) twisted by the character of T (A) corresponding
to s0. Table 3.1 gives the action of the Weyl group W on the character π, which also
determines the action on (s1, s2) ∈ ǎB,C and on the unitary character πu = χ1⊗χ2

of T (A).

6.1. Eisenstein series on GL2(A) and SL2(A)

Given a cuspidal support ({B}, φ(π)), where φ(π) is the associate class of π, the
Franke filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π) of automorphic forms
supported in ({B}, φ(π)) is closely related to the analytic properties at s = s0
of the Eisenstein series E(f, s) associated to πu, where f ∈ Wπu , as in Section
3.2. Moreover, the analytic properties of the Eisenstein series on the Levi factors
L1(A) ∼= GL2(A) and L2(A) ∼= GL1(A)×SL2(A) with the support in φ(π) are also
required for the Franke filtration of A{B},φ(π). Therefore, we first recall the well
known analytic properties of the Eisenstein series on GL2(A) and SL2(A).

Theorem 6.1. Let GL2 be the general linear group of rank one defined over F .
Let BGL2

be a Borel subgroup and TGL2
∼= GL1×GL1 the maximal split torus of GL2

contained in BGL2
. Let µ1⊗µ2 be a unitary character of TGL2

(A) ∼= I⊗I, where µ1

and µ2 are unitary Hecke characters of the group of idèles I of F , normalized as in
Section 3.1. Let EGL2(f, s) be the Eisenstein series constructed from f ∈ WGL2

µ1⊗µ2
,

where WGL2
µ1⊗µ2

is the analogue in the case of GL2 of the space Wπu of Section 3.2,
and s = (s1, s2) ∈ ǎBGL2

,C is the complex parameter. Suppose that s0 = (s0,1, s0,2)
is in the real part of the closure of the positive Weyl chamber determined by BGL2

,
i.e., s0,1 ≥ s0,2 are real numbers.

Then, the Eisenstein series EGL2(f, s) is holomorphic at s = s0 for all f ∈
WGL2

µ1⊗µ2
, except in the case

• µ1 = µ2, and
• s0,1 − s0,2 = 1.

27
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Table 6.1. Singular hyperplanes for the Eisenstein series E(f, s)
associated to πu, where πu = χ1⊗χ2 is a unitary character of T (A)
and s = (s1, s2) ∈ ǎB,C is the complex parameter, with equations
in (s1, s2) ∈ ǎB and conditions on χ1 and χ2 for the pole along
singular hyperplanes.

Hyperplane Equation Condition on πu = χ1 ⊗ χ2

S1 s1 − s2 = 1 χ1 = χ2

S2 s2 = 1 χ2 = 1

S3 s1 + s2 = 1 χ1 = χ−1
2

S4 s1 = 1 χ1 = 1

In that case, for all f ∈ WGL2
µ1⊗µ2

the pole of EGL2(f, s) is at most of order one, and
the residues span the residual representation isomorphic to

(µ ◦ det) | det |
s0,1+s0,2

2 ,

where we write µ = µ1 = µ2.

Theorem 6.2. Let SL2 be the special linear group of rank one defined over
F . Let BSL2

be a Borel subgroup and TSL2
∼= GL1 the maximal split torus of SL2

contained in BSL2
. Let µ be a unitary Hecke character of TSL2

(A) ∼= I, normalized
as in Section 3.1. Let ESL2(f, s) be the Eisenstein series constructed from f ∈
WSL2

µ , where WSL2
µ is the analogue in the case of SL2 of the space Wπu of Section

3.2, and s ∈ ǎBSL2
,C is the complex parameter. Suppose that s0 is in the real part

of the closure of the positive Weyl chamber determined by BSL2 , i.e., s0 ≥ 0 is a
real number.

Then, the Eisenstein series ESL2(f, s) is holomorphic at s = s0 for all f ∈
WSL2

µ , except in the case

• µ = 1 is the trivial character of I, and
• s0 = 1.

In that case, for all f ∈ WSL2
µ the pole of ESL2(f, s) is at most of order one, and

the residues span the residual representation isomorphic to the trivial representation
1SL2(A) of SL2(A).

6.2. Eisenstein series on G(A)

We now turn our attention back to the Eisenstein series E(f, s) on G(A), as-
sociated to πu. The singular hyperplanes of these Eisenstein series, which intersect
the closure of the positive Weyl chamber, are determined in [Kim95, page 141].
They are listed in Table 6.1 and shown in Figure 6.1. For each singular hyperplane,
Table 6.1 contains its equation and the condition on the characters χ1 and χ2 for
the pole along the hyperplane.

The singular hyperplanes intersect at certain points, which may result with a
pole of higher order of the Eisenstein series E(f, s). These points are s0 = T1(2, 1),
s0 = T2(1, 0) and s0 = T3(1, 1) as shown in Figure 6.1. They are studied by Kim
[Kim95] as part of his complete description of the residual spectrum of G(A). For
the convenience of the reader we recall the results below.
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Theorem 6.3 (H. H. Kim [Kim95, Thm. 5.4, Prop. 5.1.2, Prop. 5.2.1]). Let
G = Sp2 be the symplectic group of rank two. Let B be the Borel subgroup of G
with the Levi factor T ∼= GL1 × GL1. Let πu = χ1 ⊗ χ2 be a unitary character of
T (A) ∼= I×I, where χ1 and χ2 are unitary Hecke characters of the group of idèles I.
Let E(f, s) be the Eisenstein series associated to πu, where f ∈ Wπu as in Section
3.2, and s = (s1, s2) ∈ ǎB,C is the complex parameter.

Suppose that:

(i) s0 = T1(2, 1).
Then, there exists f ∈ Wπu such that the Eisenstein series E(f, s) has a
pole of order two at s = s0 = (2, 1) if and only if χ1 = χ2 = 1 is the trivial
character of I. In that case, the iterated residues of E(f, s) at s = s0 span
a residual representation which is isomorphic to the trivial representation
1G(A) of G(A).

(ii) s0 = T2(1, 0).
Then, there exists f ∈ Wπu such that the Eisenstein series E(f, s) has a
pole of order two at s = s0 = (1, 0) if and only if χ1 and χ2 are equal and
χ2 = 1, where we denote χ = χ1 = χ2. In that case,

• if χ = 1 is the trivial character, the iterated residues of E(f, s) at
s = s0 are not square-integrable;

• if χ 6= 1 is a non-trivial quadratic character, the iterated residues of
E(f, s) at s = s0 are square-integrable and they span a residual repre-
sentation isomorphic to the representation J(χ), which is defined as
a direct sum of irreducible summands described explicitly in [Kim95,
page 148] as a restricted tensor product with certain parity condition
imposed on the local factors.

(iii) s0 = T3(1, 1).
Then, for every f ∈ Wπu the Eisenstein series E(f, s) has a pole at most
of order one at s = s0 = (1, 1).

Besides singular hyperplanes, the Franke filtration depends on the existence
of non-trivial morphisms in the groupoids Mk

{B},φ(π) introduced in Section 4.2.

These non-trivial morphisms are given by the Weyl group elements which stabilize
s0 ∈ C+. The stabilizer of s0 is non-trivial along certain hyperplanes. We refer to
these hyperplanes as stabilizing hyperplanes. They are listed in Table 6.2 and shown
in Figure 6.1. For each stabilizing hyperplane, Table 6.2 contains its equation, the
stabilizer in W of points on the hyperplane, and the condition on χ1 and χ2 assuring
that the character πu is also stabilized along the hyperplane.

Observe that the stabilizing hyperplanes intersect in a single point in ǎB , and
that is the origin s0 = (0, 0). The stabilizer in W of this point is generated by
stabilizers along all stabilizing hyperplanes, i.e., the stabilizer is W . Because of
such large stabilizer, the cases of cuspidal support with s0 = (0, 0) are treated
separately in the statement of the results in Chapter 7.

The singular and stabilizing hyperplanes are shown in Figure 6.1. The figure
shows only the real part ǎB of the space ǎB,C, because, as explained in Section 3.1,
our normalization of the cuspidal support makes the poles of the Eisenstein series
real. The hyperplanes are seen as lines of their intersection with ǎB . The figure is
similar to the one in [Kim95, page 141], except that we use a different coordinate
system.
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Table 6.2. Stabilizing hyperplanes for the cuspidal support
(B,φ(π)), with π ∼= πu ⊗ s, where πu ∼= χ1 ⊗ χ2 is a unitary
character of T (A) and s = (s1, s2) ∈ ǎB . The columns contain
equations in (s1, s2), stabilizers of s in W , and conditions on χ1

and χ2 for stabilization of πu along the stabilizing hyperplanes.

Hyperplane Equation Stabilizer Stabilizing condition for πu = χ1 ⊗ χ2

S′
1 s1 − s2 = 0 1, w1 χ1 = χ2

S′
2 s2 = 0 1, w2 χ2

2 = 1

S′
3 s1 + s2 = 0 1, w212 χ1 = χ−1

2

S′
4 s1 = 0 1, w121 χ2

1 = 1

Figure 6.1. Singular and stabilizing hyperplanes for the Franke
filtration of AB,φ(π).
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In the statement of results, we refer to different regions in C+ defined below.
The distinguished points in Figure 6.1 are intersections of singular and stabilizing
hyperplanes in the closure of the positive Weyl chamber. They are given in co-
ordinates as T1(2, 1), T2(1, 0), T3(1, 1), T4(1/2, 1/2) and O(0, 0). The regions are
disjoint and defined as follows

Ĉ+ = C+ \ (S1 ∪S2 ∪S3 ∪S4) ,

Ŝ1 =
(
S1 ∩ C+

)
\ {T1},

Ŝ2 =
(
S2 ∩ C+

)
\ {T1},

Ŝ3 = S3 ∩ C+,

Ŝ4 = S4 ∩ C+,

Ŝ′
1 =

(
S′

1 ∩ C+
)
\ {T3, T4, O},

Ŝ′
2 =

(
S′

2 ∩ C+
)
\ {T2, O}.

Observe that the stabilizing hyperplanes S′
3 and S′

4 intersect the closure C+ of the
positive Weyl chamber in point O, and that point is treated in a separate theorem.
Hence, they do not generate additional regions above.





CHAPTER 7

Filtration for the support in the Borel subgroup –
statement of results

In this chapter, we describe the Franke filtration of the (g∞,K∞;G(Af ))-
module A{B},φ(π) of automorphic forms with cuspidal support in the associate
class ({B}, φ(π)), represented by the character

π ∼= πu ⊗ s0
∼= χ1| · |s0,1 ⊗ χ2| · |s0,2 ,

where πu = χ1 ⊗ χ2 is a unitary character of T (A) = I× I, with χ1 and χ2 unitary
Hecke characters of I, and

s0 = (s0,1, s0,2) ∈ C+, i.e., s0,1 ≥ s0,2 ≥ 0.

However, before stating the results, we explain the plan how to systematically list
all the possible cases.

7.1. Plan for the statement of results

Since the singular hyperplanes for the Eisenstein series E(f, s) are determined
by the conditions on the unitary character πu, given in Table 6.1, we first distinguish
several cases based on the type of πu.

We number the cases according to the number of singular hyperplanes for the
Eisenstein series associated to πu. Such numeration of cases is aligned with the
growing complexity of the Franke filtration. Thus, Case 0 is the case with no singu-
lar hyperplanes and Case 4 is the case with all four possible singular hyperplanes.
There are four different cases with one singular hyperplane, so we add in our nu-
meration of cases the index of the hyperplane. For instance, Case 1–1 is the case
in which S1 is the only singular hyperplane. As explained below, there is only one
case with two singular hyperplanes, which is numerated as Case 2, and there is no
Case 3, because there is no πu such that there are three singular hyperplanes.

We now list these cases with explicit conditions on πu = χ1⊗χ2, i.e., on Hecke
characters χ1 and χ2. See Table 6.1.

Case 0: πu ∼= χ1 ⊗ χ2 with χ1 6= χ2, χ1 6= χ−1
2 , χ1 6= 1, χ2 6= 1,

Case 1–1: πu ∼= χ ⊗ χ with χ2 6= 1, i.e., χ1 and χ2 are equal non-trivial
non-quadratic characters,

Case 1–2: πu ∼= χ ⊗ 1 with χ 6= 1, i.e., χ1 is a non-trivial and χ2 is the
trivial character,

Case 1–3: πu ∼= χ⊗χ−1 with χ2 6= 1, i.e., χ1 and χ2 are different non-trivial
non-quadratic characters such that χ1χ2 is trivial,

33
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Case 1–4: πu ∼= 1⊗χ with χ 6= 1, i.e., χ1 is the trivial and χ2 a non-trivial
character,

Case 2: πu ∼= χ ⊗ χ with χ2 = 1 6= χ, i.e., χ1 and χ2 are equal non-trivial
quadratic characters,

Case 4: πu = 1⊗ 1, i.e., χ1 and χ2 are both trivial characters,

where 1 denotes the trivial character of I. From the conditions for singular hyper-
planes in Table 6.1, observe that in the cases with more than one singular hyper-
plane, if one of the characters χ1 and χ2 is trivial, then the other is trivial as well,
and we are in Case 4. If both χ1 and χ2 are non-trivial, then the only possibility
for more than one singular hyperplane is Case 2 above. This explains why there is
only one Case 2, and no Case 3.

Once we fixed the seven cases depending on πu, we consider each of them
separately. In each case, we formulate the result depending on the region in C+,
introduced in Section 6.2, in which s0 lies. The only exception of this rule is that
we consider separately the point

s0 = (0, 0),

which is denoted by O in Figure 6.1. There are no singular hyperplanes passing
through this point, so that the seven cases above are irrelevant. On the other
hand, all stabilizing hyperplanes intersect at s0 = (0, 0), and we distinguish cases
depending on the conditions for stabilization in Table 6.2.

7.2. Fascicule de résultats

In this section we formulate the explicit description of the Franke filtration of
A{B},φ(π) in all possible cases. The numeration of cases is as in Section 7.1.

To reduce repetition, in all theorems below, we have the following assumptions.
Let G = Sp2 be the symplectic group of rank two. Let B be the fixed Borel
subgroup of G with the maximal split torus T ∼= GL1×GL1 as the Levi factor. Let
({B}, φ(π)) be a fixed cuspidal support, where π ∼= χ1|·|s0,1⊗χ2|·|s0,2 is a character

of T (A) with πu ∼= χ1 ⊗ χ2 a unitary character of T (A), and s0 = (s0,1, s0,2) ∈ C+,
i.e., s0,1 ≥ s0,2 ≥ 0. In all theorems except the last one, we also assume that
s0 6= (0, 0), and state the results depending on the region of Section 6.2 and Figure
6.1 to which s0 belongs. The last theorem deals with the point s0 = (0, 0), which
is denoted by O in Figure 6.1.

Theorem 7.1 (Case 0). Suppose that πu = χ1 ⊗ χ2 is in Case 0, that is,
the unitary Hecke characters χ1 and χ2 satisfy χ1 6= χ2, χ1 6= χ−1

2 , χ1 6= 1, and
χ2 6= 1. In this case, the Franke filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π)

is always one-step filtration.

(0a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ4 ∪ Ŝ′
1 ∪ {T1, T3, T4} = C+ \S′

2,

that is, s0,1 ≥ s0,2 > 0, the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼= IB(s0, π

u)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
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(0b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
2 ∪ {T2},

that is, s0,1 > s0,2 = 0, the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

 IB((s0,1, 0), π
u)⊗ S(ǎB,C), if χ2

2 6= 1,(
IB((s0,1, 0), π

u)⊗ S(ǎB,C)
)w2

, if χ2
2 = 1,

as a (g∞,K∞;G(Af ))-module, where the exponent w2 in the last line de-
notes the space of invariant vectors for the action of the intertwining oper-
ator M(w2) on IB((s0,1, 0), π

u)⊗S(ǎB,C), and M is the functor introduced
in Section 4.2.

Theorem 7.2 (Case 1–1). Suppose that πu = χ1 ⊗ χ2 is in Case 1–1, that
is, the unitary Hecke characters χ1 and χ2 are equal non-trivial non-quadratic
characters, and denote χ = χ1 = χ2. In this case, the Franke filtration of the
(g∞,K∞;G(Af ))-module A{B},φ(π) is at most two-step filtration.

(1–1a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ4 ∪ Ŝ′
2,

that is, s0,1 > s0,2 ≥ 0 and s0,1 − s0,2 6= 1, the full space A{B},φ(π) is
isomorphic to

A{B},φ(π)
∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
(1–1b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
1 ∪ {T3, T4},

that is, s0,1 = s0,2 > 0, let t0 = s0,1 = s0,2. Then the full space A{B},φ(π)

is isomorphic to

A{B},φ(π)
∼=

(
IB((t0, t0), χ⊗ χ)⊗ S(ǎB,C)

)w1

as a (g∞,K∞;G(Af ))-module, where the exponent w1 denotes the space
of invariant vectors for the action of the intertwining operator M(w1) on
IB((t0, t0), χ ⊗ χ) ⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(1–1c) For

s0 = (s0,1, s0,2) ∈ Ŝ1 ∪ {T1, T2},
that is, s0,1 − s0,2 = 1 and s0,2 ≥ 0, the Franke filtration of the space
A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 + s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
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Theorem 7.3 (Case 1–2). Suppose that πu = χ1 ⊗ χ2 is in Case 1–2, that
is, the unitary Hecke character χ1 is non-trivial and χ2 = 1 is trivial. In this case,
the Franke filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π) is at most two-step
filtration.

(1–2a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ1 ∪ Ŝ3 ∪ Ŝ4 ∪ Ŝ′
1 ∪ {T4},

that is, s0,1 ≥ s0,2 > 0 and s0,2 6= 1, the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼= IB(s0, χ1 ⊗ 1)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
(1–2b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
2 ∪ {T2},

that is s0,1 > s0,2 = 0, the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((s0,1, 0), χ1 ⊗ 1)⊗ S(ǎB,C)

)w2

as a (g∞,K∞;G(Af ))-module, where the exponent w2 denotes the space
of invariant vectors for the action of the intertwining operator M(w2) on
IB((s0,1, 0), χ1⊗1)⊗S(ǎB,C), and M is the functor introduced in Section
4.2.

(1–2c) For

s0 = (s0,1, s0,2) ∈ Ŝ2 ∪ {T1, T3},
that is, s0,1 ≥ s0,2 = 1, the Franke filtration of the space A{B},φ(π) is the
two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,1, χ1 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((s0,1, 1), χ1 ⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Theorem 7.4 (Case 1–3). Suppose that πu = χ1 ⊗ χ2 is in Case 1–3, that
is, the unitary Hecke characters χ1 and χ2 are different non-trivial non-quadratic
characters such that χ1χ2 = 1 is trivial, and denote χ = χ1 = χ−1

2 . In this case,
the Franke filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π) is at most two-step
filtration.

(1–3a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ1 ∪ Ŝ2 ∪ Ŝ4 ∪ Ŝ′
1 ∪ Ŝ′

2 ∪ {T1, T3},

that is, s0,1 ≥ s0,2 ≥ 0, with (s0,1, s0,2) 6= (0, 0), and s0,1 + s0,2 6= 1, the
full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼= IB(s0, χ⊗ χ−1)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
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(1–3b) For

s0 = (s0,1, s0,2) ∈ Ŝ3 ∪ {T2, T4},
that is, s0,1 + s0,2 = 1 and s0,1 ≥ s0,2 ≥ 0, the Franke filtration of the
space A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 − s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ−1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Theorem 7.5 (Case 1–4). Suppose that πu = χ1 ⊗ χ2 is in Case 1–4, that
is, the unitary Hecke character χ1 = 1 is trivial and χ2 is non-trivial. In this case,
the Franke filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π) is at most two-step
filtration.

(1–4a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ1 ∪ Ŝ2 ∪ Ŝ3 ∪ Ŝ′
1 ∪ {T1, T4},

that is, s0,1 ≥ s0,2 > 0 and s0,1 6= 1, the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼= IB(s0,1⊗ χ2)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
(1–4b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
2,

that is, s0,1 > s0,2 = 0 and s0,1 6= 1, the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼=

 IB((s0,1, 0),1⊗ χ2)⊗ S(ǎB,C), if χ2
2 6= 1,(

IB((s0,1, 0),1⊗ χ2)⊗ S(ǎB,C)
)w2

, if χ2
2 = 1,

as a (g∞,K∞;G(Af ))-module, where the exponent w2 denotes the space
of invariant vectors for the action of the intertwining operator M(w2) on
IB((s0,1, 0),1⊗χ2)⊗S(ǎB,C), and M is the functor introduced in Section
4.2.

(1–4c) For

s0 = (s0,1, s0,2) ∈ Ŝ4 ∪ {T3},
that is, s0,1 = 1 and 1 ≥ s0,2 > 0, the Franke filtration of the space
A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,2, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, s0,2),1⊗ χ2)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.



38 7. SUPPORT IN THE BOREL SUBGROUP – STATEMENT OF RESULTS

(1–4d) For

s0 = (s0,1, s0,2) = T2,

that is, s0,1 = 1 and s0,2 = 0, the Franke filtration of the space A{B},φ(π)

is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼=

 IP2

(
0, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C), if χ2

2 6= 1,(
IP2

(
0, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)w121
, if χ2

2 = 1,

A0
{B},φ(π)/A

1
{B},φ(π)

∼=

 IB((1, 0),1⊗ χ2)⊗ S(ǎB,C), if χ2
2 6= 1,(

IB((1, 0),1⊗ χ2)⊗ S(ǎB,C)
)w2

, if χ2
2 = 1,

as (g∞,K∞;G(Af ))-modules, where the exponent w121 in the first line
denotes the space of invariant vectors for the action of the intertwining
operator M(w121) on the induced representation IP2

(
0, χ2 ⊗ 1SL2(A)

)
⊗

S(ǎP2,C), and the exponent w2 in the second line denotes the space of
invariant vectors for the action of the intertwining operator M(w2) on
IB((1, 0),1 ⊗ χ2) ⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

Theorem 7.6 (Case 2). Suppose that πu = χ1 ⊗ χ2 is in Case 2, that is, the
unitary Hecke characters χ1 and χ2 are equal non-trivial quadratic characters, and
denote χ = χ1 = χ2. In this case, the Franke filtration of the (g∞,K∞;G(Af ))-
module A{B},φ(π) is at most three-step filtration.

(2a) For

s0 = (s0,1, s0,2) ∈ Ĉ+ ∪ Ŝ2 ∪ Ŝ4,

that is, s0,1 > s0,2 > 0 and s0,1 − s0,2 6= 1 and s0,1 + s0,2 6= 1, the full
space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
(2b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
1 ∪ {T3},

that is, s0,1 = s0,2 > 0, and t0 = s0,1 = s0,2 6= 1/2, the full space A{B},φ(π)

is isomorphic to

A{B},φ(π)
∼=

(
IB((t0, t0), χ⊗ χ)⊗ S(ǎB,C)

)w1

as a (g∞,K∞;G(Af ))-module, where the exponent w1 denotes the space
of invariant vectors for the action of the intertwining operator M(w1) on
IB((t0, t0), χ ⊗ χ) ⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(2c) For

s0 = (s0,1, s0,2) ∈ Ŝ′
2,

that is, s0,1 > s0,2 = 0 and s0,1 6= 1, the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼=

(
IB((s0,1, 0), χ⊗ χ)⊗ S(ǎB,C)

)w2
,
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as a (g∞,K∞;G(Af ))-module, where the exponent w2 denotes the space
of invariant vectors for the action of the intertwining operator M(w2) on
IB((s0,1, 0), χ⊗ χ)⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(2d) For

s0 = (s0,1, s0,2) ∈ Ŝ1 ∪ {T1},
that is, s0,1 − s0,2 = 1 and s0,2 > 0, the Franke filtration of the space
A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 + s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
(2e) For

s0 = (s0,1, s0,2) ∈ Ŝ3,

that is, s0,1 + s0,2 = 1 and s0,1 > s0,2 > 0, the Franke filtration of the
space A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 − s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
(2f) For

s0 = (s0,1, s0,2) = T4,

that is, s0,1 = s0,2 = 1/2, the Franke filtration of the space A{B},φ(π) is
the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼=
(
IP1 (0, χ ◦ det)⊗ S(ǎP1,C)

)w212

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1/2, 1/2), χ⊗ χ)⊗ S(ǎB,C)

)w1

as (g∞,K∞;G(Af ))-modules, where the exponent w212 in the first line
denotes the space of invariant vectors for the action of the intertwining
operator M(w212) on IP1

(0, χ ◦ det) ⊗ S(ǎP1,C), and the exponent w1 in
the second line denotes the space of invariant vectors for the action of the
intertwining operator M(w1) on IB((1/2, 1/2), χ ⊗ χ) ⊗ S(ǎB,C), and M
is the functor introduced in Section 4.2.



40 7. SUPPORT IN THE BOREL SUBGROUP – STATEMENT OF RESULTS

(2g) For

s0 = (s0,1, s0,2) = T2,

that is, s0,1 = 1 and s0,2 = 0, the Franke filtration of the space A{B},φ(π)

is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼= J(χ)

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1 (1/2, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0), χ⊗ χ)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules, where J(χ) is the residual representation of
G(A) mentioned in Theorem 6.3 and explicitly described on [Kim95, page
148], and the exponent w2 in the last line denotes the space of invariant
vectors for the action of the intertwining operator M(w2) on IB((1, 0), χ⊗
χ)⊗ S(ǎB,C), and M is the functor introduced in Section 4.2.

Theorem 7.7 (Case 4). Suppose that πu = χ1 ⊗ χ2 is in Case 4, that is,
the unitary Hecke characters χ1 and χ2 are both trivial. In this case, the Franke
filtration of the (g∞,K∞;G(Af ))-module A{B},φ(π) is at most three-step filtration.

(4a) For

s0 = (s0,1, s0,2) ∈ Ĉ+,

that is, s0,1 > s0,2 > 0 and s0,1 − s0,2 6= 1 and s0,2 6= 1 and s0,1 + s0,2 6= 1
and s0,1 6= 1, the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼= IB(s0,1⊗ 1)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
(4b) For

s0 = (s0,1, s0,2) ∈ Ŝ′
1,

that is, s0,1 = s0,2 > 0 and t0 = s0,1 = s0,2 6= 1 and t0 = s0,1 = s0,2 6= 1/2,
the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((t0, t0),1⊗ 1)⊗ S(ǎB,C)

)w1

as a (g∞,K∞;G(Af ))-module, where the exponent w1 denotes the space
of invariant vectors for the action of the intertwining operator M(w1) on
IB((t0, t0),1 ⊗ 1) ⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(4c) For

s0 = (s0,1, s0,2) ∈ Ŝ′
2,

that is, s0,1 > s0,2 = 0 and s0,1 6= 1, the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼=

(
IB((s0,1, 0),1⊗ 1)⊗ S(ǎB,C)

)w2
,

as a (g∞,K∞;G(Af ))-module, where the exponent w2 denotes the space
of invariant vectors for the action of the intertwining operator M(w2) on
IB((s0,1, 0),1⊗ 1)⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.
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(4d) For

s0 = (s0,1, s0,2) ∈ Ŝ1,

that is, s0,1−s0,2 = 1 and s0 6= (2, 1) and s0 6= (1, 0), the Franke filtration
of the space A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 + s0,2

2
,1 ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0,1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
(4e) For

s0 = (s0,1, s0,2) ∈ Ŝ2,

that is, s0,1 > s0,2 = 1 and s0,1 6= 2, the Franke filtration of the space
A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,1,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((s0,1, 1),1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
(4f) For

s0 = (s0,1, s0,2) ∈ Ŝ3,

that is, s0,1 + s0,2 = 1 and s0,1 > s0,2 > 0, the Franke filtration of the
space A{B},φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 − s0,2

2
,1 ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0,1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
(4g) For

s0 = (s0,1, s0,2) ∈ Ŝ4,

that is, 1 = s0,1 > s0,2 > 0, the Franke filtration of the space A{B},φ(π) is
the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,2,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, s0,2),1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
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(4h) For

s0 = (s0,1, s0,2) = T4,

that is, s0,1 = s0,2 = 1/2, the Franke filtration of the space A{B},φ(π) is
the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼=
(
IP1

(0,1 ◦ det)⊗ S(ǎP1,C)
)w212

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1/2, 1/2),1⊗ 1)⊗ S(ǎB,C)

)w1

as (g∞,K∞;G(Af ))-modules, where the exponent w212 in the first line
denotes the space of invariant vectors for the action of the intertwining
operator M(w212) on IP1 (0,1 ◦ det) ⊗ S(ǎP1,C), and the exponent w1 in
the second line denotes the space of invariant vectors for the action of the
intertwining operator M(w1) on IB((1/2, 1/2),1 ⊗ 1) ⊗ S(ǎB,C), and M
is the functor introduced in Section 4.2.

(4i) For

s0 = (s0,1, s0,2) = T3,

that is, s0,1 = s0,2 = 1, the Franke filtration of the space A{B},φ(π) is the
two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
1,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 1),1⊗ 1)⊗ S(ǎB,C)

)w1

as (g∞,K∞;G(Af ))-modules, where the exponent w1 denotes the space of
invariant vectors for the action of the intertwining operator M(w1) on
IB((1, 1),1 ⊗ 1) ⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(4j) For

s0 = (s0,1, s0,2) = T2,

that is, s0,1 = 1 and s0,2 = 0, the Franke filtration of the space A{B},φ(π)

is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼=
(
IP2

(
0,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)w121

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1 (1/2,1 ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0),1⊗ 1)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules, where the exponent w121 in the first line
denotes the space of invariant vectors for the action of the intertwining
operator M(w121) on the induced representation

(
IP2

(
0,1⊗ 1SL2(A)

)
⊗

S(ǎP2,C), and the exponent w2 in the last line denotes the space of in-
variant vectors for the action of the intertwining operator M(w2) on the
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induced representation IB((1, 0),1 ⊗ 1) ⊗ S(ǎB,C), and M is the functor
introduced in Section 4.2.

(4k) For

s0 = (s0,1, s0,2) = T1,

that is, s0,1 = 2 and s0,2 = 1, it can be arranged that the Franke filtration
of the space A{B},φ(π) is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼= 1G(A)

A1
{B},φ(π)/A

2
{B},φ(π)

∼=
(
IP1

(3/2,1 ◦ det)⊗ S(ǎP1,C)
)

⊕(
IP2

(
2,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)
A0

{B},φ(π)/A
1
{B},φ(π)

∼= IB((2, 1),1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules, where 1G(A) denotes the trivial representa-
tion of G(A).

Theorem 7.8 (Case of the point s0 = (0, 0)). Let ({B}, φ(π)) be a fixed
cuspidal support with π = πu ∼= χ1 ⊗χ2 a unitary character of T (A), where χ1 and
χ2 are unitary characters of I, that is, s0 = (0, 0). In this case, the Franke filtration
of the (g∞,K∞;G(Af ))-module A{B},φ(π) is always one-step filtration.

(a) If χ1 6= χ2 and χ1 6= χ−1
2 and χ2

1 6= 1 and χ2
2 6= 1, then the full space

A{B},φ(π) is isomorphic to

A{B},φ(π)
∼= IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.

(b) If χ1 = χ2 and χ1 6= χ−1
2 , which implies that χ2

1 = χ2
2 6= 1, then the full

space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((0, 0), χ⊗ χ)⊗ S(ǎB,C)

)w1

as a (g∞,K∞;G(Af ))-module, where we write χ = χ1 = χ2, and the
exponent w1 denotes the space of invariant vectors for the action of the
intertwining operator M(w1) on IB((0, 0), χ⊗χ)⊗S(ǎB,C), and M is the
functor introduced in Section 4.2.

(c) If χ1 6= χ2 and χ1 = χ−1
2 , which implies that χ2

1 6= 1 and χ2
2 6= 1, then

the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((0, 0), χ⊗ χ−1)⊗ S(ǎB,C)

)w212

as a (g∞,K∞;G(Af ))-module, where we write χ = χ1 = χ−1
2 , and the

exponent w212 denotes the space of invariant vectors for the action of the
intertwining operator M(w212) on IB((0, 0), χ ⊗ χ−1) ⊗ S(ǎB,C), and M
is the functor introduced in Section 4.2.

(d) If χ2
1 = 1 and χ2

2 6= 1, which implies that χ1 6= χ2 and χ1 6= χ−1
2 , then

the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)

)w121
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as a (g∞,K∞;G(Af ))-module, where the exponent w121 denotes the space
of invariant vectors for the action of the intertwining operator M(w121) on
IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(e) If χ2
1 6= 1 and χ2

2 = 1, which implies that χ1 6= χ2 and χ1 6= χ−1
2 , then

the full space A{B},φ(π) is isomorphic to

A{B},φ(π)
∼=

(
IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)

)w2

as a (g∞,K∞;G(Af ))-module, where the exponent w2 denotes the space
of invariant vectors for the action of the intertwining operator M(w2) on
IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C), and M is the functor introduced in Section
4.2.

(f) If χ2
1 = χ2

2 = 1 and χ1 6= χ2, then the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼=

(
IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)

)w2,w121

as a (g∞,K∞;G(Af ))-module, where the exponent w2, w121 denotes the
space of invariant vectors for the action of both intertwining operators
M(w2) and M(w121) on IB((0, 0), χ1⊗χ2)⊗S(ǎB,C), and M is the functor
introduced in Section 4.2.

(g) If χ1 = χ2 and χ2
1 = χ2

2 = 1, then the full space A{B},φ(π) is isomorphic
to

A{B},φ(π)
∼=

(
IB((0, 0), χ⊗ χ)⊗ S(ǎB,C)

)w1,w2

as a (g∞,K∞;G(Af ))-module, where we write χ = χ1 = χ2, and the ex-
ponent w1, w2 denotes the space of invariant vectors for the action of both
intertwining operators M(w1) and M(w2) on IB((0, 0), χ⊗ χ)⊗ S(ǎB,C),
and M is the functor introduced in Section 4.2.



CHAPTER 8

Filtration for the support in the Borel subgroup –
proofs

In this chapter the theorems stated in Section 7.2 are proved. The plan of
the proof is different than the plan for the statement of the results in Section 7.1.
Therefore, we begin by explaining the strategy and the plan of the proof.

8.1. Strategy and plan of the proof

The strategy of the proof is to prove simultaneously in Section 8.2 all the
Theorems 7.1–7.7, because some cases of different theorems admit the same proof.
The only exception is the last theorem, namely, Theorem 7.8, which is proved
separately in Section 8.3 at the end of this chapter.

The proof is divided into steps. Each step covers certain region defined in
Section 6.2 referring to Figure 6.1. The steps are then divided into substeps de-
pending on the cuspidal support. Several substeps of different steps may admit the
same proof, because of the same properties of the Eisenstein series and/or the same
conditions for stabilization of the cuspidal support.

This plan of proof is different than the statement of results. The reason is that
in the statement of theorems, the cuspidal support is used to distinguish cases. This
is natural from the point of view of applications in which the cuspidal support is
given. On the other hand, in the proof it is more practical to distinguish the steps
according to the region in which s0 belongs, because cases with different cuspidal
support have the same proof.

For convenience of the reader, we provide in Tables 8.1 and 8.2 the list of all
theorems and their cases, together with the reference to the step of the proof in
which they are proved. The table simplifies the navigation between the statement
of theorems and the steps in which they are proved.

The proofs are based on

• the description of the Franke filtration in Chapter 4,
• the analytic properties of the Eisenstein series constructed from πu re-

called in Chapter 6 and summarized in Table 6.1,
• the conditions for stabilization given in Table 6.2,
• and Theorem A.2, in which the colimits required for the proof are com-

puted.

See also Figure 6.1, in which the singular and stabilizing hyperplanes intersecting
the closure of the positive Weyl chamber are shown.

According to the description of the Franke filtration in Chapter 4, the key
information for the proof is the structure of the groupoid M{B},φ(π). This is studied
using the analytic properties of Eisenstein series and the stabilization conditions in
each step of the proof separately. The partial oreder � on the set S{P},φ(π), which

45
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Table 8.1. The list of Theorems 7.1–7.5 and their cases, with
reference to the steps of the proof in which they are proved.

Theorem Case Steps

Thm. 7.1 (0a) 1, 2.1, 3.1, 4.1, 5.1, 6.1, 7.1, 10.1, 11.1

(0b) 8.1, 8.2, 9.1, 9.2

(1-1a) 1, 3.1, 4.1, 5.1, 8.1

Thm. 7.2 (1-1b) 7.2, 10.2, 11.2

(1-1c) 2.2, 6.2, 9.3

(1-2a) 1, 2.1, 4.1, 5.1, 7.1, 11.1

Thm. 7.3 (1-2b) 8.2, 9.2

(1-2c) 3.2, 6.3, 10.3

Thm. 7.4 (1-3a) 1, 2.1, 3.1, 5.1, 6.1, 7.1, 8.1, 10.1

(1-3b) 4.2, 9.4, 11.3

(1-4a) 1, 2.1, 3.1, 4.1, 6.1, 7.1, 11.1

Thm. 7.5 (1-4b) 8.1, 8.2

(1-4c) 5.2, 10.4

(1-4d) 9.5, 9.6

is required for the definition of the Franke filtration, is made explicit for the group
G in Section 4.2. It is repeatedly used in the proof to order the triples in M{B},φ(π)

into appropriate quotients of the filtrations.
Observe that, except for Theorem 7.8, the only two non-trivial groupoids for

the computation of the colimit of Theorem A.2 which appear in the proof are either
the groupoid with one object X0 and a non-trivial automorphism w0 of X0, or the
groupoid with two objects X0 and X1 and the isomorphisms w0,1 = w−1

1,0 between
them as the only non-trivial morphisms. The notation is as in Theorem A.2. In
the former case, we look at Theorem A.2 with m = 0 and W0 = {1, w0}, so that
the colimit is isomorphic to the space of M(w0)-invariant vectors in M(X0). In
the latter case, we look at Theorem A.2 with m = 1 and W0 = {1}, so that the
colimit is isomorphic to M(X0) itself. We use this observation repeatedly in the
proof below.

8.2. Proof of Theorems 7.1–7.7

As already explained above, the proof is divided into steps according to the
region in which s0 belongs. The steps are then divided into substeps depending on
the conditions on the cuspidal support πu = χ1 ⊗ χ2.

Step 1: s0 = (s0,1, s0,2) ∈ Ĉ+.
In this step, according to Table 6.1 and Table 6.2, the point s0 is away from
all singular hyperplanes and all stabilizing hyperplanes. Therefore, the
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Table 8.2. The list of Theorems 7.6–7.7 and their cases, with
reference to the steps of the proof in which they are proved.

Theorem Case Steps

(2a) 1, 3.1, 5.1

(2b) 7.2, 10.2

(2c) 8.2

Thm. 7.6 (2d) 2.2, 6.2

(2e) 4.2

(2f) 11.4

(2g) 9.7

(4a) 1

(4b) 7.2

(4c) 8.2

(4d) 2.2

(4e) 3.2

Thm. 7.7 (4f) 4.2

(4g) 5.2

(4h) 11.4

(4i) 10.5

(4j) 9.8

(4k) 6.4

Eisenstein series with any cuspidal support πu are holomorphic and there
is no stabilization. Thus, the set of triples M{B},φ(π) in the description
of the filtration is a singleton. The only possible triple is

(B, πu, s0),

as there are no poles of the Eisenstein series which could produce residual
representations with that support. The only morphism of this triple is the
identity, as there is no stabilization. Hence, according to the description of
the Franke filtration in Section 4.3, the full space A{B},φ(π) of automorphic
forms supported in φ(π) is isomorphic to

IB(s0, π
u)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.

Step 2: s0 = (s0,1, s0,2) ∈ Ŝ1, i.e., s0,1 − s0,2 = 1 with s0,2 > 0, and
s0 6= (2, 1).
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This step is divided into substeps depending on the condition for the pole
of Eisenstein series along S1 given in Table 6.1.

2.1 χ1 6= χ2

In this substep, there is no pole of the Eisenstein series, and no
stabilization. Hence, the proof and the result are the same as in Step
1.

2.2 χ1 = χ2

We denote χ = χ1 = χ2. The condition for the pole of the Eisenstein
series along S1 is satisfied, so that the residues span the residual
representation

(χ ◦ det) | · |
s0,1+s0,2

2

of the Levi factor L1(A) ∼= GL2(A) as in Theorem 6.1. Thus, there
are two triples in M{B},φ(π), and these are

(B,χ⊗ χ, s0) and

(
P1, χ ◦ det, s0,1 + s0,2

2

)
.

Since there is no stabilization, there are no non-trivial morphisms in
M{B},φ(π). In the partial order required for the description of the
quotients of the filtration, which is made explicit in Section 4.2, we
have

ιP1

(
s0,1 + s0,2

2

)
=

(
s0,1 + s0,2

2
,
s0,1 + s0,2

2

)
� (s0,1, s0,2) = ιB(s0),

because s0,2 <
s0,1+s0,2

2 < s0,1. Hence, we may choose the function
T{B},φ(π) to take values 0 and 1, and the two triples contribute to
different quotients of the filtration. The Franke filtration of the space
A{B},φ(π) of automorphic forms supported in φ(π) is the two-step
filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 + s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Step 3: s0 = (s0,1, s0,2) ∈ Ŝ2, i.e., s0,2 = 1 with s0,1 > 1 and s0,1 6= 2.
This step is divided into substeps depending on the condition for the pole
of Eisenstein series along S2 given in Table 6.1.

3.1 χ2 6= 1
In this substep, there is no pole of the Eisenstein series, and no
stabilization. Hence, the proof and the result are the same as in Step
1.
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3.2 χ2 = 1
This substep is very similar to Step 2.2. The condition for the pole of
the Eisenstein series along S2 is satisfied, and there is no stabiliza-
tion. The residues of the Eisenstein series span a residual represen-
tation as in Theorem 6.2, which produces a triple in M{B},φ(π) with
the parabolic subgroup P2. More precisely, the triples in M{B},φ(π)

are

(B,χ1 ⊗ 1, (s0,1, 1)) and
(
P2, χ1 ⊗ 1SL2(A), s0,1

)
,

and there are no non-trivial morphisms. In the partial order defined
in Section 4.2, we have

ιP2
(s0,1) = (s0,1, 0) � (s0,1, 1) = ιB((s0,1, 1)).

Hence, the Franke filtration of the space A{B},φ(π) of automorphic
forms supported in φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,1, χ1 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((s0,1, 1), χ1 ⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Step 4: s0 = (s0,1, s0,2) ∈ Ŝ3, i.e., s0,1 + s0,2 = 1 with s0,1 > s0,2 > 0.
This step is divided into substeps depending on the condition for the pole
of Eisenstein series along S3 given in Table 6.1.

4.1 χ1χ2 6= 1
In this substep, there is no pole of the Eisenstein series, and no
stabilization. Hence, the proof and the result are the same as in Step
1.

4.2 χ1χ2 = 1
As in Step 2.2 and Step 3.2, the Eisenstein series have a pole only
along S3, so that there are two triples in M{B},φ(π), and there are
no non-trivial morphisms. More precisely, the triples in M{B},φ(π)

are

(B,χ⊗ χ−1, (s0,1, s0,2)) and

(
P1, χ ◦ det, s0,1 − s0,2

2

)
,

where we set χ = χ1 = χ−1
2 , and there are no non-trivial morphisms,

because there is no stabilization. In the partial order defined in
Section 4.2, we have

ιP1

(
s0,1 − s0,2

2

)
=

(
s0,1 − s0,2

2
,
s0,1 − s0,2

2

)
� (s0,1, s0,2) = ιB(s0),

because
s0,1−s0,2

2 < s0,1 − s0,2 < s0,1 and s0,1 − s0,2 < s0,1 + s0,2.
Hence, the Franke filtration of the space A{B},φ(π) of automorphic
forms supported in φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},
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where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1

(
s0,1 − s0,2

2
, χ ◦ det

)
⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ−1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Step 5: s0 = (s0,1, s0,2) ∈ Ŝ4, i.e., s0,1 = 1 with 1 > s0,2 > 0.
This step is divided into substeps depending on the condition for the pole
of Eisenstein series along S4 given in Table 6.1.

5.1 χ1 6= 1
In this substep, there is no pole of the Eisenstein series, and no
stabilization. Hence, the proof and the result are the same as in Step
1.

5.2 χ1 = 1
The Eisenstein series have the pole along S4 and there is no stabi-
lization. Therefore, as in Step 2.2, Step 3.2 and Step 4.2, the triples
in M{B},φ(π) are

(B,1⊗ χ2, (1, s0,2)) and
(
P2, χ2 ⊗ 1SL2(A), s0,2

)
,

and there are no non-trivial morphisms. In the partial order defined
in Section 4.2, we have

ιP2
(s0,2) = (s0,2, 0) � (1, s0,2) = ιB((1, s0,2)),

because 1 > s0,2 > 0 in this step. Hence, the Franke filtration of
the space A{B},φ(π) of automorphic forms supported in φ(π) is the
two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
s0,2, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, s0,2),1⊗ χ2)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

Step 6: s0 = (s0,1, s0,2) = T1, i.e., s0,1 = 2 and s0,2 = 1.
Since T1 is the intersection point of hyperplanes S1 and S2, this step is
divided into substeps depending on the condition for the pole of Eisenstein
series along S1 and S2, as given in Table 6.1.

6.1 χ1 6= χ2 and χ2 6= 1
In this substep, there is no pole of the Eisenstein series, and no
stabilization. Hence, the proof and the result are the same as in Step
1.

6.2 χ1 = χ2 6= 1
In this substep, only the condition for the pole of the Eisenstein series
along S1 is satisfied, and there is no stabilization. Hence, the proof
and the result are the same as in Step 2.2 with s0,1 = 2 and s0,2 = 1.
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6.3 χ1 6= χ2 = 1
This substep is the same as Step 3.2 with s0,1 = 2, because only the
condition for the pole along the hyperplane S2 is satisfied.

6.4 χ1 = χ2 = 1
In this substep, the pole of Eisenstein series is of order two and the
iterated residues span the trivial representation of G(A). Since the
residues of order one along S1 and S2 span residual representations
of the Levi factors of the maximal proper parabolic subgroups, there
are four triples inM{B},φ(π). More precisely, the triples in M{B},φ(π)

are

(B,1⊗ 1, (2, 1)), (P1,1 ◦ det, 3/2) , (P2,1⊗ 1SL2(A), 2) and (G,1G(A), 0),

and there are no non-trivial morphisms, because there is no stabi-
lization. In the partial order required for the Franke filtration, we
have

ιG(0) = (0, 0) � ιP1
(3/2) = (3/2, 3/2) � ιB(2, 1) = (2, 1)

ιG(0) = (0, 0) � ιP2
(2) = (2, 0) � ιB(2, 1) = (2, 1),

and ιP1
(3/2) = (3/2, 3/2) is not comparable to ιP2

(2) = (2, 0).
Hence, we may choose the function T = T{B},φ(π), in such a way
that

T (ιG(0)) = 2, T (ιP1(3/2)) = T (ιP2(2)) = 1, and T (ιB(2, 1)) = 0.

Thus, the triple with G as the parabolic subgroup contributes to
the deepest filtration step. The two triples with P1 and P2 as para-
bolic subgroups are incomparable, so that we may arrange that they
contribute to the same quotient of the filtration, which is deeper in
the filtration than the triple with the parabolic subgroup B. In this
way, we obtain that the Franke filtration of the space A{B},φ(π) of
automorphic forms supported in φ(π) is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼= 1G(A)

A1
{B},φ(π)/A

2
{B},φ(π)

∼=
(
IP1

(3/2,1 ◦ det)⊗ S(ǎP1,C)
)

⊕(
IP2

(
2,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)
A0

{B},φ(π)/A
1
{B},φ(π)

∼= IB((2, 1),1⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules. This is the case in which a different
choice of the function T may result in a slightly different filtration,
as explained in Section 9.1 below.

Step 7: s0 = (s0,1, s0,2) ∈ Ŝ′
1, i.e., s0,1 = s0,2 > 0 and s0,1 = s0,2 6= 1/2

and s0,1 = s0,2 6= 1.
In this step, we set t0 = s0,1 = s0,2. According to Table 6.1, there are
no singular hyperplanes passing through s0. The type of stabilization
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depends on the condition on πu given in Table 6.2. We distinguish the
following substeps.

7.1 χ1 6= χ2

As there are no singular hyperplanes, all triples in M{B},φ(π) have B
as the parabolic subgroup. The stabilization along S′

1 is given by the
Weyl group element w1. In this substep, w1 does not stabilize πu.
Hence, there are two different triples in M{B},φ(π), with a non-trivial
isomorphism between them given by w1. More precisely, the triples
in M{B},φ(π) are

(B,χ1 ⊗ χ2, (t0, t0)) and (B,χ2 ⊗ χ1, (t0, t0)),

and the only non-trivial morphisms are the isomorphisms between
these two triples given by w1. The colimit required in the definition
of the Franke filtration is the case of m = 1, W0 = {1} and w0,1 = w1

in Theorem A.2. Hence, according to the description of the Franke
filtration in Section 4.3, the full space A{B},φ(π) of automorphic forms
supported in φ(π) is isomorphic to

IB((t0, t0), χ1 ⊗ χ2)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.

7.2 χ1 = χ2

Set χ = χ1 = χ2. This substep is similar to Step 7.1, except that
w1 stabilizes πu, so that there is only one triple in M{B},φ(π) with
a non-trivial automorphism w1. More precisely, M{B},φ(π) contains
only the triple

(B,χ⊗ χ, (t0, t0)),

and the only non-trivial morphism is the automorphism w1 of that
triple. The colimit required in the definition of the Franke filtration
is the case of m = 0 and W0 = {1, w1} in Theorem A.2. Hence,
according to the description of the Franke filtration in Section 4.3,
the full space A{B},φ(π) of automorphic forms supported in φ(π) is
isomorphic to(

IB((t0, t0), χ1 ⊗ χ2)⊗ S(ǎB,C)
)w1

as a (g∞,K∞;G(Af ))-module, where the exponent w1 stands for the
space of invariant vectors for the action of the intertwining operator
M(w1).

Step 8: s0 = (s0,1, s0,2) ∈ Ŝ′
2, i.e., s0,1 > s0,2 = 0 and s0,1 6= 1.

This step is very similar to Step 7. There are no singular hyperplanes, and
we distinguish the substeps depending on the condition on stabilization
of πu along S′

2 given in Table 6.2.

8.1 χ2
2 6= 1

This substep is parallel to Step 7.1, as the condition for stabilization
of πu along S′

2 is not satisfied. Thus, the triples in M{B},φ(π) are

(B,χ1 ⊗ χ2, (s0,1, 0)) and (B,χ1 ⊗ χ−1
2 , (s0,1, 0)),
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and the only non-trivial morphisms are the isomorphisms between
these two triples given by w2. Hence, using again Theorem A.2 and
the description of the Franke filtration in Section 4.3, the full space
A{B},φ(π) of automorphic forms supported in φ(π) is isomorphic to

IB((s0,1, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.

8.2 χ2
2 = 1

As in Step 7.2, the only triple in M{B},φ(π) is now

(B,χ1 ⊗ χ2, (s0,1, 0)),

and its automorphism w2 is the only non-trivial morphism. Hence,
according to Theorem A.2 and the description of the Franke filtration,
the full space A{B},φ(π) of automorphic forms supported in φ(π) is
isomorphic to(

IB((s0,1, 0), χ1 ⊗ χ2)⊗ S(ǎB,C)
)w2

as a (g∞,K∞;G(Af ))-module, where the exponent w2 stands for the
space of invariant vectors for the action of the intertwining operator
M(w2).

Step 9: s0 = (s0,1, s0,2) = T2, i.e., s0,1 = 1 and s0,2 = 0.
In this step, the singular hyperplanes passing through T2 are S1, S3 and
S4, and the stabilizing hyperplane is S′

2. The substeps are distinguished
with respect to conditions for poles and stabilization along these hyper-
planes given in Table 6.1 and Table 6.2. The possible substeps follow a
similar pattern as the statement of the theorems. More precisely, the sub-
steps are ordered with respect to growing number of singular hyperplanes.

9.1 χ1 6= χ2 and χ1 6= χ−1
2 and χ1 6= 1 and χ2

2 6= 1
In this substep, the Eisenstein series is holomorphic and the stabi-
lization is the same as in Step 8.1. Hence, the proof and the result
are the same as in that step with s0,1 = 1.

9.2 χ1 6= χ2 and χ1 6= 1 and χ2
2 = 1

As in the previous substep, the Eisenstein series is holomorphic, but
the stabilization is the same as in Step 8.2, so that the proof and the
result are the same as in that step with s0,1 = 1.

9.3 χ1 = χ2 and χ2
2 6= 1

In this substep, the Eisenstein series has a pole only along the singular
hyperplane S1. It is of order one, and the residues span a residual
representation of the Levi factor of P1, as in Theorem 6.1. This
yields a triple in M{B},φ(π) with the parabolic subgroup P1. The
stabilizer along S′

2 does not stabilize πu, so that there are two triples
in M{B},φ(π) with the parabolic subgroup B. Observe that the other
type of stabilization along S′

2 is treated in Step 9.7 below, because
it implies that the Eisenstein series have two singular hyperplanes
passing through T2. To summarize, the triples in M{B},φ(π) in this
substep are

(B,χ⊗ χ, (1, 0)), (B,χ⊗ χ−1, (1, 0)) and (P1, χ ◦ det, 1/2) ,
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where we set χ = χ1 = χ2, and the only non-trivial morphisms are
the isomorphisms between the first two triples given by w2. In the
partial order required for the definition of the filtration, we have

ιP1(1/2) = (1/2, 1/2) � ιB(1, 0) = (1, 0),

which implies that the triple with the parabolic subgroup P1 con-
tributes to a deeper filtration step. The colimit is calculated using
Theorem A.2 in the case of m = 1, W0 = {1} and w0,1 = w2. Hence,
the Franke filtration of the space A{B},φ(π) of automorphic forms
supported in φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1 (1/2, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, 0), χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

9.4 χ1 = χ−1
2 and χ2

2 6= 1
The cuspidal support in this substep is conjugate by w2 to the cus-
pidal support in Step 9.3. Hence, the Franke filtration is already
obtained in that step.

9.5 χ1 = 1 and χ2
2 6= 1

The only singular hyperplane in this substep is S4. The stabilizer
along S′

2 does not stabilize πu. Hence, there are two triples in
M{B},φ(π) with the parabolic subgroup B. The residual represen-
tation spanned by the residues of the Eisenstein series along S4 pro-
duce a triple with the parabolic subgroup P2, which admits another
conjugate triple. More precisely, the triples in M{B},φ(π) are

(B,1⊗ χ2, (1, 0)), (B,1⊗ χ−1
2 , (1, 0)),

(P2, χ2 ⊗ 1SL2(A), 0) and (P2, χ
−1
2 ⊗ 1SL2(A), 0),

and the only non-trivial morphisms are the non-trivial isomorphisms
between the first pair of triples given by w2 and the non-trivial iso-
morphisms between the second pair of triples given by w121. The par-
tial order again implies that the triples with the parabolic subgroup
P2 contribute to a deeper filtration step. The colimits are determined
by Theorem A.2. Hence, the Franke filtration of the space A{B},φ(π)

of automorphic forms supported in φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
0, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, 0),1⊗ χ2)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.
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9.6 χ1 = 1 and χ2 6= 1 and χ2
2 = 1

The only difference between this substep and the previous one is that
the stabilization along S′

2 is such that πu is stabilized. Thus, the two
pairs of triples in M{B},φ(π) are replaced with two triples which have
non-trivial automorphisms. More precisely, the triples in M{B},φ(π)

are

(B,1⊗ χ2, (1, 0)) and (P2, χ2 ⊗ 1SL2(A), 0),

and the only non-trivial morphisms are the automorphism of the first
triple given by w2 and the automorphism of the second triple given
by w121. The partial order is the same as in the previous substep.
The colimits are calculated using Theorem A.2. Hence, the Franke
filtration of the space A{B},φ(π) of automorphic forms supported in
φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼=
(
IP2

(
0, χ2 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)w121

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0),1⊗ χ2)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules, where the exponent w121 in the first
line denotes the space of invariant vectors for the intertwining oper-
ator M(w121), and the exponent w2 in the second line denotes the
space of invariant vectors for the intertwining operator M(w2).

9.7 χ1 = χ2 6= 1 and χ2
2 = 1

This is the substep in which the Eisenstein series has a pole along two
singular hyperplanes S1 and S3 passing through T2. According to
Theorem 6.3, the iterated residues of the Eisenstein series along these
two hyperplanes span a residual representation of G(A) denoted by
J(χ), where χ = χ1 = χ2. There are also residues along each of the
singular hyperplanes, which produce triples in M{B},φ(π). Hence,
the triples in M{B},φ(π) are

(B,χ⊗ χ, (1, 0)), (P1, χ ◦ det, 1/2) and (G, J(χ), 0),

and the only non-trivial morphism is the automorphism of the first
triple given by w2. In the partial order required for the definition of
the filtration, we have

ιG(0) = (0, 0) � ιP1
(1/2) = (1/2, 1/2) � ιB(1, 0) = (1, 0),

which indicates that the triple with G as the parabolic subgroup
contributes to the deepest filtration step, and the triple with P1 to
the step deeper than the one with B. The colimit is determined by
Theorem A.2. Hence, the Franke filtration of the space A{B},φ(π) is
the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},
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and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼= J(χ)

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1 (1/2, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0), χ⊗ χ)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules, where the exponent w2 in the last line
denotes the space of invariant vectors for the action of the intertwin-
ing operator M(w2).

9.8 χ1 = χ2 = 1
In this case all three hyperplanes S1, S3 and S4 passing through T2

are singular for the Eisenstein series. According to Theorem 6.3, the
iterated residue of the Eisenstein series at T2 is not square-integrable.
Hence, there is no triple in M{B},φ(π) with G as the parabolic sub-
group. The residues along each of the singular hyperplanes yield
triples in M{B},φ(π) with P1 and P2 as the parabolic subgroups.
More precisely, the triples in M{B},φ(π) are

(B,1⊗ 1, (1, 0)), (P1,1 ◦ det, 1/2) and (P2,1⊗ 1SL2(A), 0),

and the only non-trivial morphisms are the automorphism of the first
triple given by w2 and the automorphism of the last triple given by
w121. In the partial order required for the definition of the filtration,
we have

ιP2
(0) = (0, 0) � ιP1

(1/2) = (1/2, 1/2) � ιB(1, 0) = (1, 0),

which implies that the triple with the parabolic subgroup P2 con-
tributes to the deepest filtration step, while the triple with the para-
bolic subgroup P1 contributes to the step deeper than the one with B.
The colimits are calculated using Theorem A.2. Hence, the Franke
filtration of the space A{B},φ(π) is the three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

and the quotients of the filtration are isomorphic to

A2
{B},φ(π)

∼=
(
IP2(0,1⊗ 1SL2(A))⊗ S(ǎP2,C)

)w121

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1
(1/2, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0),1⊗ 1)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules, where the exponent w121 in the first
line denotes the space of invariant vectors for the action of the in-
tertwining operator M(w121), and the exponent w2 in the last line
denotes the space of invariant vectors for the action of the intertwin-
ing operator M(w2).

Step 10: s0 = (s0,1, s0,2) = T3, i.e., s0,1 = 1 and s0,2 = 1.
In this step, the singular hyperplanes S2 and S4 and the stabilizing hy-
perplane S′

1 pass through point T3. Hence, the substeps are distinguished
according to the conditions for these hyperplanes given in Table 6.1 and
Table 6.2.
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10.1 χ1 6= 1 and χ2 6= 1 and χ1 6= χ2

In this substep, the Eisenstein series is holomorphic, because the
conditions for the singular hyperplanes S2 and S4 are not satisfied.
Thus, the triples in M{B},φ(π) have the parabolic subgroup B. The
stabilization along S′

1 does not stabilize πu. Hence, we are in the
same setting as in Step 7.1 with t0 = 1. The proof and the result are
the same as in that step.

10.2 χ1 = χ2 6= 1
The proof and the result in this substep are the same as in Step 7.2
with t0 = 1, because the Eisenstein series is holomorphic and the
stabilization along S′

1 stabilizes πu.

10.3 χ1 6= 1 and χ2 = 1
In this substep, the Eisenstein series have a pole only along S2, and
the residues span a residual representation of the Levi factor of P2.
The stabilization along S′

1 does not stabilize πu, so that there are
two triples with the parabolic subgroup B, which are conjugate by
w1. Hence, the triples in M{B},φ(π) are

(B,χ1 ⊗ 1, (1, 1)), (B,1⊗ χ1, (1, 1)) and (P2, χ1 ⊗ 1SL2(A), 1),

and the only non-trivial morphisms are the isomorphisms between
the first two triples given by w1. The partial order used for the
definition of the filtration implies that the triple with the parabolic
subgroup P2 contributes to the deeper filtration step. The colimit
is calculated using Theorem A.2. Hence, the Franke filtration of the
space A{B},φ(π) of automorphic forms supported in φ(π) is the two-
step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
1, χ1 ⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1, 1), χ1 ⊗ 1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

10.4 χ1 = 1 and χ2 6= 1
This substep is the same as Step 10.3, and the result is obtained by
replacing the roles of χ1 and χ2. The point is that the representatives
of the cuspidal support are conjugate, so that they belong to the same
associate class.

10.5 χ1 = χ2 = 1
Although in this substep there are two singular hypeplanes S2 and
S4 for the Eisenstein series, the iterated residues vanish, as recalled
in Theorem 6.3, so that the pole is at most of order one. Taken along
any of the two singular hyperplanes, the residues of Eisenstein series
span the same residual representation of the Levi factor of P2. The
stabilizer along S′

1 stabilizes πu. Thus, the triples in M{B},φ(π) are

(B,1⊗ 1, (1, 1)) and (P2,1⊗ 1SL2(A), 1),
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and the only non-trivial morphism is the automorphism of the first
triple given by w1. The partial order is the same as in the previous
subcases. The colimit is calculated using Theorem A.2 in the case of
m = 0 and W0 = {1, w1}. Hence, the Franke filtration of the space
A{B},φ(π) of automorphic forms supported in φ(π) is the two-step
filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP2

(
1,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 1),1⊗ 1)⊗ S(ǎB,C)

)w1

as (g∞,K∞;G(Af ))-modules, where the exponent w1 stands for the
space of invariant vectors of the intertwining operator M(w1).

Step 11: s0 = (s0,1, s0,2) = T4, i.e., s0,1 = 1/2 and s0,2 = 1/2.
At point T4 the singular hyperplane S3 and the stabilizing hyperplane
S′

1 intersect. Hence, the substeps depend on the conditions for these two
hyperplanes in Table 6.1 and Table 6.2.

11.1 χ1χ2 6= 1 and χ1 6= χ2

In this substep the Eisenstein series is holomorphic, and the stabi-
lization is such that πu is not stabilized. Hence, the proof and the
result is the same as in Step 7.1 with t0 = 1/2.

11.2 χ1χ2 6= 1 and χ1 = χ2

The Eisenstein series is again holomorphic, but the stabilization is
such that πu is stabilized. Hence, this substep is the same as Step
7.2 with t0 = 1/2.

11.3 χ1χ2 = 1 and χ1 6= χ2

In this step the Eisenstein series has a pole along S3, which produces
a triple in M{B},φ(π) with the parabolic subgroup P1 as in Step
4.2 with s0,1 = s0,2 = 1/2. The stabilization along S′

1 does not
stabilize πu, so that there are two triples with the parabolic subgroup
B which are conjugate by w1. It turns out that the triple with the
parabolic subgroup P1 also has non-trivial stabilization by the Weyl
group element w212. Thus, the triples in M{B},φ(π) are

(B,χ⊗ χ−1, (1/2, 1/2)), (B,χ−1 ⊗ χ, (1/2, 1/2)),

(P1, χ ◦ det, 0) and
(
P1, χ

−1 ◦ det, 0
)
,

where we set χ = χ1 = χ−1
2 , and the only non-trivial morphisms are

the isomorphisms given by w1 between the first pair of triples and the
isomorphisms given by w212 between the second pair of triples. The
partial order required in definition of the filtration implies that the
triples with the parabolic subgroup P1 contribute to deeper filtration
steps. The colimits in the definition of the Franke filtration are cal-
culated according to Theorem A.2 in the case of m = 1, W0 = {1}
and either w0,1 = w1 or w0,1 = w212. All in all, the Franke filtration
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of the space A{B},φ(π) of automorphic forms supported in φ(π) is the
two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1 (0, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB((1/2, 1/2), χ⊗ χ−1)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules.

11.4 χ1χ2 = 1 and χ1 = χ2

This substep is proved along the same lines as the proof in Step 11.3.
The only difference is that the stabilization along S′

1 stabilizes πu, so
that the two pairs of triples with non-trivial morphisms are replaced
with only two triples which have non-trivial automorphisms. More
precisely, the triples in M{B},φ(π) are

(B,χ⊗ χ, (1/2, 1/2)) and (P1, χ ◦ det, 0) ,

where we set χ = χ1 = χ2 = χ−1
2 , and the only non-trivial mor-

phisms are the automorphism of the first triple given by w1 and the
automorphism of the second triple given by w212. The partial order
implies that the triple with the parabolic subgroup P1 contributes to
a deeper filtration step. The colimits are calculated using Theorem
A.2 in the case of m = 0 and either W0 = {1, w1} or W0 = {1, w212}.
Hence, the Franke filtration of the space A{B},φ(π) of automorphic
forms supported in φ(π) is the two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼=
(
IP1

(0, χ ◦ det)⊗ S(ǎP1,C)
)w212

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1/2, 1/2), χ⊗ χ−1)⊗ S(ǎB,C)

)w1

as (g∞,K∞;G(Af ))-modules, where the exponent w212 in the first
line denotes the space of invariant vectors of the intertwining operator
M(w212), and the exponent w1 in the second line denotes the space
of invariant vectors of the intertwining operator M(w1).

8.3. Proof of Theorem 7.8

The Eisenstein series associated to πu are holomorphic at s0 = O(0, 0) for any
cuspidal support πu = χ1 ⊗ χ2. However, all four stabilizing hyperplanes pass
through O. Hence, depending on the properties of the cuspidal support πu, we
obtain different instances of Theorem A.2 which determine the results.

In part (a) of Theorem 7.8, according to Table 6.2, the condition for stabiliza-
tion of πu is not satisfied along any of the stabilizing hyperplanes. Hence, there are
eight different triples in M{B},φ(π) with a non-trivial isomorphism between each
pair of triples, but no non-trivial automorphisms. Thus, we apply Theorem A.2
with m = 7 and W0 = {1}, and obtain the claim.
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In parts (b), (c), (d) and (e) of Theorem 7.8, the conditions for stabilization of
πu are satisfied along only one of the four stabilizing hyperplanes. Thus, the number
of triples in M{B},φ(π) is reduced to four, but there is a non-trivial automorphism
on each of them, and two isomorphisms between every pair of different triples.
Hence, we apply Theorem A.2 with m = 3 and W0 = {1, w0}, where w0 is the
non-trivial element in the stabilizer of πu as indicated in Table 6.2. The element
w0 depends on the case of Theorem 7.8 which is considered. The result is then
obtained as the spaces of invariant vectors for M(w0), as claimed.

In part (f) of Theorem 7.8, the cuspidal support πu is stabilized along stabilizing
hyperplanes S′

2 and S′
4. The stabilizer is thus generated by w2 and w121, as

given in Table 6.2. There are two triples in M{B},φ(π) with four isomorphisms
between them, and three non-trivial automorphisms on each triple. These non-
trivial automorphisms are given by w2, w121 and w1212. Hence, we again apply
Theorem A.2, but this time with m = 1 and W0 = {1, w2, w121, w1212}. The result
follows.

Finally, in part (g) of Theorem 7.8, the condition for stabilization of πu, given
in Table 6.2, is satisfied for all four stabilizing hyperplanes. Hence, there is only
one triple in M{B},φ(π), which has all elements of W as automorphisms. Hence,
we apply Theorem A.2 with m = 0 and W0 = W , and since W is generated by w1

and w2 the result follows.



CHAPTER 9

Properties and features of the filtration

In this final chapter we point out clearly and explain the underlying reasons
for the properties and features of the Franke filtration, which can be observed in
the case of the symplectic group of rank two. Our account comprises the following
points:

• the role of the choice of the function T in the explicit description of the
filtration,

• how the colimits in the description of the filtration take care of vanishing
and equal contributions arising from functional equations of Eisenstein
series,

• the mechanism in the definition of the filtration which solves the difficulties
arising from the poles of Eisenstein series in the case of square-integrable
residues,

• the similar mechanism in the case of the poles of Eisenstein series with
residues that are not square-integrable.

In what follows, we refer to the theorems and the proofs in Chapter 7 and Chapter
8, which exhibit the phenomena listed above.

9.1. The choice of the function T

In the definition of the Franke filtration of the space A{P},φ(π) of automorphic
forms with the cuspidal support in the associate class ({P}, φ(π)), as given in
Chapter 4, the contribution to different quotients of the filtration is determined by
the function T = T{P},φ(π). However, the choice of the function T satisfying the
partial order property of Section 4.2 is not at all unique.

In the cases in which the partial order ≺ in the definition of the filtration is a
total order on S{P},φ(π), the choice of T follows the total order, but the assigned
integer values are not necessarily consecutive. However, the non-trivial quotients
of the filtration are the same and appear in the same order. The only difference
in the filtration arising from the choice of T in this case is the number of trivial
quotients between the consecutive non-trivial ones.

The more interesting situation is the case in which there exist elements in
S{P},φ(π) which are incomparable in the partial order ≺ of Section 4.2. Depending
on the choice of T , such elements may be assigned equal integers, or different
integers in any order. If they are assigned equal integers, then the corresponding
quotient of the filtration is a direct sum of contributions obtained from different
Eisenstein series. On the other hand, if they are assigned different integers, the
direct sum splits into successive quotients of the filtration.

The example of this phenomenon is provided by part (4k) of Theorem 7.7. It
is the case of the cuspidal support in the associate class of the Borel subgroup and
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the character

π ∼= | · |2 ⊗ | · |
of T (A) ∼= I × I. Observe that the Franke filtration in the statement of the result
in this case is of length three. The proof is given in Step 6.4 of Section 8.2. In the
proof there are four triples

(B,1⊗ 1, (2, 1)), (P1,1 ◦ det, 3/2), (P2,1⊗ 1SL2(A), 2) and (G,1G(A), 0)

in M{B},φ(π), and there is a pair of incomparable triples because

ιP1
(3/2) = (3/2, 3/2) and ιP2

(2) = (2, 0)

are incomparable. In the Step 6.4 of the proof, the choice of T is made in such a
way that

T (ιP1
(3/2)) = T (ιP2

(2)) = 1.

This choice of T results in the Franke filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0}

of length three, where

A1
{B},φ(π)/A

2
{B},φ(π)

∼=
(
IP1

(3/2,1 ◦ det)⊗ S(ǎP1,C)
)

⊕(
IP2

(
2,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)
is a direct sum of two induced representations arising from the incomparable triples.

A different choice of T is

T (ιB(2, 1)) = 0, T (ιP2(2)) = 1, T (ιP1(3/2)) = 2, T (ιG(0)) = 3,

which would result in the Franke filtration

A{B},φ(π) = A′0
{B},φ(π) % A′1

{B},φ(π) % A′2
{B},φ(π) % A′3

{B},φ(π) % {0}

of length four, where the quotients of the filtration are isomorphic to

A′3
{B},φ(π)

∼= 1G(A)

A′2
{B},φ(π)/A′3

{B},φ(π)
∼= IP1

(3/2,1 ◦ det)⊗ S(ǎP1,C)

A′1
{B},φ(π)/A′2

{B},φ(π)
∼= IP2

(
2,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

A′0
{B},φ(π)/A′1

{B},φ(π)
∼= IB((2, 1),1⊗ 1)⊗ S(ǎB,C).

Observe that the two middle quotients in this filtration are the two direct summands
in the filtration in the statement of part (4k) of Theorem 7.7.

Another significantly different choice of T is the one with

T (ιB(2, 1)) = 0, T (ιP1
(3/2)) = 1, T (ιP2

(2)) = 2, T (ιG(0)) = 3,

which would also give rise to the filtration of length four, with the two middle
quotients interchanged compared to the filtration of length four above.

In conclusion, the freedom of choice of T may possibly give rise to different
quotients of the filtration. However, it is only a minor modification. A quotient
which is a direct sum of summands arising from several triples can be split into
several quotients of the filtration, as in the example above.
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9.2. Functional equations of Eisenstein series and colimits

The colimits in the definition of the filtration take care of the equal contribu-
tions to the filtration which appear due to the functional equations of the Eisenstein
series. Recall that the colimits are taken with respect to the functor M from the
monoid Mk

{P},φ(π) to the category of (g∞,K∞;G(Af ))-modules. The objects in

the monoid Mk
{P},φ(π) are triples (R,Π, z), as in Section 4.2, with R of rank k.

The morphisms from the triple (R,Π, z) to the (possibly equal) triple (R′,Π′, z′)
are given by the Weyl group elements w ∈ W (R) under which the Levi factors of R
and R′, the representations Π and Π′, and z and z′ are all conjugate, as in Section
4.2.

9.2.1. The functional equation of two different holomorphic Eisen-
stein series. As the clearest example of this phenomenon, consider the case of the
cuspidal support in the associate class of the Borel subgroup with

s0 = (s0,1, s0,2) ∈ S′
2 \ {T2}, i.e., 0 = s0,2 < s0,1 6= 1.

Hence, the cuspidal support is represented by the character

π ∼= χ1| · |s0,1 ⊗ χ2

of T (A), where s0,1 is as above, and χ1 and χ2 are unitary Hecke characters of
I. This example, depending on the properties of χ1 and χ2, is treated in several
theorems in Section 7.2, all of which are proved in Step 8 of the proof in Section 8.2.
More precisely, it is considered in part (0b) of Theorem 7.1, part (1–1a) of Theorem
7.2, part (1–2b) of Theorem 7.3, part (1–3a) of Theorem 7.4, part (1–4b) of Theorem
7.5, part (2c) of Theorem 7.6 and part (4c) of Theorem 7.7. The filtration is always
one-step filtration, but its description in terms of parabolic induction depends on
the Hecke character χ2.

Consider first the case of χ2 non-trivial and non-quadratic Hecke character,
i.e., χ2

2 6= 1. In this case, the proof is given in Step 8.1 of Section 8.2. There are
two different triples

(B,χ1 ⊗ χ2, (s0,1, 0)) and (B,χ1 ⊗ χ−1
2 , (s0,1, 0))

in M{P},φ(π) = M0
{P},φ(π), which are conjugate by the Weyl group element w2, so

that w2 is the only morphism between these triples. As explained in the proof, the
colimit in the definition of the Franke filtration implies that only one of the two
triples contributes.

In this case the Eisenstein series constructed from these two triples are as
follows. Let Eπu(f, s) be the Eisenstein series associated to the unitary character

πu ∼= χ1 ⊗ χ2

of T (A), as in Section 3.2, where f ranges over the space Wπu , and s = (s1, s2) ∈
ǎB,C ∼= C2 is the complex parameter. Similarly, let Ew2(πu)(f

′, s) be the Eisenstein
series associated to

w2(π
u) = χ1 ⊗ χ−1

2 ,

where f ′ ranges over Ww2(πu). These two Eisenstein series arising from conjugate
characters of T (A) are related by the functional equation

Eπu(f, s) = Ew2(πu)(A(s, πu, w2)f, w2(s)),
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as in [Lan76], [MW95], where A(s, πu, w2) is the standard intertwining operator
[Sha10] which intertwines, away from its poles, the induced representations

IB(s, π
u) = Ind

G(A)
B(A) (χ1| · |s1 ⊗ χ2| · |s2)

and

IB(w2(s), w2(π
u)) = Ind

G(A)
B(A)

(
χ1| · |s1 ⊗ χ−1

2 | · |−s2
)
.

The standard intertwining operator A(s, πu, w2) is holomorphic at the value s =
(s0,1, 0) of its complex parameter. Moreover, since A((s0,1, 0), π

u, w2) can be viewed
as the standard intertwining operator associated to the character χ2 of the torus
in the group SL2 at the value 0 of its complex parameter, it is an isomorphism.
Therefore, taking the main values of (the derivatives of) the two equal Eisenstein
series generates the same automorphic forms, and one of the two Eisenstein series
should be discarded from the description of the Franke filtration. This is exactly
what is achieved by taking the colimit, which discards one of the two triples in Step
8.1 of Section 8.2. This example shows how the colimit takes care of the functional
equation in the case of two different triples with a morphism between them.

9.2.2. The functional equation of a single holomorphic Eisenstein se-
ries. Consider now the case of χ2 either trivial or quadratic Hecke character, i.e.,
χ2
2 = 1. In Step 8.2 of Section 8.2, which deals with this case, there is only one

triple

(B,χ1 ⊗ χ2, (s0,1, 0))

in M{P},φ(π) = M0
{P},φ(π), but now w2 is a non-trivial automorphism of the triple.

Taking the colimit in this case implies that the contribution of the triple consists of
invariants for certain intertwining operator associated to w2 acting on the induced
representation

IB((s0,1, 0), χ1 ⊗ χ2)⊗ S(ǎB,C).

This behavior of the colimit is responsible for dealing with the functional equation
of the Eisenstein series as explained below.

Let Eπu(f, s) be the Eisenstein series associated to the unitary Hecke character

πu = χ1 ⊗ χ2

of T (A), where f ∈ Wπu and s = (s1, s2) ∈ ǎB,C ∼= C2, as above. In this case, since
w2(π

u) = πu, the functional equation is

Eπu(f, s) = Eπu(A(s, πu, w2)f, w2(s)).

The standard intertwining operator A(s, πu, w2) at the value s = (s1,0, 0) of its
complex parameter is an involutive automorphism of the induced representation

IB((s1,0, 0), π
u) = Ind

G(A)
B(A) (χ1| · |s0,1 ⊗ χ2) .

Hence, the induced representation is a direct sum of the ±1-eigenspaces for that
operator. The functional equation of the Eisenstein series at the value s = (s0,1, 0)
reads

Eπu(f, (s0,1, 0)) = Eπu(A((s0,1, 0), π
u, w2)f, (s0,1, 0)).

It implies that for any f = f− in the −1-eigenspace for the intertwining operator,
the Eisenstein series

Eπu(f−, (s0,1, 0)) = 0.
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This argument reveals that only the Eisenstein series constructed from functions
f = f+ that are invariant under the intertwining operator contribute non-trivially
to the space of automorphic forms. Similar parity conditions arise from the deriva-
tives of the functional equation evaluated at s = (s0,1, 0), which imply that only
invariants of certain intertwining operator associated to w2 acting on the induced
representation

IB((s0,1, 0), χ1 ⊗ χ2)⊗ S(ǎB,C).

contribute non-trivially to the space of automorpic forms. This is exactly what
is obtained by taking the colimits, and exhibits how the colimits deal with the
functional equation in the case of the triple with a non-trivial automorphism.

All other cases in which the functional equation must be considered are essen-
tially reduced to the two cases explained above. The case of the cuspidal support
represented by the character

π ∼= χ1| · |t0 ⊗ χ2| · |t0 , with t0 > 0, t0 6= 1, t0 6= 1/2

of T (A), where χ1 and χ2 are unitary Hecke characters and s0 = (t0, t0) ∈ S′
1 \

{T3, T4}, is completely analogous. The condition on χ2
2 is replaced with the condi-

tion on equality of χ1 and χ2, and the Weyl group element w2 is replaced by w1.
The colimits deal with the functional equation of the Eisenstein series in this case
in Step 7 of Section 8.2, and the corresponding parts of the theorems can be found
in Tables 8.1 and 8.2.

9.2.3. The functional equations in the case of non-holomorphic Eisen-
stein series. There are also examples in which the filtration has more than one
step. In such examples, there could be several Eisenstein series with functional
equations, but contributing to different quotients of the filtration. Some of these
Eisenstein series may be degenerate, that is, associated to a residual representation
of a Levi factor, as mentioned at the end of Section 3.2. However, the colimit takes
care of all these functional equations in the same way as in the two basic examples
explained above. A particularly nice example of this phenomenon is given in part
(2f) of Theorem 7.6 and part (4h) of Theorem 7.7. The cuspidal support in this
case is represented by the character

π ∼= χ| · |1/2 ⊗ χ| · |1/2

of T (A), where χ is a unitary Hecke character of I such that χ2 = 1. It is treated
in Step 11.4 of the proof in Section 8.2. There are only two triples

(B,χ⊗ χ, (1/2, 1/2)) and (P1, χ ◦ det, 0)

in M{B},φ(π), and both of them admit a non-trivial automorphism, given by the
Weyl group elements w1 and w212, respectively. As they contribute to different
quotients of the filtration, the Eisenstein series associated to each of the triples is
treated separately. The Eisenstein series associated to the first triple is just the
Eisenstein series associated to πu = χ ⊗ χ. Its functional equation is taken into
account in the same way as in the examples explained above. However, the other
Eisenstein series is associated to the degenerate Eisenstein series EΠ(f, s) associated
to the residual representation Π ∼= χ ◦ det of the Levi factor L1(A) ∼= GL2(A) of
P1, where f ranges over WΠ and s ∈ ǎP1,C

∼= C is the complex parameter. The
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degenerate Eisenstein series also satisfy the functional equation. In our case, it is
the functional equation

EΠ(f, s) = EΠ(A(s,Π, w212)f, s),

where A(s,Π, w212) is the standard intertwining operator that intertwines the in-
duced representations

IP1
(s,Π) = Ind

G(A)
P1(A) ((χ ◦ det)| det |s) .

and
IP1(w212(s),Π) = Ind

G(A)
P1(A)

(
(χ ◦ det)| det |−s

)
.

As in the non-degenerate case, the operator at the value s = 0 of its complex
parameter becomes an involutive automorphism of the induced representation

IP1
(0,Π) = Ind

G(A)
P1(A) (χ ◦ det) .

Hence, by the same argument as in the non-degenerate case, the functional equation
implies that one should take invariants for certain intertwining operator associated
to w212 acting on

IP1
(0, χ ◦ det)⊗ S(ǎP1,C),

which is exactly the result of taking the colimit in this case.

9.2.4. The case of several functional equations. The only case in which
there are several functional equations relating more than two Eisenstein series hap-
pens in Theorem 7.8. In that theorem s0 = (0, 0), and the cuspidal support is
represented by the character

π ∼= χ1 ⊗ χ2,

where χ1 and χ2 are unitary Hecke characters. Depending on the properties of these
characters, there could be up to eight different Eisenstein series related by functional
equations, but also, in the case of χ1 = χ2 = 1, there is just one Eisenstein
series with seven functional equations. All these possibilities are essentially just
a combination of the two basic examples explained above, and the colimits take
care of all the functional equations. All these Eisenstein series are holomorphic at
the value s0 = (0, 0) of the complex parameter, so that the filtration is of length
one in all these cases, but its explicit description in terms of parabolically induced
representations depends on the functional equations.

More precisely, in the case of the cuspidal support represented by the character

π = πu ∼= χ1 ⊗ χ2

of T (A), where χ1 6= χ2 and χ1 6= χ−1
2 and χ2

1 6= 1 and χ2
2 6= 1, which is handled

in part (a) of Theorem 7.8, there are eight different triples in M{B},φ(π), given by
the action of the Weyl group, i.e.,

M{B},φ(π) = {(B,w(χ1 ⊗ χ2), (0, 0)) : w ∈ W} .
There is a unique isomorphism between each pair of different triples in M{B},φ(π),
but there are no non-trivial automorphisms. The isomorphisms are given by the
conjugate action of the appropriate Weyl group element as in Table 3.1.

On the other hand, for each triple, there is an Eisenstein series Ew(f, s) associ-
ated to the unitary character w(χ1⊗χ2) obtained from πu ∼= χ1⊗χ2 by conjugation
by the element w of the Weyl group. Here f ranges over the space Ww(πu) and

s = (s1, s2) ∈ ǎB,C ∼= C2 is the complex parameter. Each pair of these Eisenstein



9.2. FUNCTIONAL EQUATIONS OF EISENSTEIN SERIES AND COLIMITS 67

series admits a functional equation, so that we have essentially seven independent
functional equations given by

Ew(f, s) = E1(A(s, χ1 ⊗ χ2, w)f, w(s)),

where A(s, χ1 ⊗ χ2, w) is the standard intertwining operator between IB(s, π
u)

and IB(w(s), w(π
u)), and the Eisenstein series on the right-hand side corresponds

to the identity element of the Weyl group. Since all the Eisenstein series and the
standard intertwining operators are holomorphic at the value s = s0 = (0, 0) of their
complex parameter, these functional equations and their derivatives evaluated at
s = (0, 0) imply that the contributions to the space of automorphic forms of all eight
Eisenstein series are the same. Therefore, the space A{B},φ(π) of automorphic forms
supported in π = χ1 ⊗χ2 in this case is obtained by the derivatives at s = (0, 0) of
only one of the Eisenstein series considered above, and thus isomorphic to

A{B},φ(π)
∼= IB((0, 0), χ1 ⊗ χ2)⊗ S(ǎB,C).

But this is exactly the result of taking the colimit over the eight triples in M{B},φ(π)

with an isomorphism between each pair of different triples. This shows how the
colimit takes care of the functional equations in this particular case.

On the other extreme, in the case of the cuspidal support in the trivial character
π = πu = 1⊗ 1 of T (A), there is only one triple

(B,1⊗ 1, (0, 0))

in M{B},φ(π), but it admits seven non-trivial automorphisms, one for each non-
trivial element of the Weyl group. This case is just one instance of part (g) of
Theorem 7.8. Consider the Eisenstein series E(f, s), associated to πu = 1 ⊗ 1,
where f ranges over the space Wπu and s = (s1, s2) ∈ ǎ{B},C ∼= C2 is the complex
parameter. This Eisenstein series admits seven functional equations

E(f, s) = E(A(s,1⊗ 1, w)f, w(s)),

where w is a non-trivial element of the Weyl group, and A(s,1⊗1, w) is the standard
intertwining operator between IB(s,1⊗1) and IB(w(s),1⊗1). The Eisenstein series
and the standard intertwining operators are holomorphic at the value s = (0, 0) of
their complex parameter. Since the standard intertwining operator A(s,1 ⊗ 1, w)
at s = (0, 0) is an involution, it follows that the Eisenstein series is zero for f in
the −1-eigenspace of that operator. Thus, in order to obtain non-zero automorphic
forms, one should take in the construction of the Eisenstein series only those f that
are invariant under the action of standard intertwining operators A(s,1 ⊗ 1, w)
at s = (0, 0) for all non-trivial elements w in the Weyl group. Taking also the
derivatives of Eisenstein series, it follows that the space A{B},φ(1⊗1) of automorphic
forms supported in π ∼= 1⊗ 1 is isomorphic to

A{B},φ(1⊗1)
∼=

(
IB((0, 0),1⊗ 1)⊗ S(ǎ{B},C)

)W
,

whereW stands for the invariants for the action of intertwining operators associated
to all elements of the Weyl group. Since W is generated by the simple reflections
w1 and w2, it is sufficient to take invariants for these two intertwining operators, as
stated in Theorem 7.8. But this is exactly the result of taking the colimit, so that
the colimit discards the zero contribution of the Eisenstein series and its derivatives
arising from the functional equations.
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The other cases in Theorem 7.8 are just a combination of the two extremes
explained above. In these cases, the triples in M{B},φ(π) admit non-trivial auto-
morphisms, and there are isomorphisms between each pair of different triples. On
the other hand, the corresponding functional equations of different Eisenstein series
imply that we should consider only one of them, because their contributions to the
space of automorpic forms are the same, just as in the first case above. However,
the functional equations of one of the considered Eisenstein series imply that one
should also take invariants for certain intertwining operators to avoid zero contri-
butions of the Eisenstein series as in the second case considered above. Both issues
are neatly solved by taking the colimit.

9.2.5. The functional equations of Eisenstein series supported in a
maximal parabolic subgroup. The functional equations of Eisenstein series,
and the corresponding colimits, play a role also in the case of the cuspidal support
in a maximal proper parabolic subgroup treated in Chapter 5. The non-trivial
phenomena occur for the cuspidal support with s0 = 0, i.e., π ∼= πu in Theorem 5.4
and Theorem 5.5.

In that case, if w(πu) 6∼= πu, then the Eisenstein series associated to πu and
w(πu) are related by the functional equation, and thus, only one of them contributes
to the space of automorphic forms. This is controlled by the colimit, as in this case
there are two triples

(Pi, π
u, 0) and (Pi, w(π

u), 0)

in M{Pi},φ(πu), with an isomorphism between them. The situation is completely

analogous to the first case considered in this section with χ2
2 6= 1.

On the other hand, if w(πu) ∼= πu, then the situation is analogous to the
second case considered in this section, in which χ2

2 = 1. Namely, the Eisenstein
series associated to πu admits a functional equation, which implies that for certain
choice of the function f in Wπu the Eisenstein series vanishes. The choice of the
appropriate functions is again governed by the colimit. In this case, the only triple
in M{Pi},φ(πu) is

(Pi, π
u, 0),

which admits a non-trivial automorphism given by w. Thus, the colimit consists
of the invariants for the corresponding intertwining operator on the induced repre-
sentation. This can be observed in Theorem 5.4 and Theorem 5.5, in which such
invariants appear.

9.3. Eisenstein series with square-integrable residues

If the Eisenstein series is not holomorphic at the relevant value of its complex
parameter, then the main value of its derivatives is well-defined only up to the
automorphic representation spanned by the coefficients in the principal part of the
Laurent series. If these coefficients are square-integrable automorphic forms on
the Levi factor of a parabolic subgroup of higher rank, then they span a residual
representation of such Levi factor. This residual representation occurs among the
triples defining the Franke filtration in Chapter 4, and the partial order assigns it to
a deeper quotient of the filtration. In such a way the main values of the derivatives
of the Eisenstein series are well-defined as elements of the quotient of the filtration.
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9.3.1. The pole of order one. Examples of this phenomenon occur in several
theorems of Section 7.2. The simplest cases are those in which the Eisenstein series
in question has a pole of order one at the relevant value of its complex parameter.
This happens in part (1–1c) of Theorem 7.2, part (1–2c) of Theorem 7.3, part (1–
3b) of Theorem 7.4, parts (1–4c) and (1–4d) of Theorem 7.5, parts (2d), (2e) and
(2f) of Theorem 7.6 and parts (4d), (4e), (4f) and (4g) of Theorem 7.7. In some of
these theorems, the functional equations of the Eisenstein series also play a role, as
explained in Section 9.2.

As a convenient example, consider the cuspidal support represented by the
character

π ∼= χ| · |t0+1/2 ⊗ χ| · |t0−1/2,

of T (A), where χ is a unitary Hecke character of I, and

s0 = (t0 + 1/2, t0 − 1/2)

lies on the part Ŝ1 of the singular hyperplane S1, i.e., 1/2 < t0 6= 3/2, in order to
avoid possible poles of higher order. This case is treated in part (1–1c) of Theorem
7.2, part (2d) of Theorem 7.6 and part (4d) of Theorem 7.7, and proved in Step 2.2
of the proof in Section 8.2.

In this case, the Franke filtration is a two-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % {0},

where the quotients of the filtration are isomorphic to

A1
{B},φ(π)

∼= IP1
(t0, χ ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼= IB(s0, χ⊗ χ)⊗ S(ǎB,C)

as (g∞,K∞;G(Af ))-modules. We explain below the underlying reason in terms
of Eisenstein series responsible for the necessity of two different quotients of the
filtration in this example.

Let E(f, s) be the Eisenstein series associated to the unitary character πu ∼=
χ⊗χ of T (A), where f ranges over Wπu and s = (s1, s2) ∈ ǎB,C ∼= C2 is the complex
parameter. It has a pole of order one along the singular hyperplane S1, so that the
main values of its derivatives are not well-defined. The residues, on the other hand,
are square-integrable as automorphic forms on the Levi factor L1(A) ∼= GL2(A) of
P1, and span the residual representation isomorphic to

(χ ◦ det)| det |t0

of L1(A). The degenerate Eisenstein series EΠ(f
′, s′) associated to the unitary

residual representation Π ∼= χ◦det of the Levi factor L1(A) of P1 is holomorphic at
s′ = t0, which is the relevant value of the complex parameter for the given cuspidal
support. The coefficients in the Taylor expansion of EΠ(f

′, s′) span the automorphic
representation which contains the automorphic forms obtained as residues of E(f, s)
along S1. Therefore, the contribution of the degenerate Eisenstein series EΠ(f

′, s′)
should be assigned to a deeper quotient of the filtration than the contribution of
the Eisenstein series E(f, s), so that the main values of the derivatives of the latter
are well-defined as elements of the quotient. Since the Eisenstein series E(f, s) and
EΠ(f

′, s′) correspond to the triples

(B,χ⊗ χ, (t0 + 1/2, t0 − 1/2)) and (P1, χ ◦ det, t0)
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in M{B},φ(π), respectively, the partial order implies

ιP1(t0) = (t0, t0) � ιB((t0 + 1/2, t0 − 1/2)) = (t0 + 1/2, t0 − 1/2).

Thus, the Eisenstein series EΠ(f
′, s′) contributes to a deeper quotient of the fil-

tration than the Eisenstein series E(f, s), exactly as required. This explains how
the Franke filtration deals with the problem of defining the main values of the
derivatives of the Eisenstein series in the case of Eisenstein series which has a pole
of order one at the relevant value of the complex parameter and the residues are
square-integrable.

9.3.2. The pole of order two. The Franke filtration for the symplectic group
of rank two also exhibits examples in which the Eisenstein series required for the
definition of the filtration has a pole of order two with square-integrable residues.
This is the case in part (2g) of Theorem 7.6 and part (4k) of Theorem 7.7, which
are proved, respectively, in Step 9.7 and Step 6.4 of the proof in Section 8.2. For
simplicity of exposition we explain here part (2g) of Theorem 7.6. The other ex-
ample is analogous, and is already considered in regard to the freedom of choice of
the function T in Section 9.1.

Consider the cuspidal support represented by the character

π ∼= χ| · | ⊗ χ

of T (A), where χ is a unitary non-trivial quadratic Hecke character of I, i.e., χ2 = 1,
but χ 6= 1, as in part (2g) of Theorem 7.6. Let E(f, s) be the Eisenstein series
associated to πu ∼= χ ⊗ χ, where f ranges over Wπu and s = (s1, s2) ∈ ǎB,C is
the complex parameter. There are two singular hyperplanes for the Eisenstein
series E(f, s) passing through s = s0 = (1, 0), which is the relevant point for
the considered cuspidal support. Although the pole along each of the singular
hyperplanes is of order one, the residue of E(f, s) along each of them has a pole
of order one at s = s0 = (1, 0). Thus, there are two terms in the principal part
of the Laurent series of E(f, s) around s0 = (1, 0) along a generic line. The main
values (of the derivatives) of E(f, s) are well-defined only up to the automorphic
representation spanned by the coefficients in the principal part of the Laurent series.
These coefficients must be assigned to a deeper quotient of the filtration, so that
the main values of the Eisenstein series E(f, s) are well-defined as elements in the
quotient.

This is achieved in two steps. In the first step, consider the residues of the
Eisenstein series E(f, s) along the singular hyperplane S1. The pole along S1 is of
order one, and the residues span the residual representation

(χ ◦ det)| det |
s1+s2

2 , where (s1, s2) ∈ S1, i.e., s1 − s2 = 1,

of the Levi factor L1(A) ∼= GL2(A) of P1. This is along the same lines as in the
example of the pole of order one with square-integrable residues, which is elabo-
rated above. Hence, consider the degenerate Eisenstein series EΠ(f

′, s′) associated
to Π = χ ◦ det, where f ranges over WΠ and s′ ∈ ǎP1,C

∼= C is the complex param-
eter. In our case, the relevant value of its complex parameter is s′ = 1/2, because
it corresponds to s1+s2

2 at (s1, s2) = (1, 0). However, according to [Kim95], the
degenerate Eisenstein series EΠ(f

′, s′) has a pole of order one at s′ = 1/2, and
thus, the main values of its derivatives are well-defined only up to the representa-
tion spanned by the residues. The residues are square integrable, and they span the
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residual representation J(χ) of G(A), as in [Kim95], which is also recalled in The-
orem 6.3. Let A2

{B},φ(π) denote the subrepresentation of the space of automorphic

forms isomorphic to residual representation J(χ), obtained as the span of residues
of EΠ(f

′, s′) at s′ = 1/2. Then, the main values of the derivatives of EΠ(f
′, s′) at

s′ = 1/2 are well defined as elements of the quotient of the space of automorphic
forms by A2

{B},φ(π).

The span of these main values, together with the forms in A2
{B},φ(π), form the

subspace of the space of automorphic forms supported in the associate class of π,
which we denote by A1

{B},φ(π). Then, there is a filtration

A1
{B},φ(π) % A2

{B},φ(π) % {0},

where taking the main values of the derivatives of the Eisenstein series yields that
the quotients are isomorphic to

A2
{B},φ(π)

∼= J(χ)

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1(1/2, χ ◦ det)⊗ S(ǎP1,C)

as (g∞,K∞;G(Af ))-modules. By the construction, the space A1
{B},φ(π) of automor-

phic forms contains the coefficients of the principal part of the Laurent expansion
around s0 = (1, 0) of the original Eisenstein series E(f, s). Therefore, the main
values of the derivatives of E(f, s) at s = s0 = (1, 0) are well-defined as elements
of the quotient of the space of automorphic forms by the subspace A1

{B},φ(π). This

implies that the quotient is isomorphic to

A{B},φ(π)/A1
{B},φ(π)

∼= IB((1, 0), χ⊗ χ)⊗ S(ǎB,C)

as a (g∞,K∞;G(Af ))-module.
In conclusion, we have explained the underlying reasons, in terms of the analytic

properties of the Eisenstein series, for the existence of the three different quotients
of the filtration in the considered example. On the other hand, for the considered
cuspidal support, the triples in M{B},φ(π) defining the filtration as in Chapter 4
are

(B,χ⊗ χ, (1, 0)), (P1, χ ◦ det, 1/2), and (G, J(χ), 0).

The first triple corresponds to the Eisenstein series E(f, s), the second triple corre-
spond to the degenerate Eisenstein series EΠ(f

′, s′), and the last triple is already a
residual representation of G(A). In the partial order required for the definition of
the filtration, we have

ιG(0) = (0, 0) � ιP1
(1/2) = (1/2, 1/2) � ιB(1, 0) = (1, 0),

so that the contributions of the triples are ordered precisely in a way governed by
the analytic properties of the Eisenstein series required in the construction.

9.3.3. The pole of the Eisenstein series supported in a maximal para-
bolic subgroup. The same feature of the Franke filtration occurs in the case of the
cuspidal support in a maximal proper parabolic subgroup considered in Chapter 5.
In that case, if the Eisenstein series associated to πu has a pole at the relevant value
s = s0 ≥ 0 of its complex parameter, then the residues are always square-integrable
automorphic forms on G(A). This is a general fact, which holds for the cuspidal
support in a maximal proper parabolic subgroup of any reductive linear algebraic
group over a number field. It was already observed by Franke in Remark 2 of
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[Fra98, page 242-243], and follows directly from the Langlands square-integrability
criterion [Lan76].

In the Franke filtration, the partial order always assigns the residual represen-
tations of the full group G(A) into the deepest quotient of the filtration. This is
due to the fact that any residual representation Π of G(A) appears in M{P},φ(π)

as the triple

(G,Π, 0),

and we have

ιG(0) = (0, 0) � ιR(z)

in the partial order defining the filtration for any other triple (R,Π′, z) inM{P},φ(π).
Therefore, the main values of the derivatives of the Eisenstein series associated to
πu are well-defined as the elements of the quotient of the space of automorphic
forms by the space of automorphic forms isomorphic to the residual representation
Π.

This can be observed in Theorem 5.4 and Theorem 5.5, in which the space
L{Pi},φ(π) is the space of square-integrable automorphic forms spanned by the
residues of Eisenstein series associated to πu, and the quotient A{Pi},φ(π)/L{Pi},φ(π)

is obtained as main values of the derivatives of such Eisenstein series.

9.4. Eisenstein series with non-square-integrable residues

Unlike in the previous examples, the non-square-integrable residues of Eisen-
stein series do not span a residual representation of the Levi factor of a higher rank
parabolic subgroup, because automorphic forms in residual representations must
be square-integrable. Nevertheless, these non-square-integrable residues should not
contribute to the same filtration step as the main values of the Eisenstein series,
because main values are well-defined only up to the representation spanned by these
non-square-integrable residues. Hence, there must exist another Eisenstein series
of the same or lower rank, which contributes to a deeper quotient of the filtration
and is holomorphic at the relevant value of the complex parameter, whose Taylor
coefficients span a representation containing the non-square-integrable residues in
question.

This fact was already observed by Franke in Remark 2 on page 242-243 of
[Fra98], in which he writes1: “One gets problems with this approach [referring to
the idea of ordering contributions to the quotients of the filtration according to the
rank of parabolic subgroups in triples] in the rank two case if there are Eisenstein
series from a maximal parabolic subgroup whose residue at a point in the positive
Weyl chamber is not square integrable. This never happens for cuspidal Eisenstein
series, and for residual Eisenstein series the only example of this kind which I know,
and which I will explain in more detail below, is the example of G2 described in
the appendix in Langlands’ book.”

This paper provides another example of the same phenomenon, apparently not
anticipated by Franke, in the case of the symplectic group of rank two. It occurs
in part (4j) of Theorem 7.7, which is proved in Step 9.8 of the proof in Section 8.2.
The cuspidal support is represented by the character

π ∼= | · | ⊗ 1

1The text in the square-brackets are additional explanations by the author.
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of T (A). Recall that in this case the Franke filtration of the space A{B},φ(π) is the
three-step filtration

A{B},φ(π) = A0
{B},φ(π) % A1

{B},φ(π) % A2
{B},φ(π) % {0},

where

A2
{B},φ(π)

∼=
(
IP2

(
0,1⊗ 1SL2(A)

)
⊗ S(ǎP2,C)

)w121

A1
{B},φ(π)/A

2
{B},φ(π)

∼= IP1
(1/2,1 ◦ det)⊗ S(ǎP1,C)

A0
{B},φ(π)/A

1
{B},φ(π)

∼=
(
IB((1, 0),1⊗ 1)⊗ S(ǎB,C)

)w2

as (g∞,K∞;G(Af ))-modules. Observe that there are two quotients of the filtration
arising from parabolic subgroups of the same rank P1 and P2, which cannot be
rearranged as in Section 9.1 in a way that they form a direct sum in the same
quotient of the filtration. Here is the explanation of such behavior.

There is a residual representation isomorphic to

(1 ◦ det)| det |1/2

of the Levi factor L1(A) ∼= GL2(A) of the parabolic subgroup P1, with cuspidal
support in the associate class of π. Let EΠ1

(f, s) be the degenerate Eisenstein series
associated to the unitary residual representation Π1

∼= χ ◦ det of L1(A) ∼= GL2(A),
where f ranges over the space WΠ1

and s ∈ ǎP1,C
∼= C is the complex parameter.

According to the results of [Kim95], recalled in Section 6.2, this Eisenstein series
has a pole of order one at the value s = 1/2 of its complex parameter. However,
the residues of EΠ1

(f, s) at s = 1/2 are not square-integrable automorphic forms.
The calculations under point (ii) on page 144 of [Kim95], implicitly contain

the description of the automorphic representation spanned by these non-square-
integrable residues. It turns out that the representation spanned by the residues of
EΠ1(f, s) at s = 1/2 is isomorphic to the image of the normalized standard inter-
twining operator N((1, 0),1 ⊗ 1, w2w1). Such normalized operators are obtained
from the standard intertwining operators appearing in the functional equations of
Section 9.2 using certain ratio of automorphic L-functions, as in [Sha10], [Kim04].
The reason for normalization is that the standard intertwining operators may have
poles at the relevant values of the complex parameter, and the pole is captured by
the automorphic L-functions in the normalizing factor. Another important prop-
erty of the normalized intertwining operator is that it may be decomposed according
to the decomposition of the Weyl group element into a product of simple reflections
[Sha90]. In our case, the intertwining operators attached to the Weyl group ele-
ments w1 and w2 are essentially intertwining operators for groups GL2 and SL2,
respectively. Hence, the image of

N = N((1, 0),1⊗ 1, w2w1) = N((0, 1),1⊗ 1, w2)N((1, 0),1⊗ 1, w1)

can be described through the diagram
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Ind
G(A)
B(A) (| · | ⊗ 1)

↓N1 ↘N1

Ind
G(A)
B(A) (1⊗ | · |) ⊃ Ind

G(A)
P1(A)

(
(1 ◦ det)| det |1/2

)
↓N2 ↘N2 ↓N2 ↘N2

Ind
G(A)
B(A)

(
1⊗ | · |−1

)
⊃ Ind

G(A)
P2(A)

(
1⊗ 1SL2(A)

)
⊃ Im(N)

where N1 and N2 denote the normalized intertwining operators associated to w1

and w2 in the decomposition of N above. The first column in the diagram represents
the composition of operators N1 and N2 at the level of induced representations from
the Borel subgroup. The second column represents the images of the operators N1

and N2, and the image of the composition N = N2N1 in the last column of the
diagram is a subrepresentation of the image of N2. The images of N1 and N2 are
well-known from the theory of intertwining operators for GL2 and SL2, respectively.
In other words, the residues of the Eisenstein series EΠ1

(f, s) span the automorphic
representation isomorphic to

ImN((1, 0),1⊗ 1, w2w1) ⊆ Ind
G(A)
P2(A)

(
1⊗ 1SL2(A)

)
.

This automorphic representation must contribute to a deeper quotient of the filtra-
tion than the main values (of the derivatives) of the Eisenstein series EΠ1

(f, s).
That is achieved by considering another degenerate Eisenstein series. There is

a residual representation isomorphic to

Π2 = 1⊗ 1SL2(A)

of the Levi factor L2(A) ∼= I ⊗ SL2(A) of P2, with the cuspidal support in the
character

w1(π) = 1⊗ | · |
that is associate to π. Let EΠ2(f

′, s′) be the degenerate Eisenstein series associated
to the residual representation Π2, where f ′ ranges over WΠ2 and s′ ∈ ǎP2,C

∼= C
is the complex parameter. It is holomorphic at the value s′ = 0 of its complex
parameter, so that the main values of its derivatives are well-defined and span
the automorphic representation isomorphic to the space of invariant vectors under
certain intertwining operator associated to the Weyl group element w212 in the
induced representation

Ind
G(A)
P2(A)

(
1⊗ 1SL2(A)

)
⊗ S(ǎP2,C).

The invariants must be taken in order to handle the functional equation

EΠ2
(f ′, s′) = EΠ2

(A(s′,Π2, w212)f
′,−s′)

of the degenerate Eisenstein series, as in Section 9.2. Nevertheless, the automor-
phic representation spanned by the non-square-integrable residues of the degenerate
Eisenstein series EΠ1(f, s) at s = 1/2 is a constituent, as an abstract representation,
of the automorphic representation spanned by the main values of the derivatives of
the degenerate Eisenstein series EΠ2

(f ′, s′).
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The actual inclusion of the space of automorphic forms obtained as non-square-
integrable residues, described as an abstract representations above, follows from the
functional equations

E(f, (s1, s2)) = E(A((s1, s2),1⊗ 1, w1)f, (s2, s1))

= E(A((s1, s2),1⊗ 1, w2w1)f, (s2,−s1)),

after taking the iterated residues, first along the singular hyperplane S1, and then
at the point on S1 corresponding to the value s = (s1, s2) = (1, 0) of the complex
parameter. The Eisenstein series E(f, s) is the Eisenstein series associated to the
trivial character 1 ⊗ 1 of T (A), and A((s1, s2),1 ⊗ 1, w) denotes the standard
intertwining operator associated to the Weyl group element w.

In view of the behavior of these Eisenstein series, it is now clear that the
contribution in the Franke filtration of the Eisenstein series EΠ2(f

′, s′) at s′ = 0
must be in a deeper quotient of the filtration than the contribution of the Eisenstein
series EΠ1

(f, s) at s = 1/2. This is assured by the definition of the partial order
on the set of triples. The Eisenstein series EΠ1

(f, s) and EΠ2
(f ′, s′) correspond to

the triples

(P1,Π1 = 1 ◦ det, 1/2) and (P2,Π2 = 1⊗ 1SL2(A), 0),

respectively. As already observed in Step 9.8 of the proof in Section 8.2, we have

ιP2(0) = (0, 0) � ιP1(1/2) = (1/2, 1/2)

in the partial order defining the filtration. Therefore, the contribution of the sec-
ond triple, that is, the Eisenstein series EΠ2

(f ′, s′) at s′ = 0 is assigned to a deeper
filtration step than the contribution of the first triple, that is, the Eisenstein series
EΠ1(f, s), precisely as required. This explains the underlying reason for the exis-
tence of two different quotients of the filtration arising from the Eisenstein series
associated to the parabolic subgroups of the same rank.

In groups of higher rank, the phenomenon described here often occurs. There
are even examples in which the order of contributions is reversed, so that the
Eisenstein series associated to a parabolic subgroup of lower rank contributes to a
deeper quotient of the filtration than the Eisenstein series associated to a parabolic
subgroup of higher rank. In the case of the general linear group, the recent paper
[GG22] reveals and studies such phenomena.

However, as already explained at the end of Section 9.3 and observed in the
quoted Remark 2 of [Fra98, page 242-243], this phenomenon never occurs in the
case of cuspidal support in a maximal proper parabolic subgroup, even for groups of
higher rank, because in that case the residues at the relevant value of the complex
parameter of the Eisenstein series are always square-integrable.





APPENDIX A

Calculation of colimits

For convenience of the reader, we provide in this appendix the explicit calcu-
lation of colimits required in the proofs in Chapter 8. We first recall the definition
of the colimit. It can be found in any standard reference on the subject, such
as [Mac71], but we state it in the context of the category of (g∞,K∞;G(Af ))-
modules.

Let M be a finite groupoid, that is, a category with a finite number of objects
and morphisms, such that all morphisms in M are isomorphisms. Let C be the
category of (g∞,K∞;G(Af ))-modules. Let M be a covariant functor from M to
C. In this setting, we may define the colimit of the functor M as follows.

Definition A.1. The colimit of the functor M from the groupoid M to the
category C as above, consists of an object C in C together with a family of morphisms
(ϕX)X∈M in C, where

ϕX : M(X) → C,

such that

• for every morphism w : X1 → X2 in the category M, where X1 and X2

are (possibly equal) objects in M, the following diagram commutes

M(X1)
M(w)
−−−→ M(X2)

ϕX1
↘ 	 ↙ ϕX2

C

in category C, i.e., ϕX2
◦M(w) = ϕX1

, and
• the following universal property holds: if C ′ is another object in C and
(ϕ′

X)X∈M a family of morphisms ϕ′
X : M(X) → C ′ satisfying the condi-

tion as above, then there exists a unique morphism u : C → C ′ such that,
for every object X in M, the following diagram commutes

M(X)

ϕX ↙ 	 ↘ ϕ′
X

C
u−−−−→ C ′

in category C, i.e., u ◦ ϕX = ϕ′
X for every object X in M.

The colimit is unique by the universal property, and we write

C = colim
X∈M

M(X)

for the object C in the definition of the colimit.

Since the colimit is unique, it is sufficient to make a construction of the colimit
in any particular case required. That is, one must define an object C, together

77
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with a family of morphisms ϕX , and check the two conditions in the definition of
the colimit. We make such construction in the most general case required in the
paper.

Theorem A.2. Let M be a finite groupoid with objects X0, X1, . . . , Xm, where
m ≥ 0. Let Wi denote the group of automorphisms of Xi in category M. Suppose
that for every pair of objects (Xi, Xj) in M there exists a morphism wi,j from Xi

to Xj such that the set of morphisms from Xi to Xj is the coset wi,jWi = Wjwi,j.
Observe that then Wi and Wj are isomorphic as they are conjugate by wi,j. For
i = j, we choose wi,i to be the identity morphism on Xi. We may and will choose

wi,j in such a way that wj,i = w−1
i,j .

Let M be a covariant functor from M to the category C of (g∞,K∞;G(Af ))-
modules. Then, the colimit of M can be described as

colim
Xi∈M

M(Xi) ∼= M(X0)/S

∼=

{ ∑
w∈W0

M(w)ξ : ξ ∈ M(X0)

}
∼= M(X0)

W0

∼= M(X0)
T ,

where S is the submodule of M(X0) generated by

{x−M(w)x : x ∈ M(X0), w ∈ W0} ,

T is a set of generators for W0, and M(X0)
W0 , respectively M(X0)

T , denotes the
submodule of M(X0) consisting of all vectors invariant under M(w) for all w ∈ W0,
respectively for all w ∈ T . The morphisms ϕXi

are defined as

ϕXi
= ε ◦M(wi,0),

where M(wi,0) = M(w−1
0,i ) is a morphism from M(Xi) to M(X0), and ε is the

canonical epimorphism from M(X0) to the quotient M(X0)/S.

Proof. For the object C defined as the quotient M(X0)/S in the theorem,
and the morphisms ϕXi

we must prove that the two conditions in Definition A.1 of
colimit are satisfied. Let ε denote the quotient map from M(X0) to the quotient
M(X0)/S.

For the first condition, let w be any morphism from Xi to Xj , where Xi and
Xj are (possibly equal) objects in M. Then we must prove that

ϕXj
◦M(w) = ϕXi

,

where ϕXl
= ε ◦M(wl,0) for l = 0, 1, . . . ,m, as in the theorem. Inserting this into

the desired equation we obtain

ε ◦M(wj,0) ◦M(w) = ε ◦M(wi,0)

which can be rewritten as

ε ◦ (M(wi,0)−M(wj,0w)) = 0.

Hence, it is enough to show that the image of the morphism in brackets is in the
kernel S of ε, that is,

M(wi,0)y −M(wj,0w)y ∈ S
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for all y ∈ M(Xi). But

M(wi,0)y −M(wj,0w)y = M(wi,0)y −M(wj,0ww0,i)M(wi,0)y,

so that if we set x = M(wi,0)y ∈ M(X0) and w′ = wj,0ww0,i ∈ W0, it is clear that
this last expression is in S.

For the second condition, i.e., the universal property, we must prove the exis-
tence and uniqueness of the morphism u. More precisely, let C ′ be an object in C,
and ϕ′

Xi
, where i = 0, 1, . . . ,m, a family of morphisms from M(Xi) to C ′, indexed

by objects of M, such that the first condition in Definition A.1 of the colimit is
satisfied. That is,

ϕ′
Xj

◦M(w) = ϕ′
Xi

,

for any morphism w from Xi to Xj in category M. In particular, for any w ∈ W0,
we have

ϕ′
X0

◦M(w) = ϕ′
X0

,

which implies that ϕ′
X0

is trivial on the kernel S of the quotient map ε.
Then, we define the morphism u from C to C ′ as

u(ε(x)) := ϕ′
X0

(x),

where x ∈ M(X0). This is well-defined, because any element of C is of the form
ε(x), and if x′ ∈ M(X0) is such that ε(x) = ε(x′), then x−x′ ∈ S and, since ϕ′

X0
is

trivial on S, we have ϕ′
X0

(x) = ϕ′
X0

(x′). To show that the diagram in the universal
property commutes, we make a direct computation

u ◦ ϕXi
= u ◦ ε ◦M(wi,0)

= ϕ′
X0

◦M(wi,0)

= ϕ′
Xi

,

where we use the definition of ϕXi
in the first line, the defining relation of u in the

second line, and the assumed property of the family ϕ′
Xi

in the last line. Thus, we
have proved the existence of u.

For the uniqueness, suppose that for the same C ′ and the same family ϕ′
Xi

,
there is another morphism u′ from C to C ′ such that the diagram in the universal
property commutes, i.e.,

u′ ◦ ϕXi
= ϕ′

Xi
,

for all Xi, i = 0, 1, . . . ,m. Then, we may write

u′(ε(x)) = u′(ϕX0
(x))

= ϕ′
X0

(x)

= u(ε(x)),

where we use the definition of ϕX0
in the first line, the universal property for u′ in

the second line, and the definition of u in the last line. Since an arbitrary element
of C is of the form ε(x), where x ∈ M(X0), it follows that u = u′, and thus, u is
unique.

It remains to show that the other three descriptions of the colimit in the theorem
are indeed isomorphic to M(X0)/S. For the moment, let

V =

{ ∑
w∈W0

M(w)ξ : ξ ∈ M(X0)

}
.
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We prove the first isomorphism directly using the first isomorphism theorem. If we
define an intertwining map Ψ : M(X0) → V by the formula

Ψ(ξ) =
∑

w∈W0

M(w)ξ,

then it is clear that the image of Ψ is V . For the kernel, we have that S ⊆ KerΨ,
because

Ψ(x−M(w0)x) =
∑

w∈W0

M(w) (x−M(w0)x)

=
∑

w∈W0

M(w)x−
∑

w∈W0

M(ww0)x

=
∑

w∈W0

M(w)x−
∑

w∈W0

M(w)x

= 0,

for all x ∈ M(X0) and all w0 ∈ W0. On the other hand, KerΨ ⊆ S, because given
any y ∈ KerΨ, we have

y = −
∑

w∈W0,w ̸=1

M(w)y,

which may be rearranged as

y =
1

|W0|
∑

w∈W0,w ̸=1

(y −M(w)y) ∈ S,

where |W0| is the cardinality of W0. Thus, KerΨ = S, so that the first isomorphism
is proved.

For the second isomorphism, it is clear that all vectors in V are invariant under
M(w0) for all w0 ∈ W0, because

M(w0)
∑

w∈W0

M(w)ξ =
∑

w∈W0

M(w0w)ξ

=
∑

w∈W0

M(w)ξ.

Conversely, if y ∈ M(X0) is invariant under M(w) for all w ∈ W0, then

|W0|y =
∑

w∈W0

M(w)y,

which implies that for ξ = 1
|W0|y we have

y =
∑

w∈W0

M(w)ξ ∈ V.

This shows the second isomorphism. The third isomorphism is obvious. �
All the colimits required in the paper can be explicitly determined using Theo-

rem A.2. In fact, most of the time, only two special cases are required in the proofs.
The first of these cases is the case of m = 0, so that there is only one object X0

in M, with a non-trivial automorphism w0 in W0, i.e., W0 = {1, w0}. In this case,
Theorem A.2 implies that the colimit is isomorphic to the invariants in X0 for the
automorphism w0. The second case is the case of m = 1, so that there are two
objects X0 and X1 in M, without non-trivial automorphisms, i.e., W0 = {1}, but
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with a non-trivial isomorphism w0,1 = w−1
1,0 between them. In this case, the colimit

is isomorphic to X0. The only exception of this rule is the proof of Theorem 7.8
given in Section 8.3. The special cases of Theorem A.2 required in that proof are
mentioned there.
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