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To Joachim Schwermer, with gratitude and admiration, for the occasion of his 66th birthday

Abstract. During the past ten years of the most inspiring and very fruitful collaboration
with Joachim Schwermer, we have carefully studied the non-vanishing conditions for certain
summands in the decomposition along the cuspidal support of the (square-integrable) Eisen-
stein cohomology of a reductive group over a totally real number field. These conditions
form a subtle combination of geometric conditions, arising from cohomological considera-
tions, and arithmetic conditions, arising from the analytic properties of Eisenstein series and
given in terms of automorphic L-functions. This paper is a survey of the most important
results of our long-lasting collaboration.

1. Introduction

The cohomology of an arithmetic subgroup of a reductive group over a number field is
closely related to automorphic forms with respect to that arithmetic subgroup. On the
other hand, it has another interpretation in terms of geometric objects. In that way, it
provides a direct link between arithmetic algebraic geometry and number theory. The flow
of information may go in both directions. Using geometric constructions one may hope
to show the existence of automorphic forms, satisfying certain properties, with respect to
some arithmetic subgroups. In the other direction, one may use the decomposition and
structure of the spaces of automorphic forms to get information about cohomology. The
latter direction is exactly the main theme of my collaboration with Joachim Schwermer, and
the subject of this survey paper. Schwermer has written several excellent overview papers
about the cohomology of arithmetic groups, emphasising both, the geometric and the number
theoretic aspects [23], [29], [30]. Hence, we omit here the preliminaries and details regarding
the setting, wider scope and applications of cohomology of arithmetic groups, and focus on
the results obtained in our collaboration.

The main object of concern, when expressing the cohomology of arithmetic groups in
terms of automorphic forms, is the so-called automorphic cohomology of a reductive group.
It captures, in the adèlic setting, the information about cohomology of congruence arithmetic
subgroups. It is defined as the relative Lie algebra cohomology of the space of automorphic
forms on the adèlic group.
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In the collaboration with Joachim Schwermer, we study the automorphic cohomology
of a reductive group using information about automorphic forms on the adèlic points of
that group. However, complete explicit information regarding the structure of spaces of
automorphic forms is often not known. Hence, we are exploiting the interconnection of the
two interpretations, geometric and automorphic, to show that only the automorphic forms
with certain properties may possibly contribute to cohomology. These arguments exclude
many difficult situations in the theory of automorphic forms from consideration. For the
remaining possibilities, we use the information from the theory of automorphic forms to show
the existence of certain cohomology classes represented by (non-cuspidal) square-integrable
automorphic forms and study the internal structure of cohomology.

The paper is organized as follows. In Section 2 we define the main objects of concern
and provide just the preliminaries required to state the results. Section 3 introduces the
necessary conditions for non-vanishing of certain summands in cohomology and explains their
consequences. In Section 4 the focus is on the subtle interplay of geometric and arithmetic
necessary non-vanishing conditions for summands in square-integrable cohomology. Finally,
Section 5 deals with internal structure of the full automorphic cohomology, in particular,
with the existence of non-trivial cohomology classes in the summands of square-integrable
cohomology.

∗ ∗ ∗

When I first met Joachim Schwermer at the Erwin Schrödinger Institute in Vienna in
2006, I was a young mathematician, just finishing my PhD, and looking for new problems.
My thesis was about L2 spaces of automorphic forms and their spectral decomposition, the
Eisenstein series and automorphic L-functions and their analytic behavior. My adviser was
Goran Muić at the University of Zagreb. At that time, I did not know anything about
cohomology. In our discussions back in 2006, I learned that the subject of my thesis is
closely related to the cohomology of arithmetic groups, and we were soon working together
on many problems in cohomology of arithmetic groups, looking at the possible applications
of the structural information about spaces of automorphic forms.

I will always be grateful to Schwermer, who introduced me to the subject and taught me
everything I know about cohomology. His kindness and patience, especially at the beginning
of our collaboration, gave me the courage and confidence to continue the quest. I hope that
he has enjoyed our collaboration as much as I have, and that it will continue for many years
to come. Happy birthday Joachim!

2. Automorphic cohomology and cohomology of arithmetic groups

In this section we define the automorphic cohomology and its decomposition along the
cuspidal support. The individual summands in that decomposition are the main objects of
our concern in this paper. For simplicity of exposition and to avoid some technical issues, we
work with a semi-simple group, instead of a reductive group, and over the field Q of rational
numbers, instead of any totally real number field.
Hence, let G be a semi-simple connected linear algebraic group defined over the field of

rational numbers Q. For a finite prime p, let Qp be the field of p-adic numbers. For p = ∞,
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we have Q∞ = R. Let A denote the ring of adèles of Q, and Af the subring of finite adèles.
Let g∞ be the real Lie algebra of the Lie group G(R). We fix, once for all, a minimal parabolic
Q-subgroup P0 of G, and a maximal compact subgroup K of G(A). We may assume that
K =

∏
pKp, where Kp is a maximal compact subgroup of G(Qp), hyperspecial for almost all

p, and that K is in good position with respect to P0 as in [25, Sect. I.1.4].
Let A = A(G(Q)\G(A)) be the space of automorphic forms on G(A) as defined in [4].

It carries the structure of a (g∞, K∞;G(Af ))-module arising from right translation. Let
E be a finite-dimensional irreducible algebraic representation of G. We define the auto-
morphic cohomology of G with respect to E as the relative Lie algebra cohomology of the
(g∞, K∞;G(Af ))-module A of automorphic forms on G(A) with respect to E, that is,

H∗(G,E) = H∗(g∞, K∞;A⊗C E).

It carries the structure of a G(Af )-module. This object captures the information about the
cohomology of congruence arithemetic subgroups of G. This fact is proved in [5], [2] and [8].

More precisely, according to [5], the Eilenberg–MacLane cohomology of an arithmetic
subgroup Γ of G is isomorphic to the de Rham cohomology of the corresponding locally
symmetric space Γ\X, where X = G(R)/K∞. This, in turn, is isomorphic to the relative
Lie algebra cohomology of the (g∞, K∞)-module of smooth functions on Γ\G(R). The reg-
ularization theorem of Borel, proved in [2], shows that in this last cohomology space the
same space is obtained if smooth functions are replaced with smooth functions of uniform
moderate growth. For a congruence subgroup Γ, Franke proved in [8] that instead of smooth
functions of moderate growth, the same cohomology space is obtained as the relative Lie
algebra cohomology of the (g∞, K∞)-module of automorphic forms on G(R) with respect
to Γ. Writing this in the adèlic setting, and passing to the direct limit with respect to
the inclusion of open compact subgroups of G(Af ), one obtains the automorphic cohomol-
ogy H∗(G,E) as defined above. Conversely, given a compact open subgroup C of G(Af ),
one can recover the cohomology of the corresponding congruence arithmetic subgroup Γ by
taking the C-invariants of the G(Af ) action on the automorhpic cohomology H∗(G,E).
The first step in the study of automorphic cohomology is to apply Wigner’s lemma [5,

Sect. I.4], which says that only automorphic forms whose infinitesimal character is compat-
ible with E may possibly contribute to H∗(G,E). Thus, we let J be the ideal of finite
codimension in the center Z of the universal enveloping algebra of the complexification of
g∞ which annihilates the conjugate dual of E. Then

H∗(G,E) ∼= H∗(g∞, K∞;AJ ⊗C E),

where AJ consists of automorphic forms that are annihilated by a power of J .
The space AJ admits a decomposition along the cuspidal support. Let {P} be the asso-

ciate class of parabolic Q-subgroups of G, represented by a standard parabolic Q-subgroup
P with a Levi decomposition P = MPNP . Let ϕπ be an associate class of cuspidal auto-
morphic representations of the Levi factors of parabolic subgroups in {P}, represented by
a cuspidal automorphic representation π of MP (A). More precisely, ϕπ = (ϕQ)Q∈{P}, where
ϕQ is the finite set of cuspidal automorphic representations of the Levi factor MQ(A) which
are G(Q)-conjugate to π. Note that we do not assume that π is unitary.
Let ǎP = X∗(P ) ⊗Z R, where X∗(P ) is the Z-module of Q-rational characters of P , and

let ǎP,C be its complexification. It is well known, see for example [25, Sect. I], that the
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elements of ǎP,C give rise to characters of MP (A). Abusing the notation, for ν ∈ ǎP,C, we
denote the corresponding character of MP (A) by the same letter ν. Since we may replace
the representatives π and P with their conjugates, we will always assume, without loss of
generality, that π ∼= π0 ⊗ ν0, where π0 is a unitary cuspidal automorphic representation of
MP (A), and ν0 is a character of MP (A) corresponding to an element ν0 ∈ ǎP which belongs
to the closure of the positive Weyl chamber determined by P .

We now define, following [9, Sect. 1.3], the space A{P},ϕπ of automorphic forms supported
in the associate class ϕπ of cuspidal automorphic representations of the Levi factors of par-
abolic subgroups in the associate class {P}. This definition is equivalent to the definition
given in [25, Sect. III.2.6] according to [9, Thm. 1.4]. Let π ∼= π0 ⊗ ν0 as above. For
simplicity of exposition, we suppose that π0 is of multiplicity one in the space of cuspidal
automorphic forms on MP (A). Let Wπ0 be the space of smooth right K-finite functions f on
NP (A)MP (Q)\G(A) such that the function fg(m) = f(mg) on MP (A) belongs to the space
of π0 for all g ∈ G(A). Given f ∈ Wπ0 , we define the Eisenstein series, at least formally, by
the series

E(f, ν)(g) =
∑

γ∈P (Q)\G(Q)

(ν + ρP )(γg)f(γg)

where ν ∈ ǎP,C, g ∈ G(A), and ρP ∈ ǎP is the half-sum of positive roots in NP . We view
ν+ρP as a character of G(A) extended from a character ofMP (A) via Iwasawa decomposition
trivially on NP (A) and K. The defining series of E(f, ν)(g) converges absolutely and locally
uniformly in a positive cone deep enough in the positive Weyl chamber of ǎP,C determined by
P . It has the analytic continuation to a meromorphic function of ν on the whole space ǎP,C.
The poles in the closure of the positive Weyl chamber are along the singular hyperplanes
which form a locally finite family. For these properties of Eisenstein series see [25, Sect. IV.1]
or [22]. We refer to the Eisenstein series E(f, ν), with f ∈ Wπ0 , as the Eisenstein series
associated to π0.

We are interested in the analytic behavior of the Eisenstein series E(f, ν) at ν = ν0. Since
ν0 is in the closure of the positive Weyl chamber and the family of singular hyperplanes is
locally finite around ν0, there is a (possibly empty) finite set of singular hyperplanes passing
through ν0. Hence, there is a polynomial F (ν) such that F (ν)E(f, ν) is holomorphic around
ν = ν0. Then, the space A{P},ϕπ is defined as the span of all the coefficients in the Taylor
expansions of F (ν)E(f, ν) around ν = ν0, with f ranging over Wπ0 . Although F (ν) is not
unique, this definition does not depend on that choice.

The automorphic forms in A{P},ϕπ are compatible with E, that is, belong to the space AJ ,
if and only if the cuspidal support ϕπ is compatible with E as in [9, Sect. 1.3]. We denote
by ΦJ ,{P} the set of all associate classes ϕπ of cuspidal automorphic representations of the
Levi factors of parabolic subgroups in {P} which are compatible with E. If ϕπ ∈ ΦJ ,{P}
we write AJ ,{P},ϕπ for A{P},ϕπ . Then, the space AJ admits the decomposition along the
cuspidal support

AJ =
⊕
{P}

⊕
ϕπ∈ΦJ ,{P}

AJ ,{P},ϕπ

as a (g∞, K∞;G(Af ))-module. The summands indexed by the full group {G} consist of
cuspidal automorphic forms.
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The decomposition of AJ gives rise to the corresponding decomposition in cohomology.
Thus, the automorphic cohomology admits the decomposition along the cuspidal support

H∗(G,E) =
⊕
{P}

⊕
ϕπ∈ΦJ ,{P}

H∗(g∞, K∞;AJ ,{P},ϕπ ⊗C E).

Since the summands indexed by the full group {G} come from cuspidal automorphic forms,
their sum is called cuspidal cohomology. The natural complement of cuspidal cohomology
consists of summands indexed by {P} ̸= {G}. Their sum is called Eisenstein cohomology,
because the cohomology classes can be represented by derivatives of Eisenstein series and
their residues.

The main object of our concern is the non-vanishing and structural description of the
individual summands of Eisenstein cohomology in the decomposition along the cuspidal
support. In other words, the problem is to determine for which cuspidal supports ϕπ the
summand

H∗(g∞, K∞;AJ ,{P},ϕπ ⊗C E), {P} ̸= {G} (A)

is not trivial, and in that case determine the structure of that cohomology space.
Let L denote the (g∞, K∞;G(Af ))-submodule of A consisting of square-integrable auto-

morphic forms. The space L admits the decomposition along the cuspidal support. We
denote by LJ ,{P},ϕπ the summand in that decomposition supported in ϕπ. It is the space
of square-integrable automorphic forms in AJ ,{P},ϕπ . The Langlands spectral decomposition
(cf. [25], [22]) implies that LJ ,{P},ϕπ is spanned by all square-integrable iterated residues at
ν = ν0 of the Eisenstein series E(f, ν) associated to π0. Recall that we write here π ∼= π0⊗ν0
as before.

The inclusion of LJ ,{P},ϕπ into AJ ,{P},ϕπ gives rise to a map in cohomology

H∗(g∞, K∞;LJ ,{P},ϕπ ⊗C E) −→ H∗(g∞, K∞;AJ ,{P},ϕπ ⊗C E).

However, this map is not necessarily injective. Its image is the summand supported in ϕπ in
the so-called square-integrable cohomology, and denoted by

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E).

The square-integrable cohomology consists of cohomology classes that can be represented
by square-integrable automorphic forms. In the case {P} = {G}, the summand in square-
integrable cohomology is the same as the corresponding summand in full cohomology, because
the unitary cuspidal automorphic forms are square-integrable. Thus, the interesting part of
square-integrable cohomology lies in Eisenstein cohomology. We are interested in describing
the square-integrable cohomology

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E), {P} ̸= {G} (L)

in the summand (A) in the decomposition of Eisenstein cohomology along the cuspidal
support.

3. Non-vanishing conditions

In this section we review the necessary conditions for non-vanishing of the summand (A)
in the decomposition of Eisenstein cohomology along the cuspidal support. These conditions
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arise from the representation theoretic consideration of the space AJ ,{P},ϕπ of automorphic
forms supported in π. We omit the details and refer to [27] and [24].

The crucial point is that there is a finite filtration of the space AJ ,{P},ϕπ , defined through
the analytic behavior at ν = ν0 of the Eisenstein series E(f, ν) associated to π0, such that
the successive quotients of the filtration are parabolically induced representations. It is
the so-called Franke filtration introduced in [8, Sect. 6]. If the Eisenstein series E(f, ν)
associated to π0 is holomorphic at ν = ν0, then E(f, ν0), together with its derivatives at
ν = ν0, defines an intertwining map of the representation parabolically induced from π0⊗ ν0
to G(A), tensored by the symmetric algebra S(ǎP,C) of derivatives with respect to ν, into
the space of automorphic forms. Otherwise, if the Eisenstein series has a pole at ν = ν0,
one should consider the residues of Eisenstein series, and use the degenerate Eisenstein
series on G(A), supported in π0, to construct intertwining maps between certain induced
representations and the filtration quotients of the Franke filtration.

Hence, roughly speaking, the relative Lie algebra cohomology of AJ ,{P},ϕπ vanishes, if
the relative Lie algebra cohomology of certain induced representation vanishes. Applying
Frobenius reciprocity reduces this latter cohomology to the cohomology of π0 ⊗ ν0 with
respect to the coefficient system given by the Lie algebra cohomology H∗(nP , E), where nP
is the Lie algebra of the unipotent radical NP (R). Then, the non-vanishing conditions arise
from the non-vanishing of the cuspidal cohomology at the level of Levi factors. To make
these conditions precise we need some more notation.

Given a standard parabolic Q-subgroup P of G, let AP denote the maximal Q-split torus
in the center of the Levi factor MP of P . The Lie algebra aP of AP (R) is isomorphic to
aP ∼= X∗(AP ) ⊗ R, where X∗(AP ) denotes the Z-module of Q-rational cocharacters of AP .
In the case of the minimal parabolic Q-subgroup P0, we write simply A0 and a0, instead of
AP0 and aP0 , respectively. We retain the notation ǎP = X∗(P ) ⊗Z R, and write ǎ0 in the
case P = P0. There is a natural pairing of aP and ǎP . The inclusion of AP into A0 gives rise
to a map of aP into a0. On the other hand, the restriction of characters from P to P0 gives
rise to a map of ǎP to ǎ0. These two maps provide natural decompositions

a0 = aP ⊕ aP0 and ǎ0 = ǎP ⊕ ǎP0 .

The space ǎP0 may be viewed as the space of infinitesimal characters of representations of
MP (R). The projection of an element λ ∈ ǎ0 to ǎP and ǎP0 is obtained by restriction to aP
and aP0 and is thus denoted by λ

∣∣
aP

and λ
∣∣
aP0
, respectively.

Let ρ0 denote the half-sum of positive roots in the absolute root system for G, viewed as
an element of ǎ0. Let Λ denote the highest weight of the finite-dimensional representation
E of G(C), viewed as an element of ǎ0.

Let W be the absolute Weyl group of G. For a standard parabolic Q-subgroup P , let WP

be the absolute Weyl group of its Levi factor, viewed as a subgroup of W . We denote by
W P the set of coset representatives for WP\W , which are of minimal length in their coset.

According to [21], the Lie algebra cohomology of the unipotent radical is

Hq(nP , E) =
⊕

w∈WP

ℓ(w)=q

Fµw ,
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where ℓ(w) is the length of w, and Fµw is the irreducible finite-dimensional representation of
MP (C) of highest weight

µw = w(Λ + ρ0)− ρ0.

Then, the non-vanishing conditions arise from the non-vanishing conditions for the cuspidal
cohomology of the Levi factor with respect to coefficient systems Fµw . The results are
summarized in the following theorem.

Theorem 3.1 (Necessary non-vanishing conditions). Let P = MPNP be a standard proper
parabolic Q-subgroup of G. Let π = π0 ⊗ ν0 be a cuspidal automorphic representation of
MP (A), where π0 is unitary, and ν0 an element of the closure of the positive Weyl chamber
in ǎP viewed as a character of MP (A).
Then, the summand (A), that is,

H∗(g∞, K∞;AJ ,{P},ϕπ ⊗C E)

in the decomposition of Eisenstein cohomology is trivial except possibly if the following con-
ditions

(1) ν0 = −w(Λ + ρ0)
∣∣
aP
,

(2) −w(Λ + ρ0)
∣∣
aP0

is the infinitesimal character of π0,

(3) −wl,P

(
µw

∣∣
aP0

)
= µw

∣∣
aP0
, where wl,P is the longest element of WP ,

(4) π0,∞ is cohomological,

are all satisfied with the same minimal coset representative w ∈ W P .

Regarding the proof of these facts, the first two conditions come from the compatibility
with J , and were proved in [27, Cor. 3.5] and [27, page 55], respectively. The third condition
follows from [3]. The last condition is clear from the definition of cohomological represen-
tations. Recall that a representation of G(R) is called cohomological, if it has non-trivial
cohomology with respect to some coefficient system [34].

As an example of the strength of these necessary conditions for non-vanishing, we have
the following theorem. We state here the theorem only for Q-split classical groups, although
an analogous result holds for the general linear group as well [16], [14]. The case of non-split
classical groups can be handled in the same way, because the non-vanishing conditions are
given in terms of absolute root systems and absolute Weyl groups. The precise statements
for non-split classical groups can thus be deduced from the split case. For example, the case
of unitary groups is considered in our work in progress [18].

Theorem 3.2 ([16], [14]). Let G be one of the Q-split classical groups Spn, SO2n+1, SO2n

of Q-rank n. Let P = MPNP be the standard parabolic subgroup with the Levi factor MP
∼=

GLn1 × · · · ×GLnk
×G′, where G′ is a (possibly trivial) smaller group of the same type. Let

π0
∼= τ1 ⊗ · · · ⊗ τk ⊗ σ be a unitary cuspidal automorphic representation of MP (A), where

τi, resp. σ, is a unitary cuspidal automorphic representation of GLni
(A), resp. G′(A). Let

ν0 ∈ ǎP correspond to the character | det |s1 ⊗ · · · ⊗ | det |sk of MP (A), where si ∈ R. Let
π ∼= π0 ⊗ ν0 ∼= τ1| det |s1 ⊗ · · · ⊗ τk| det |sk ⊗ σ.

Then, the summand (A) in the decomposition of Eisenstein cohomology along the cuspidal
support, that is,

H∗(g∞, K∞;AJ ,{P},ϕπ ⊗C E),
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is trivial except possibly if all si ∈ 1
2
Z.

We call this property the half-integrality condition. Its importance lies in the fact that
further study of the summand (A) requires understanding of the analytic properties of the
Eisenstein series E(f, ν) at ν = ν0, and this is simplified by the half-integrality restriction on
the possible si. For example, if σ is globally generic in the theorem above, the Langlands–
Shahidi method [22], [25], [31], [32], tells us that the poles of the Eisenstein series at ν = ν0
are determined by the poles of the complete automorphic L-functions in its constant term.
In the cases considered in the theorem, the automorphic L-functions in the constant term of
the Eisenstein series are the Rankin–Selberg automorphic L-functions of pairs for the general
linear group times the classical group, and the symmetric and exterior square automorphic
L-functions attached to τi at the value 2si of their complex parameter. For the generic
representations, by the global functorial lifting from classical groups to the general linear
group [6], [7], the former are related to the Rankin–Selberg automorphic L-functions of pairs
for the general linear group, which are well understood. For the latter, according to the
above theorem, only 2si ∈ Z, that is, the analytic behavior at integral values of the complex
parameter, matters for cohomology. This excludes the critical strip 0 < Re(s) < 1 from the
consideration. The holomorphy of the symmetric and exterior square (complete) automor-
phic L-functions for the values of its complex parameter in the critical strip is only recently
proved [11], [19], using Arthur’s endoscopic classification of automorphic representations in
the discrete spectrum for G as in the theorem [1]. At the time of our study, Arthur’s clas-
sification was still conjectural, and we used the above theorem to get unconditional results
on automorphic cohomology.

4. Square-integrable cohomology

The first step towards complete understanding of the internal structure of the summand
(A) in the decomposition of Eisenstein cohomology along the cuspidal support is understand-
ing the summand (L) in the square-integrable cohomology, that is,

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E), {P} ̸= {G}.

This is due to the fact that the (possibly trivial) space LJ ,{P},ϕπ is a (g∞, K∞;G(Af ))-
submodule of AJ ,{P},ϕπ , which always forms the lowest filtration step in the Franke filtration
of the latter.

The summand (L) in square-integrable cohomology is, of course, trivial if the summand
(A) in the full Eisenstein cohomology is trivial. Hence, all necessary conditions for non-
vanishing stated in Theorem 3.1 should be satisfied in order that (L) is possibly non-trivial.
Since these conditions are obtained from cohomological considerations, we refer to them as
geometric conditions.

On the other hand, the summand (L) is certainly trivial if the space LJ ,{P},ϕπ is trivial.
The space LJ ,{P},ϕπ is spanned by the square-integrable iterated residues at ν = ν0 of the
Eisenstein series associated to π0. The existence of (non-zero) such residues is determined by
the analytic behavior of the Eisenstein series at ν = ν0, which is closely related to the analytic
behavior of the automorphic L-functions in its constant term, according to the Langlands–
Shahidi method [22], [25], [31], [32]. Hence, the necessary conditions for non-vanishing of
the summand (L) arising from non-triviality of the space LJ ,{P},ϕπ can be written in terms
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of the analytic properties of automorphic L-functions. We refer to them as arithmetic non-
vanishing conditions.

The geometric and arithmetic necessary conditions for non-vanishing of the summand
(L) of square-integrable cohomology form a subtle combination, which provides a strong
restriction on possible contributions to square-integrable cohomology. As an example, we
state here a theorem for summands (L) supported in the Siegel maximal proper parabolic
Q-subgroup of the symplectic group over Q. This is a special case of the results obtained in
[15], which are dealing with arbitrary maximal proper parabolicQ-subgroup of the symplectic
group. The analogous results for the case of odd special orthogonal group are obtained by
Gotsbacher and Grobner in [10].

Theorem 4.1 ([15]). Let G = Spn be the symplectic group over Q of Q-rank n. Let P be the
Siegel standard maximal proper parabolic Q-subgroup, that is, the Levi factor is MP

∼= GLn.
Let π0 be a unitary cuspidal automorphic representation of MP (A) ∼= GLn(A). Let ν0 ∈ ǎP
correspond to the character | det |s0, with s0 ≥ 0, of MP (A) ∼= GLn(A). Let π ∼= π0⊗| det |s0.
Let Λ =

∑n
i=1 λiei, with λi ∈ Z and λ1 ≥ · · · ≥ λn ≥ 0, be the highest weight of the finite-

dimensional representation E of G, where ei is the projection of a fixed maximal split torus
of G onto its ith component.
Then, the summand (L) in square-integrable cohomology supported in π, that is,

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E),

is trivial, except possibly if the following conditions are satisfied.

(1) s0 = 1/2,
(2) the exterior square automorphic L-function L(s, π0,∧2) has a pole at s = 1,
(3) the principal automorphic L-function L(s, π0) is non-zero at s = 1/2,
(4) the rank n is even,
(5) the highest weight Λ satisfies λ2j−1 = λ2j for j = 1, . . . , n/2,
(6) the infinite component π0,∞ of π0 is the tempered representation of GLn(R) which is

isomorphic to the fully induced representation

π0,∞ ∼= Ind
GLn(R)
Q(R)

 n/2⊗
j=1

D(2µj + 2n− 4j + 4)

 ,

where µj = λ2j−1 = λ2j, D(k) with k ≥ 2 is the discrete series representation of
GL2(R) of lowest O(2)-type k, and Q is the standard parabolic subgroup of GLn with
the Levi factor isomorphic to a direct product of n/2 copies of GL2.

From the above theorem one may get the idea how difficult it is to determine the very exis-
tence of a cuspidal support which may possibly contribute non-trivially to square-integrable
cohomology. In the special case treated in the theorem, the unitary part π0 of the cuspi-
dal support should have a precisely determined infinite component, while at the same time
should satisfy both arithmetic conditions: the exterior square L-function attached to π0

should have a pole at s = 1 and the principal L-function attached to π0 should be non-zero
at s = 1/2.

On the other hand, the theorem excludes from consideration many possibilities. It shows,
for example, that if the rank of the symplectic group is odd, then there is no contribution
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to square-integrable cohomology from automorphic forms supported in the Siegel maximal
proper parabolic subgroup. It also shows that for some coefficient systems, namely those not
satisfying condition (5) of the theorem, there is no contribution to square-integrable coho-
mology from automorphic forms supported in the Siegel maximal proper parabolic subgroup.

To further illustrate the subtle combination of geometric and arithmetic necessary condi-
tions for non-vanishing, we consider a simple low-rank example in which some of the more
technical conditions of the above theorem are avoided.

Corollary 4.2. Let G = Sp2 be the symplectic group over Q of Q-rank two. Let P be the
Siegel standard maximal proper parabolic Q-subgroup of G, that is, the Levi factor MP

∼=
GL2. Let π0 be a unitary cuspidal automorphic representation of MP (A) ∼= GL2(A). Let
ν0 ∈ ǎP correspond to the character | det |s0, with s0 ≥ 0, of MP (A) ∼= GL2(A). Let π ∼=
π0 ⊗ | det |s0. Let the coefficient system E be the trivial representation of G.
Then, the summand (L) in square-integrable cohomology supported in π, that is,

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E),

is trivial, except possibly if the following conditions are satisfied.

(1) s0 = 1/2,
(2) the central character of π0 is trivial,
(3) the principal automorphic L-function L(s, π0) is non-zero at s = 1/2,
(4) the infinite component π0,∞ of π0 is the discrete series representation of GL2(R) of

lowest O(2)-type 4.

Hence, to show the existence of a cuspidal support π in the Siegel parabolic subgroup
that could possibly contribute non-trivially to square-integrable cohomology of Sp2, with
respect to the trivial coefficient system, one should show the existence of a unitary cuspidal
automorphic representation π0 of GL2(A) with trivial central character, discrete series of
lowest O(2)-type 4 as the infinite component, and such that L(1/2, π0) ̸= 0. In terms of clas-
sical automorphic forms, this may be rephrased as the existence problem for a holomorphic
modular form of weight 4, trivial Nebentypus, arbitrary level, and such that L(1/2, π0) ̸= 0.
This problem in wider generality was studied by Trotabas in [33]. A consequence of his work
is the existence of a Hilbert modular form of any given even weight, trivial Nebentypus,
arbitrary level, and such that L(1/2, π0) ̸= 0. In particular, it shows the existence of π0 with
the required properties.

In a recent preprint [17], we study the existence of non-trivial cohomology classes in
square-integrable cohomology for the split symplectic and special orthogonal groups of rank
two, as well as the exceptional group G2, over a totally real number field. In that work, we
encounter various arithmetic conditions, and to show the existence of the cuspidal support
satisfying the necessary non-vanishing conditions, we use not only the result of Trotabas,
but also a construction of monomial representations of GL2(A) via automorphic induction
from the appropriate Hecke characters of the group of idèles.

However, the existence of the cuspidal support satisfying the necessary non-vanishing con-
ditions is still not sufficient to imply the non-vanishing of the summand (L) in the decom-
position of square-integrable cohomology along the cuspidal support. This requires further
study of the internal structure of the summand (A) in the decomposition of full Eisenstein
cohomology, which is the subject of the following section.



EISENSTEIN COHOMOLOGY AND AUTOMORPHIC L-FUNCTIONS 11

5. Internal structure of cohomology

As already mentioned above, once we establish the existence of a cuspidal support ϕπ, sat-
isfying all the necessary non-vanishing conditions for the summand (L) in the decomposition
of square-integrable cohomology along the cuspidal support, that is,

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E), {P} ̸= {G},

the final step is to show that this summand is indeed non-trivial.
There exist two approaches to settle this problem. The first is due to Rohlfs–Speh [26,

Thm. I.1=III.1]. They show that, given a cuspidal support ϕπ satisfying the necessary non-
vanishing conditions, the summand (L) of square-integrable cohomology is non-trivial in the
lowest degree in which the relative Lie algebra cohomology

H∗(g∞, K∞;LJ ,{P},ϕπ ⊗C E)

is non-trivial. In other words, they show that the map in cohomology induced by the inclusion
of LJ ,{P},ϕπ into AJ ,{P},ϕπ is non-zero in that lowest degree. Their method of proving this
fact is using the geometric expression of the automorphic cohomology in terms of differential
forms.

We use the result of Rohlfs–Speh in the preprint [17], already mentioned above, to show
the actual non-vanishing of certain summands in the decomposition of square-integrable
cohomology for the split symplectic and special orthogonal groups of rank two, and the
exceptional group G2, defined over a totally real number field. As an example, we present
here the special case already considered in Corollary 4.2.

Theorem 5.1 ([17]). Let G = Sp2 be the symplectic group over Q of Q-rank two. Let P
be the Siegel standard maximal proper parabolic Q-subgroup of G, that is, the Levi factor
MP

∼= GL2. Let the coefficient system E be the trivial representation of G.
Then, there exists a unitary cuspidal automorphic representation π0 of MP (A) ∼= GL2(A)

such that, for the cuspidal support π ∼= π0 ⊗ | det |1/2, the summand (L) in square-integrable
cohomology supported in π, that is,

H∗
(sq)(g∞, K∞;AJ ,{P},ϕπ ⊗C E),

does not vanish in degree q = 2. These classes, represented by square-integrable residues of
Eisenstein series, contribute non-trivially in degree q = 2 to the full Eisenstein cohomology
space H∗

Eis(Sp2,C).

The second approach to the non-vanishing of summands (L) is using the Franke filtration.
The Franke filtration, originally defined in [8, Sect. 6], and its refinement introduced in [9,
Thm. 1.4], is a finite descending filtration of the (g∞, K∞;G(Af ))-module AJ ,{P},ϕπ . The
main advantage of using this filtration is that the successive quotients of the filtration may be
described as parabolically induced representations from certain Levi factors of G. This allows
not only showing the non-vanishing of the summands (L) in square-integrable cohomology,
but also the explicit calculation of the internal structure of the summands (A) in the full
Eisenstein cohomology. The idea is to calculate first the cohomology of filtration quotients,
and then use, step-by-step, the long exact sequences in cohomology.

The main disadvantage of the Franke filtration approach is that it may be very difficult to
write the filtration in a form feasible for explicit calculation. The reason is that the definition
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of the filtration depends on the analytic behavior, not only of the Eisenstein series associated
to π0, but also all possible degenerate Eisenstein series with same cuspidal support, on the
Levi factors of parabolic subgroups containing an element of the associate class {P}. The
Franke filtration for the case of the cuspidal support in the associate class {P} of a maximal
proper parabolic subgroup P is described in [12].

The Franke filtration approach was pursued in [13] for the case of the symplectic group
of rank two defined over a totally real number field. As an example of the Franke filtration
approach to the calculation of cohomology, we present here again the same example as in
Corollary 4.2 and Theorem 5.1. Observe that using the Franke filtration provides more
information about the structure of cohomology. This result over Q was earlier obtained by
Schwermer in [28] using a completely different method.

Theorem 5.2 ([13], [28]). Let G = Sp2 be the symplectic group over Q of Q-rank two. Let
P be the Siegel standard maximal proper parabolic Q-subgroup of G, that is, the Levi factor
MP

∼= GL2. Let the coefficient system E be the trivial representation of G. Assume that π0

is a unitary cuspidal automorphic representation of GL2(A), such that the cuspidal support
ϕπ, represented by π ∼= π0 ⊗ | det |1/2, satisfies the necessary conditions for non-vanishing of
the summand (L).
Then, the summand (A) in the decomposition of full Eisenstein cohomology along the

cuspidal support is isomorphic to
Hq(g∞, K∞;AJ ,{P},ϕπ)

∼=
H2

(sq)(g∞, K∞;AJ ,{P},ϕπ) = H2(g∞, K∞;LJ ,{P},ϕπ) ̸= 0, for q = 2,

a submodule of H3(g∞, K∞;AJ ,{P},ϕπ/LJ ,{P},ϕπ), for q = 3,
H4

(sq)(g∞, K∞;AJ ,{P},ϕπ), possibly trivial, for q = 4,

0, otherwise.

In particular, under the assumption that π0 with the required properties exists, the square-
integrable cohomology is non-trivial in degree q = 2.

The non-vanishing of the map in cohomology induced by LJ ,{P},ϕπ ↪→ AJ ,{P},ϕπ in general
was studied by Grobner in [20] using the Franke filtration. In that paper he shows that this
map is injective in a certain range of cohomology degrees (all low degrees up to a certain
bound). This, as a consequence, reproves the result of Rohlfs–Speh. However, in order to
show actual non-vanishing, it is still necessary to check the existence of the cuspidal support
ϕπ such that the cohomology space

H∗(g∞, K∞;LJ ,{P},ϕπ ⊗C E)

is non-trivial in some of the degrees in which the map in cohomology is injective. This again
boils down to the subtle combination of geometric and arithmetic conditions, as in Sect. 3
and Sect. 4, which were studied in [17] for aforementioned rank two cases. In particular, the
existence of representations π0 as in the theorem is obtained in [17].
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