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Abstract. This paper investigates the cohomology of SLn(Z), n ≥ 2, “right outside” what one
calls the “stable range”. More precisely, a qualitative non-vanishing result for the cohomology
Hq(SLn(Z)) in degrees q = n−1 and q = n is shown. This relies on a description of Hq(SLn(Z),C)
(for all n ≥ 2 and all degrees q) in terms of automorphic forms, which turns out to be very simple
if n ≤ 11. In the last section a question of F. Brown on SL6(Z), respectively a question of A. Ash
on SL8(Z), is answered.
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Introduction

In order to describe the context and the results of this paper, let G/Q be a semisimple algebraic
group defined over Q and fix a choice of a maximal compact subgroup K of the real Lie group
G(R), i.e., of the group of R-points of G. We denote by X = G(R)/K the associated symmetric
space. Let g be the Lie algebra of G(R) and let Γ be an arithmetic subgroup of G(Q).

Half a century ago, cf. [Bor74], A. Borel showed that the cohomology Hq(Γ,C) of Γ is – below
a certain degree q(G) – entirely spanned by classes, which are represented by G(R)-invariant dif-
ferential forms on X. Although Borel’s bound is not sharp in general, his result implies that below
degree q(G), the cohomology Hq(Γ,C) falls into what one calls ever since the “stable range”, i.e.,
the maximal range of degrees of cohomology, in which Hq(Γ,C) does not change, even if the rank of
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G in its Cartan-type classification is allowed to grow to infinity (and Γ varies among the arithmetic
subgroups of G).

If Γ is a congruence subgroup, then the above can be rephrased in the more modern language
of adèles A = R × Af (over Q) and automorphic forms: It can be expressed by saying that in
a certain maximal range of degrees 0 ≤ q ≤ st(G), all classes in the cohomology Hq(Γ,C) are
obtained from Hq(g,K,1G(A)), i.e., from the (g,K)-cohomology of the global trivial automorphic
representation 1G(A) of G(A), realized as a square-integrable automorphic representation on the
space of constant functions G(A) → C. In other words, given the Lie group G(R), it is enough
to study the Poincaré-polynomial of Hq(g,K,1G(R)), which is usually well-understood in terms of
differential geometry, in order to understand Hq(Γ,C) for all congruence subgroups Γ of G(Q) and
degrees q ≤ st(G).

In this paper we explore what happens in the case of the special linear group G = SLn, if one
passes right beyond the “stable range” st(SLn) = n − 2. More precisely, we show qualitative re-
sults for the growth of the Z-rank of the free part of the Z-module Hq(SLn(Z)) in degrees q = n−1
and q = n. Our main result in this direction reads as follows. Let a(q) be the number of ways to
write a positive integer q as the sum of different integers of the form 4`+ 1, ` ≥ 1. Then we obtain

Theorem A. Let n ≥ 4. Then,

dimCH
n(SLn(Z),C) ≥

{
a(n)− 1 if n is even
a(n) if n is odd

In particular, the free part of the Z-module Hn(SLn(Z)) is non-zero, in the following cases:

• for odd n, if either n ≥ 25, or n ∈ {5, 9, 13, 17, 21};
• for even n, if either n ≥ 50, or n ∈ {22, 26, 30, 34, 38, 42, 46}.

Moreover,

dimCH
n−1(SLn(Z),C) ≥

{
a(n− 1) + 1 if n is even
a(n− 1) if n is odd

In particular, the free part of the Z-module Hn−1(SLn(Z)) is non-zero, whenever Hn−1(g,K,C) is
non-zero. In addition to this non-vanishing result, the free part of the Z-module Hn−1(SLn(Z)) is
non-zero, if n = 4, 8, 12.

We refer to a combination of our Thm. 4.6, Cor. 5.3, Lem. 3.2 and Thm. 5.4 for this result.

The reader is invited to compare our result with Thm. 1.1 of the recent preprint [Bro23], which
also implies a growth-condition on the dimension of the cohomology of SLn(Z). Though our
methods here are totally different, it is interesting to notice that for odd n the dimension of the
space of n-forms of “non-compact type” (as they are used and called in [Bro23], Thm. 1.1) is
the same as our constant a(n). It should also be noted that there are several complementary
(and sometimes partly overlapping) results in the recent literature: We would like to mention
[Ash24, KMP21, PSS20, Chu-Put17, CFP14] as a chronologically decreasing selection of interest-
ing recent sources.

Another feature of this paper – and, in fact, the basis of the proof of Thm. A above – is a de-
scription of Hq(SLn(Z),C) in terms of automorphic forms, which turns out to be very simple, if
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n ≤ 11. Our main result in this direction builds on the deep work of Franke [Fra98], Franke–
Schwermer [Fra-Schw98] and a fundamental result of Chenevier-Lannes [Che-Lan19] and says, that

Theorem B. For all n ≥ 2 and all degrees q of cohomology, there is an isomorphism of modules
over the Hecke algebra of SLn(Z) (or, equivalently, of the maximal open compact subgroup Kf =

SLn(Ẑ) in SLn(Af ), where Ẑ denotes the Prüfer ring, i.e., the profinite completion of Z)

Hq(SLn(Z),C) ∼=
⊕
{P}

⊕
ϕ(π):

χπ̃∞=ρM
πf is of level 1

Hq(g,K,A{P},ϕ(π)(G))Kf .

Here, the first sum ranges over all associate classes of standard parabolic Q-subgroups P of SLn
and the second sum ranges over all associate classes ϕ(π) of cuspidal automorphic representations

π = π̃ · e〈λπ ,HP (·)〉 of the Levi subgroup of P , satisfying the listed conditions.

If n ≤ 11, then the following much simpler description holds:

Hq(SLn(Z),C) ∼= Hq(g,K,A{B},ϕ(χ)(G))Kf ,

where ϕ(χ) is the cuspidal support represented by the Hecke character

χ = e〈ρB ,HB(·)〉 = | · |
n−1
2 ⊗ | · |

n−3
2 ⊗ | · |

n−5
2 ⊗ · · · ⊗ | · |−

n−1
2

of the adèlic points of the maximal torus T of SLn.

See Thm. 2.2 for all details and Sect. 2.2.2 for unexplained notation.

It should be noted, however, that this intriguingly simple automorphic structure of Hq(SLn(Z),C)
shall not be expected to persist for all n ≥ 12: Indeed, as it was indicated to us by Chenevier (and
correcting a blunder in an earlier version of this manuscript), one may easily construct a level 1

cusp form of GL2(A)×
∏10
i=1GL1(A) out of the Ramanujan Delta-function and 10 suitable Hecke

characters, such that the right infinitesimal character is matched.

We remark that for n ≥ 27 one should even expect a non-trivial contribution of cuspidal co-
homology to Hq(SLn(Z),C): Indeed, though it is known due to the work of Miller [Mil02] and
Salamanca-Riba [Sal-Rib98], that there are no irreducible unitary cuspidal automorphic represen-
tations of GLn(A), with 1 < n ≤ 26, which have the same infinitesimal character as the trivial
representation of GLn(R) and which are also unramified at all non-archimedean places, compu-
tations of Chenevier and Täıbi suggest that there are lots of such level 1 cusp forms of GLn(A)
with n “not much bigger than” 27, cf. [Che23]; while it was only recently discovered by Boxer,
Calegari and Gee – using the newly established proof of functoriality of all symmetric powers of
level 1 cusp forms of GL2(A) by Newton–Thorne [New-Tho21] – that there is indeed an irreducible
unitary cuspidal automorphic representation of GLn(A), with n = 79, 105, 106, which has the same
infinitesimal character as the trivial representation of GLn(R) and which is also unramified at all
non-archimedean places. See [BCG23].

In the last section of this paper we answer a question of F. Brown on the cohomology of SL6(Z),
respectively a question of A. Ash on the cohomology of SL8(Z).
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More precisely, Brown’s recent paper [Bro23] establishes a powerful technique to obtain non-trivial
cohomology classes for SLn(Z) (in particular, it reproves [Bor74]). Still, his method is not suited
to explain the non-vanishing of H8(SL6(Z)), as shown by Elbaz-Vincent–Gangl–Soulé, [EVGS13].
Here, we give a structural explanation of the non-vanishing of H8(SL6(Z)) and determine, which
automorphic forms of SL6(A) represent the non-trivial classes in H8(SL6(Z),C). See §6.1 for de-
tails.

Similarly, as communicated to the second named author by Brown, A. Ash, has asked for a de-
scription of the cohomology of SL8(Z). Among others, degree q = 15 was of particular interest.
Here we show that H15(SL8(Z),C) is two-dimensional, and we describe, which automorphic forms
of SL8(A) represent the non-trivial classes in H15(SL8(Z),C). We refer to §6.2 for this result.

Degree q = 8 (for SL6(Z)) and q = 15 (for SL8(Z)) have in common that they are the value
of q = m2 − 1, if we write n = 2m. It should be noted that m2 is the bottom degree in which
a tempered cuspidal automorphic representation of SLn(A) may have cohomology, i.e., degree
q = m2 − 1 is just the degree “right outside” the tempered cuspidal range. Hence, finally, as a
natural generalization of these considerations, it seems tempting to state the following

Open Problem. Determine for which m ≥ 5, the cohomology Hm2−1(SL2m(Z),C) is non-zero.

Our results imply that Hm2−1(SL2m(Z),C) is non-zero for m = 1, 2, 3, 4. However, in higher rank,
the problem becomes more and more complicated. See §6.3 for more details.
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1. Preliminaries and notation

1.1. Groups. The symbols Z, Q, R, and C have their usual meaning. The ring of adèles of Q will
be denoted by A, its subring of non-archimedean elements by Af .

For n ≥ 1, let GLn be the general linear group defined over Q. If H is any Q-subgroup of
GLn, then S(H) will denote its elements of determinant equal to 1. In particular, we will write
G := S(GLn) = SLn for the (Q-split) special linear group defined over Q.

1.2. Parabolic data. We fix once and for all the Borel subgroup B of G, consisting of upper-
triangular matrices in G. Let B = TU be the Levi decomposition of B, where T is a maximal split
torus in B, and U the unipotent radical. Then,

T (R) =

{
diag(t1, . . . , tn) : ti ∈ R×,

∏
i

ti = 1

}
for any abelian Q-algebra R. More generally, let P ⊇ B be a standard parabolic Q-subgroup
of G, cf. [Bor-Wal00], 0.3.4. They are parameterized by the tuples (n1, . . . , nk), k ≥ 1, ni ∈ N,
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according to the block-sizes of the corresponding Levi subgroup L ∼= S(GLn1 × · · · × GLnk) ⊂ P .
Its group of real points L(R) admits a unique maximal semisimple direct factor, denoted M . Its
Lie algebra is naturally complemented by the real Lie algebra aP of the split component AP of L.
Its (complexified) dual is as usual denoted by ǎP (resp. by ǎP,C). We write S(ǎP,C) for the attached
symmetric tensor algebra. In general, if H is a real Lie group, we will use h to denote its Lie algebra
and hC for its complexification.

1.3. Compact subgroups. We assume to have fixed a maximal compact subgroup K of G(R) and
Kf of G(Af ) in good position with respect to B and T . More explicitly, K = SO(n), the compact

special orthogonal group of n× n-matrices and Kf = SLn(Ẑ) =
∏
p SLn(Zp), where Ẑ =

∏
p Zp is

the Prüfer ring, i.e., the profinite completion of Z .

1.4. Certain characters. We denote by sgn : R∗ → {±1} the sign-character of the multiplicative
group R∗ of non-zero real numbers. If λ ∈ ǎP , then Cλ denotes the one-dimensional module of
L(R) of highest weight λ, i.e., if L(R) ∼= S(GLn1(R) × · · · × GLnk(R)) and λ = (λ1, ... . . . , λk),

then Cλ = detλ1n1
⊗ · · · ⊗ detλknk , where detni denotes the determinant on GLni(R). Going adelic, if

λ ∈ ǎP , then e〈λ,HP (·)〉 denotes the one-dimensional representation of L(A) constructed from λ and
the Harish-Chandra height function HP (·), cf. [Fra98], p. 185. If H is any subgroup of G(A), then
1H denotes the trivial representation of H.

2. A sufficient condition for the non-vanishing of Hq(SLn(Z))

2.1. Recap: The cohomology of SLn(Z) via automorphic forms. For the sake of later ref-
erence, we shall shortly recall some facts about the cohomology of SLn(Z) and its interconnection
to the cohomology of the space of automorphic forms of SLn(A).

In order to do so, we need to take a “transcendental” point of view, i.e., work with coefficient
modules over C. Just in this section, let us abbreviate Γ = SLn(Z) and let us also view Z and C as
trivial modules under Γ. It is well-known that the group homology H∗(Γ) := H∗(Γ,Z) is a finitely
generated Z-module. Indeed, this follows easily from the fact that Γ has a subgroup of finite index,
which is torsion free, whence Γ itself is an arithmetic group of finite type, cf. [Ser79], §1.3. The
universal coefficient theorem for group homology hence shows that as C-vector spaces

Hq(Γ)⊗Z C ∼= Hq(Γ,C).

Using duality between singular homology and cohomology, we get again an isomorphism of group
cohomology as C-vector spaces

Hq(Γ)⊗Z C ∼= Hq(Γ,C).

It follows that the free part of the Z-module Hq(SLn(Z)) must be non-zero, if Hq(SLn(Z),C) is.

Let now A(G) be the space of automorphic forms on G(A), cf. [Bor-Jac79, Gro23], on which
the center of the universal enveloping algebra of gC = sln(C) acts trivially. Then, it is well-known,
that Hq(Γ,C) allows a description as the space of Kf -invariant vectors in the (g,K)-cohomology
of A(G), cf. [Bor-Wal00], Thm. VII.2.2 in combination with (Strong Approximation for G, cf.
[Pla-Rap94], Thm. 7.12) and [Fra98], Thm. 18:

(2.1) Hq(SLn(Z),C) ∼= Hq(g,K,A(G))Kf .



6 NEVEN GRBAC AND HARALD GROBNER

Therefore, each cohomology class in Hq(SLn(Z),C) may be represented by everywhere unramified,
i.e., Kf -right invariant, automorphic forms in A(G).

2.2. Automorphic background à la Franke and a first consequence for the cohomology
of SLn(Z).

2.2.1. Parabolic supports. Let {P} be the associate class of the parabolic Q-subgroup P = LPNP

of G = SLn: It consists by definition of all parabolic Q-subgroups Q = LQNQ of G, for which
LQ and LP are conjugate by an element in SLn(Q). We denote by A{P}(G) the space of all
f ∈ A(G), which are negligible along every parabolic Q-subgroup Q /∈ {P}: This means that for
all g ∈ SLn(A), the function LQ(A) → C, which is given by ` 7→ fQ(`g), where fQ denotes the
constant term of f along Q, is orthogonal (with respect to the Petersson inner product) to the
space of all cuspidal automorphic forms on LQ(Q)\LQ(A). Having set up these notations, there is
the following decomposition of A(G) as a (g,K,G(Af ))-module, cf. [BLS96] Thm. 2.4:

A(G) ∼=
⊕
{P}

A{P}(G).

2.2.2. Cuspidal supports. We recall now, cf. [Fra-Schw98], 1.2, and [Gro23], §15.2, the notion of an
associate class ϕ(π) of cuspidal automorphic representations of the Levi subgroups of the elements
in the class {P}. Therefore, let {P} be represented by P = LN . Then, an associate class ϕ(π)

may be parameterized by π = π̃ · e〈λπ ,HP (·)〉, where

(1) π̃ is a unitary cuspidal automorphic representation of L(A), whose central character vanishes
on the identity component AP (R)◦ of AP (R),

(2) λπ ∈ ǎP,C, which is compatible with the infinitesimal character χπ̃∞ of π̃∞ (cf. [Fra-Schw98],
1.2, or [Gro23], §15.2, in particular (15.13)).

We let WP,π̃ be the space of all smooth, K-finite functions

f : L(Q)N(A)AP (R)◦\G(A)→ C,

such that for every g ∈ G(A) the function ` 7→ f(`g) on L(A) is contained in the π̃-isotypic
component of the cuspidal spectrum L2

cusp(L(Q)AP (R)◦\L(A)) of L(A). For a function f ∈ WP,π̃,
λ ∈ ǎP,C and g ∈ G(A) an Eisenstein series is formally defined as

EP (f, λ)(g) :=
∑

γ∈P (Q)\G(Q)

f(γg)e〈λ+ρP ,HP (γg)〉.

It is known to converge absolutely and uniformly on compact subsets of G(A) × ǎP,C, if the real
part of λ is sufficiently positive. In that case, EP (f, λ) is an automorphic form and the map λ 7→
EP (f, λ)(g) can be analytically continued to a meromorphic function on all of ǎP,C, cf. [Mœ-Wal95],
II.1.5, IV.1.8, IV.1.9, [Lan76], §7, or, most concretely, the main result of [Ber-Lap23]. Given ϕ(π),
represented by a cuspidal representation π of the above form, a (g,K,G(Af ))-submodule

A{P},ϕ(π)(G)

of A{P}(G) was defined in [Fra-Schw98], 1.3 as follows: It is the span of all possible partial deriva-
tives of holomorphic values or residues of all Eisenstein series attached to π̃, evaluated at the point
λ = λπ. This definition is independent of the choice of the representatives P and π, due to the
functional equations satisfied by the Eisenstein series considered. For details, we refer the reader to
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[Fra-Schw98] 1.2–1.4 as the original source, or to [Gro23], §15.2–15.3. We obtain, see, [Fra-Schw98],
Thm. 1.4, or [Gro23], Thm. 15.21,

Theorem 2.1. There is an isomorphism of (g,K,G(Af ))-modules

A{P}(G) ∼=
⊕
ϕ(π)

A{P},ϕ(π)(G).

Using Thm. 2.1, the next result refines the above description of Hq(SLn(Z),C) in terms of auto-
morphic forms and reveals that the cohomology of SLn(Z) is in fact quite simply structured, if
n ≤ 11. Namely, we will show that in the latter case it is strictly supported by the trivial character
of the Borel subgroup B = TU of G. For this recall that an irreducible cuspidal automorphic rep-
resentation π of L(A) is called of level 1, if its non-archimedean component πf , as a representation

of L(Af ), satisfies π
Kf∩L(Af )
f 6= {0}, i.e., if π is unramified at all non-archimedean places.

Theorem 2.2. For all n ≥ 2 and all degrees q of cohomology, there is an isomorphism of modules of
the Hecke algebra of SLn(Z) (or, equivalently of the maximal open compact subgroup Kf = SLn(Ẑ))

Hq(SLn(Z),C) ∼=
⊕
{P}

⊕
ϕ(π):

χπ̃∞=ρM
πf is of level 1

Hq(g,K,A{P},ϕ(π)(G))Kf ,

where ρM denotes the restriction of ρ to the semisimple part of L(R), i.e., the intrinsic modulus
character of M .

If n ≤ 11, then the following much simpler description holds:

(2.2) Hq(SLn(Z),C) ∼= Hq(g,K,A{B},ϕ(χ)(G))Kf ,

where ϕ(χ) is the cuspidal support represented by the Hecke character

χ = e〈ρB ,HB(·)〉 = | · |
n−1
2 ⊗ | · |

n−3
2 ⊗ | · |

n−5
2 ⊗ · · · ⊗ | · |−

n−1
2

of the torus T (A).

Proof. From our above explanations, we get

Hq(SLn(Z),C) ∼= Hq(g,K,A(G))Kf

∼=
⊕
{P}

⊕
ϕ(π)

Hq(g,K,A{P},ϕ(π)(G))Kf .

For any representative π = π̃ · e〈λπ ,HP (·)〉 of an associate class ϕ(π), the natural (g,K,G(Af ))-
homomorphism,

Ind
G(A)
P (A)(π ⊗ S(ǎP,C)) −→ A{P},ϕ(π)(G)

given by summation of locally regularized Eisenstein series around λπ is surjective, cf. [Fra-Schw98],
3.3.(4). Hence, in order to obtain a non-zero space

Hq(g,K,A{P},ϕ(π)(G))Kf ,

it is necessary that π̃∞ has the same infinitesimal character like the trivial representation of the
semisimple part M of L(R), i.e., χπ̃∞ = ρM , cf. [Bor-Wal00], Thm. I.5.3.(ii) and [Kna86], Prop.
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8.22. Moreover, invoking Frobenious reciprocity for non-archimedean parabolic induction, it is clear
that πf must be unramified at every place, i.e., of level 1. This shows the first assertion.

Let now be n ≤ 11. Then, by [Che-Lan19], Thm. F on p. 13 (see also [Che-Tai20], Thm. 3 and
§2.4.6), there is no level 1 irreducible unitary cuspidal automorphic representation of L(A), whose
infinitesimal character matches the one of 1M , if L = S(GLn1× ...×GLnr) contains a general linear
group of rank ni > 1. It therefore follows that ϕ(π) must be represented by an irreducible cuspidal
automorphic representation π with P = B and π̃ = 1T (A). Moreover, for ϕ(π) to contribute non-
trivially to H∗(g,K,A{B},ϕ(π)(G)), we must have λπ = −w(ρB), where w is an element of the
Weyl group W of SLn (i.e., a Kostant representative for the Borel subgroup B, cf. [Bor-Wal00],
III.1.4), such that −w(ρB) is in the closed positive Weyl chamber of ťC = ǎB,C, cf. [Fra-Schw98],
5.5. together with p. 772 ibidem. The latter condition, however, is only satisfied by the longest
element wG of W , which gives λπ = −wG(ρB) = ρB. This shows the claim. �

Remark 2.3. As indicated in the introduction, this simple description of Hq(SLn(Z),C) as in
(2.2) will generally fail, if n ≥ 12, because of the existence of an irreducible unitary cuspidal
automorphic representation τ̃ of GL2(A) of level 1 and of infinitesimal character χτ̃∞ = (11

2 ,−
11
2 )

(namely the one constructed out of a non-zero cuspidal modular form of weight 12 and full level, i.e.,
out of a non-zero element in S12(SL2(Z)), e.g., the Ramanujan Delta-function). Indeed, suitably
extended by 10 Hecke characters, one obtains an irreducible cuspidal automorphic representation π
of GL2(A)×

∏10
i=1GL1(A) of level 1 and of infinitesimal character χπ∞ = (11

2 ,
9
2 ,

7
2 , ...,−

9
2 ,−

11
2 ) =

ρGL12 .

3. An examination of Franke’s filtration and consequences for automorphic
cohomology

3.1. Franke’s filtration of the cuspidal support of the trivial automorphic representa-
tion. We recall that in [Fra98], §6, a certain, technically involved, finite-step filtration was defined
for the spaces A{P}(G), which can be refined to apply to the individual summands A{P},ϕ(π)(G),
cf. [Grb12], §3, [Gro13], §3.1, [Grb-Gro13], §3, or [Grb23], Chap. 4. The reader, who prefers to read
a presentation of this subject, which is taylored to the (special) linear group, is invited to consult
[Grb-Gro22], §2, for all relevant details. Our next result makes this filtration explicit for the datum

({B}, ϕ(χ)), χ = e〈ρB ,HB(·)〉.

Theorem 3.1. Let ϕ(χ) be the cuspidal support represented by the Hecke character

χ = e〈ρB ,HB(·)〉 = | · |
n−1
2 ⊗ | · |

n−3
2 ⊗ | · |

n−5
2 ⊗ · · · ⊗ | · |−

n−1
2

of the torus T (A). Then, Franke’s filtration of the space A{B},ϕ(χ) of automorphic forms with
cuspidal support in the associate class ϕ(χ) can be defined as the filtration

A{B},ϕ(χ) = A0
{B},ϕ(χ) % A

1
{B},ϕ(χ) % · · · % A

n−1
{B},ϕ(χ) % {0}
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of length n, where the quotients of the filtration for i = 0, 1, . . . , n− 1 are isomorphic to

Ai{B},ϕ(χ)/A
i+1
{B},ϕ(χ)

∼=
⊕

n=(n1,...,nr)
with r=n−i

Ind
G(A)
Pn(A)

(
e〈ρPn ,HPn (·)〉

)
⊗ S(ǎPn,C)

∼=
⊕

n=(n1,...,nr)
with r=n−i

Ind
G(A)
Pn(A)

 r⊗
j=1

|detnj |
nj+1+···+nr−(n1+···+nj−1)

2

⊗ S(ǎPn,C)

as (g,K,G(Af ))-modules, where the direct sum is over the set of all ordered partitions n = (n1, . . . , nr)
of n into positive integers with r = n− i, i.e., over all parabolic subgroups of rank i. In particular,

An−1
{B},ϕ(χ)

∼= 1G(A),

where 1G(A) is the trivial representation of G(A), realized as the residual automorphic representation
on the space of constant functions on G(A).

Proof. It follows from Theorem 4.1 in [Grb-Gro22], that Franke’s filtration of the space of automor-
phic forms with cuspidal support in ϕ(χ) can be arranged in such a way that the contributions to
the quotients of the filtration are determined by the rank of the parabolic subgroup on which the
degenerate Eisenstein series are supported, i.e., by the rank of the parabolic subgroup from which
the contribution is parabolically induced. The result then follows from the decomposition of the
sequence of exponents of the cuspidal support into segments.

The exponents in the induced representation from the parabolic subgroup Pn may be easily
obtained by a direct calculation, or, can be found e.g., in (1.10) of [Gro-Lin21]. �

3.2. Cohomology of the trivial representation of SLn(R).

Lemma 3.2. Let n ≥ 1. The Poincaré polynomial of the cohomology H∗(sln(R), SO(n),C) of the
trivial reprepsentation 1SLn(R) = C of SLn(R) is given by

Pn(t) =

{ ∏k−1
i=1 (1 + t4i+1) · (1 + tn) if n = 2k∏k
i=1(1 + t4i+1) if n = 2k + 1

Consequently, dimCH
0(sln(R), SO(n),C) = 1, whereas for q ≥ 1 the complex dimension of the

cohomology Hq(sln(R), SO(n),C) is given as follows: Let a(q) be the number of ways to write a
positive integer q as the sum of different integers of the form 4`+ 1, ` ≥ 1. Then,

dimCH
q(sln(R), SO(n),C) =

{
a(q) + 1 if n = 2k
a(q) if n = 2k + 1

Proof. As H∗(sln(R), SO(n),C) ∼= H∗dR(SU(n)/SO(n),C), the Poincaré polynomial of the coho-
mology space H∗(sln(R), SO(n),C) can be read off [GHV76], Table 1, p. 493. The claim on the
complex dimension of dimCH

∗(sln(R), SO(n),C) hence follows immediately. �

3.3. The Kostant representatives. Let W be the Weyl group of G with respect to the fixed
maximal split torus T . Then W is isomorphic to the symmetric group of permutations Sn of n
letters. The action of w ∈W ∼= Sn on the character of the torus given by the sequence of exponents
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(s1, . . . , sn) is by permutation of these exponents. Recall that (s1, . . . , sn) ∈ Cn corresponds to the
character given by the assignment

(t1, . . . , tn) 7→ |t1|s1 . . . |tn|sn ,

where (t1, . . . , tn) ∈ T (A). The Weyl group is generated by the reflections wi, i = 1, . . . , n− 1 with
respect to the simple roots of G. The length `(w) of an element w ∈ W is the number of simple
reflections in any reduced decomposition of w into a product of simple reflections.

Given a standard parabolic subgroup P of G, we denote by WL the Weyl group of its Levi factor
L with respect to L ∩ T . Observe that if P = P(n1,...,nk) corresponds to the ordered partition
(n1, . . . , nk) of n into positive integers, then

WL
∼= Sn1 × · · · ×Snk

where Snj is the symmetric group of permutations of nj letters.
The Kostant representatives for P [Bor-Wal00], III.1.4, are defined as the unique representa-

tives of minimal length in the cosets WL\W . Let WP denote the set of Kostant representatives
for P . These representatives and their length play a crucial role in the calculation of cohomol-
ogy of the quotients of Franke’s filtration. Since the quotients of Franke’s filtration described in
Theorem 3.1 contain an induced representation from each standard parabolic subgroup, our next
task is to determine the Kostant representatives producing the correct exponents for these induced
representations. This is the subject of the following proposition.

Proposition 3.3. Let Pn be the standard parabolic subgroup of G corresponding to the ordered
partition n = (n1, . . . , nk) of n into positive integers, and let Ln be its Levi factor. Let wn be the

Kostant representative in WPn such that

−wn(ρ)
∣∣∣
ǎPn

equals the exponents that appear in the induced representation from Pn of Theorem 3.1. Then the
length of wn is given by

(3.1) `(wn) =
∑

1≤i<j≤k
ninj .

In particular, wn is the longest element in WPn.

Proof. Since the exponents in ρ are all different, there is a unique representative wn in WPn pro-
ducing the required exponents for each n. It is the Weyl group element which acts as the longest
permutation of blocks of sizes nk, . . . , n1. More precisely, the block of last n1 exponents should
be sent to the beginning of the sequence, the next to the last n2 exponents should be sent to the
second block of n2 exponents, and so on, without changing the order inside the blocks. The first
step of moving the block of last n1 exponents can be made in n1(n−n1) simple reflections, obtained
as interchange of position of all n1 exponents in the last block with all n − n1 exponents outside
the last block. The second step of moving the next to the last block of n2 exponents to become the
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second block can be made in n2(n− n1 − n2) steps. And so on, we obtain

`(wn) = n1(n− n1) + n2(n− n1 − n2) + · · ·+ nk−1(n− n1 − n2 − · · · − nk−1)

= n1(n2 + · · ·+ nk) + n2(n3 + · · ·+ nk) + · · ·+ nk−1nk

=
∑

1≤i<j≤k
ninj .

From the fact that wn is the longest permutation of blocks of the parabolic, it is clear that it is the

longest element in WPn . �

3.4. Automorphic cohomology in low degrees.

Proposition 3.4. Let n ≥ 4 and let ϕ(χ) be the cuspidal support represented by the Hecke character

χ = | · |
n−1
2 ⊗ | · |

n−3
2 ⊗ | · |

n−5
2 ⊗ · · · ⊗ | · |−

n−1
2

of the torus T (A). Then, there is an isomorphism of G(Af )-modules

Hq(g,K,A{B},ϕ(χ)) ∼= Hq(g,K,An−2
{B},ϕ(χ))

for all degrees 0 ≤ q ≤ n.

Proof. Let n ≥ 4 as in the statement of the proposition and let k ≥ 3. The short exact sequence of
(g,K,G(Af ))-modules

{0} → An−k+1
{B},ϕ(χ) → A

n−k
{B},ϕ(χ) → A

n−k
{B},ϕ(χ)/A

n−k+1
{B},ϕ(χ) → {0}

gives rise to a long exact sequence of G(Af )-modules

· · · →Hq(g,K,An−k+1
{B},ϕ(χ))→ Hq(g,K,An−k{B},ϕ(χ))→ Hq(g,K,An−k{B},ϕ(χ)/A

n−k+1
{B},ϕ(χ))→(3.2)

→Hq+1(g,K,An−k+1
{B},ϕ(χ))→ . . .

It is hence enough to show that

(3.3) Hq(g,K,An−k{B},ϕ(χ)/A
n−k+1
{B},ϕ(χ)) = {0}

for all k ≥ 3 and all q ≤ n.
Recalling Frobenius reciprocity (as it was used in the proof of [Bor-Wal00], Thm. III.3.3 or in Eq.
(5) on p. 257 in [Fra98]) and the fact that for each parabolic subgroup Pn of G,

H∗(aPn , S(ǎPn,C)) = H0(aPn , S(ǎPn,C)) ∼= C,

see, [Fra98], p. 256, the G(Af )-module Hq
(
g,K, Ind

G(A)
Pn(A)

(
e〈ρPn ,HPn (·)〉

)
⊗ S(ǎPn,C)

)
is isomorphic

to

Hq−`(wn)(mn,K ∩Mn, e
〈2ρPn ,HPn (·)∞〉 ⊗ C−2ρPn )⊗ Ind

G(Af )

Pn(Af )

(
e〈ρPn ,HPn (·)f 〉

)
,

where `(wn) =
∑

1≤i<j≤k ninj is the length of the uniquely determined Kostant representative

wn ∈WPn , given by Prop. 3.3. Hence, our Thm. 3.1 implies that it is enough to prove that for all
k ≥ 3

(3.4) min
n=(n1,...,nk)

∑
1≤i<j≤k

ninj ≥ n+ 1,
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in order to show (3.3) for all k ≥ 3 and all q ≤ n. To this end, we rewrite

∑
1≤i<j≤k

ninj =
∑

1≤i<j≤k−1

ninj +

k−1∑
i=1

ni(n− n1 − n2 − · · · − nk−1)

= −
k−1∑
i=1

n2
i + n ·

k−1∑
i=1

ni −
∑

1≤i<j≤k−1

ninj ,

revealing `(wn) as a quadratic polynomial in the variables ni, 1 ≤ i ≤ k−1. Since the coefficient of
n2
i is always negative, the minimum over all ordered partitions n = (n1, . . . , nk) is attained at the

boundary of the domain of possible values, which, in the present case, is (all boundary values lead
to the same outcome) at n1 = n2 = · · · = nk−1 = 1. Hence, by inserting, we get that for all k ≥ 3,

min
n=(n1,...,nk)

∑
1≤i<j≤k

ninj = n(k − 1)− k(k − 1)

2
.

Checking, when this expression satisfies (3.4), hence leads by a simple calculation to checking when

(3.5) n ≥ k2 − k + 2

2(k − 2)
.

Viewing the right-hand side of (3.5) as a function φ(k) of a real variable k, it a matter of basic
calculus to show that the only local extreme in the domain 3 ≤ k ≤ n is the local minimum at
k = 4. Hence, the maximum of φ(k) is attained at the boundary of the domain 3 ≤ k ≤ n, and it
remains to check that

n ≥ φ(3) = 4,

n ≥ φ(n) =
n2 − n+ 2

2(n− 2)
,

holds for n ≥ 4. The former inequality is obvious, and the latter follows by writing it as a quadratic
inequality in n. Thus, the result follows. �

4. Non-vanishing of Hn(SLn(Z))

4.1. Quotient-cohomology in degree q = n−1. Let n ≥ 4 and let ϕ(χ) be the cuspidal support

represented by the Hecke character χ = | · |
n−1
2 ⊗|·|

n−3
2 ⊗|·|

n−5
2 ⊗· · ·⊗|·|−

n−1
2 of the torus T (A). We

start with an analysis of the G(Af )-module Hn−1(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ)). Recall from Thm. 3.1

that An−1
{B},ϕ(χ)

∼= 1G(A). We will first prove

Lemma 4.1. There is an isomorphism of G(Af )-modules

Hn−1(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ))

∼=

Hn−1
(
g,K, Ind

G(A)
P(1,n−1)(A)

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)〉
)
⊗ S(ǎP(1,n−1),C)

)
⊕Hn−1

(
g,K, Ind

G(A)
P(n−1,1)(A)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)〉
)
⊗ S(ǎP(n−1,1),C)

)
.
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Proof. Thm. 3.1 implies that

Hq(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ))

∼=
⊕

n=(n1,n2)

Hq
(
g,K, Ind

G(A)
Pn(A)

(
e〈ρPn ,HPn (·)〉

)
⊗ S(ǎPn,C)

)
.

Literally the same strategy, which we have seen in the proof of Prop. 3.4, shows that the lowest

degree of cohomology, in which the cohomology spaceHq
(
g,K, Ind

G(A)
Pn(A)

(
e〈ρPn ,HPn (·)〉

)
⊗ S(ǎPn,C)

)
may be non-zero is bounded from below by `(wn) =

∑
1≤i<j≤2 ninj = n1 · n2. Since n1 + n2 = n,

it is a very simple exercise to prove that n1 · n2 > n − 1 if 2 ≤ n1 ≤ n − 2. Therefore the result
follows. �

We continue be refining Lem. 4.1, distinguishing the parity of n.

4.2. The case of odd n. In this subsection we will suppose that n ≥ 5 is odd. We get

Proposition 4.2. Under the assumptions of Sect. 4.1

Hn−1(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ)) = {0}

Proof. We first consider Hn−1
(
g,K, Ind

G(A)
P(n−1,1)(A)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)〉
)
⊗ S(ǎP(n−1,1),C)

)
. This

cohomology space is obviously isomorphic to

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
⊗ Ind

G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
,

so, this space being zero is equivalent to the vanishing of

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
.

Recall that by our Prop. 3.3, `(w(n−1,1)) = n − 1. Hence, invoking [Bor-Wal00], Thm. III.3.3 and
[Fra98], p. 256,

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
∼= H0(m(n−1,1),K ∩M(n−1,1), e

〈2ρP(n−1,1)
,HP(n−1,1)

(·)∞〉 ⊗ C−2ρP(n−1,1)
)

∼= H0(m(n−1,1),K ∩M(n−1,1), sgn(detn−1)⊗ sgnn−1).

Using [Bor-Wal00], I.1.3.(2) and I.5.1.(4), together with the fact that n− 1 is even, the latter space
is isomorphic to(

H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1),C)
)S(O(n−1)×O(1))/SO(n−1)×SO(1)

We may represent the only non-trivial member of S(O(n−1)×O(1))/SO(n−1)×SO(1) by the pair
(diag(idn−2,−1);−1), which obviously acts trivially by its adjoint action on H0(sl1(R), SO(1),C)
and by multiplication by −1 on H0(sln−1(R), SO(n− 1), sgn(detn−1)). Hence,(
H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1),C)

)S(O(n−1)×O(1))/SO(n−1)×SO(1)
= {0},

and so also

Hn−1
(
g,K, Ind

G(A)
P(n−1,1)(A)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)〉
)
⊗ S(ǎP(n−1,1),C)

)
= {0}.
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The case of Hn−1
(
g,K, Ind

G(A)
P(1,n−1)(A)

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)〉
)
⊗ S(ǎP(1,n−1),C)

)
is completely analo-

gous. Hence, invoking Lem. 4.1, the result follows. �

Corollary 4.3. Let n ≥ 5 be odd. Then, the G(Af )-module Hn(g,K,1G(A)) embeds into Hn(g,K,A(G)).

Proof. Since Hq(g,K,A{B},ϕ(χ)) is a direct G(Af )-summand of Hq(g,K,A(G)), the result follows
from Prop. 3.4, Lem. 4.2 and (3.2). �

4.3. The case of even n. Let now n ≥ 4 be even. Then,

Proposition 4.4. Under the assumptions of Sect. 4.1

Hn−1(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ))

∼= Ind
G(Af )

P(1,n−1)(Af )

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)f 〉

)
⊕ Ind

G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
Proof. Again, we first consider Hn−1

(
g,K, Ind

G(A)
P(n−1,1)(A)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)〉
)
⊗ S(ǎP(n−1,1),C)

)
,

which is isomorphic to

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
⊗ Ind

G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
.

As in the case of odd n above, we invoke [Bor-Wal00], Thm. III.3.3 and [Fra98], p. 256, together
with [Bor-Wal00], I.1.3.(2) and I.5.1.(4), and obtain

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
∼=
(
H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1), sgnn−1)

)S(O(n−1)×O(1))/SO(n−1)×SO(1)
,

which, since now n is assumed to be even, simplifies to(
H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1), sgn)

)S(O(n−1)×O(1))/SO(n−1)×SO(1)
.

In the present case, we may represent the only non-trivial member of S(O(n− 1)×O(1))/SO(n−
1) × SO(1) by the pair (−idn−1;−1), which obviously acts by multiplication by −1 on both,
H0(sln−1(R), SO(n− 1), sgn(detn−1)) and on H0(sl1(R), SO(1), sgn), hence, trivially on the tensor
product H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1), sgn). Therefore,(

H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1), sgn)
)S(O(n−1)×O(1))/SO(n−1)×SO(1)

∼= H0(sln−1(R), SO(n− 1), sgn(detn−1))⊗H0(sl1(R), SO(1), sgn)
∼= H0(sln−1(R), SO(n− 1),C)⊗H0(sl1(R), SO(1),C).

Since the latter two cohomology spaces are both one-dimensional by Lem. 3.2, we finally get that

Hn−1
(
g,K, Ind

G(R)
P(n−1,1)(R)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)∞〉

)
⊗ S(ǎP(n−1,1),C)

)
∼= C

and so

Hn−1
(
g,K, Ind

G(A)
P(n−1,1)(A)

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)〉
)
⊗ S(ǎP(n−1,1),C)

)
∼= Ind

G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
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as G(Af )-module. The same argument shows that

Hn−1
(
g,K, Ind

G(A)
P(1,n−1)(A)

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)〉
)
⊗ S(ǎP(1,n−1),C)

)
∼= Ind

G(Af )

P(1,n−1)(Af )

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)f 〉

)
,

whence the results follows from Lem. 4.1.
�

Corollary 4.5. Let n ≥ 4 be even. Then, the image of the G(Af )-module Hn(g,K,1G(A)) in
Hn(g,K,A(G)) has dimension greater or equal to dimCH

n(g,K,C)− 2.

Proof. Since A{B},ϕ(χ) is a direct (g,K,G(Af ))-summand of A(G), it is enough to show this for
Hn(g,K,A{B},ϕ(χ)). We consider the respective part of the long exact sequence in cohomology
(3.2), which by Prop. 4.4 and Thm. 3.1 reads as

· · · → Ind
G(Af )

P(1,n−1)(Af )

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)f 〉

)
⊕Ind

G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
→ Hn(g,K,1G(A)) → Hn(g,K,An−2

{B},ϕ(χ))→ . . .

Since the trivial representation 1G(Af ) of G(Af ) appears precisely once as a quotient of the in-

duced representation Ind
G(Af )

P(1,n−1)(Af )

(
e
〈ρP(1,n−1)

,HP(1,n−1)
(·)f 〉

)
, respectively of the induced represen-

tation Ind
G(Af )

P(n−1,1)(Af )

(
e
〈ρP(n−1,1)

,HP(n−1,1)
(·)f 〉

)
, the connecting homomorphism above has at most

two-dimensional image in Hn(g,K,1G(A)) ∼= Hn(g,K,C)⊗1G(Af ). Hence, the image of the G(Af )-

moduleHn(g,K,1G(A)) has dimension greater or equal to dimCH
n(g,K,C)−2 inHn(g,K,An−2

{B},ϕ(χ)).

However, by Prop. 3.4 the latter is nothing else than Hn(g,K,A{B},ϕ(χ)), whence the corollary fol-
lows.

�

4.4. Non-vanishing of Hn(SLn(Z)). We recall the number a(q) from Lem. 3.2, which denoted
the number of ways to write a positive integer q as the sum of different integers of the form 4`+ 1,
` ≥ 1. We are now ready to prove our first main result:

Theorem 4.6. Let n ≥ 4. Then,

dimCH
n(SLn(Z),C) ≥

{
a(n)− 1 if n is even
a(n) if n is odd

In particular, the free part of the Z-module Hn(SLn(Z)) is non-zero, in the following cases:

• for odd n, if either n ≥ 25, or n ∈ {5, 9, 13, 17, 21};
• for even n, if either n ≥ 50, or n ∈ {22, 26, 30, 34, 38, 42, 46}.

Proof. After all of our preparatory work, this is now a direct consequence of (2.1), our corollaries
Cor. 4.5 and Cor. 4.3 and Lem. 3.2. �

5. Non-vanishing of Hm(SLn(Z)), m ≤ n− 1

5.1. A well-known result revisited. We start with the following easy observation thatHm(SLn(Z))
is non-zero for m ≤ n− 1, whenever Hm(g,K,1G(A)) is non-zero, which is a simple consequence of
the following lemma and its well-known corollary:
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Lemma 5.1. Let ϕ(χ) be the cuspidal support represented by the Hecke character χ = | · |
n−1
2 ⊗ | ·

|
n−3
2 ⊗ | · |

n−5
2 ⊗ · · · ⊗ | · |−

n−1
2 of the torus T (A). Then,

Hq(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ)) = {0}

for all 0 ≤ q ≤ n− 2.

Proof. The arguments presented in the proof of Prop. 3.4 show that `(wn), n = (n1, n2), is a lower

bound for the degrees of cohomology q, in which Hq(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ)) may be non-zero.

However, `(wn) is bounded from below by n− 1, as we have seen in the proof of Lem. 4.1. �

As a direct consequence, we get the following, quite well-known lemma (see, for instance [Fra08],
(7.2), p. 59, which indirectly contains this result):

Corollary 5.2. The G(Af )-module Hq(g,K,1G(A)) embeds into Hq(g,K,A(G)) for all 0 ≤ q ≤
n− 1.

Proof. Since Hq(g,K,A{B},ϕ(χ)) is a direct G(Af )-summand of Hq(g,K,A(G)), this follows from
Prop. 3.4, Lem. 5.1 and (3.2). �

As a corollary of the corollary we hence get

Corollary 5.3. The free part of the Z-module Hm(SLn(Z)) is non-zero for m ≤ n− 1, whenever
Hm(g,K,1G(A)) is non-zero.

Proof. This is a direct consequence of (2.1) and Cor. 5.2. �

This is the well-known non-vanishing result for Hm(SLn(Z)), which we mentioned above. It is
important to notice, however, that one can do slightly better than this, when m = n−1, exploiting
the results of our Sect. 4, which shall be the subject of the next subsection.

5.2. Additional non-vanishing of Hn−1(SLn(Z)) for small n. We now consider the cases n =
4, 8, 12. It follows directly from Lem. 3.2 that Hn−1(g,K,1G(A)) = {0}, whence Cor. 5.2 (and its

attached Cor. 5.3) does not help, in order to see that still Hn−1(SLn(Z)) 6= {0}. We will now show

Theorem 5.4. The free part of the Z-module Hn−1(SLn(Z)) is non-zero, if n = 4, 8, 12.

Proof. Let n = 4, 8, 12 as in the statement of the theorem. Recalling (2.1), it suffices to prove that
Hn−1(g,K,A(G)) contains a copy of the trivial representation 1G(Af ) of G(Af ). Let ϕ(χ) be again

the cuspidal support represented by the Hecke character χ = | · |
n−1
2 ⊗| · |

n−3
2 ⊗| · |

n−5
2 ⊗· · ·⊗| · |−

n−1
2

of the torus T (A). Since A{B},ϕ(χ) is a direct (g,K,G(Af ))-summand of A(G), it is enough to show

that Hn−1(g,K,A{B},ϕ(χ)) contains a copy of the trivial representation 1G(Af ) of G(Af ). Recalling

our Prop. 3.4, it hence suffices to prove this for Hn−1(g,K,An−2
{B},ϕ(χ)). To this end, we consider

once more the long exact sequence in cohomology, which comes from the short exact sequence of
(g,K,G(Af ))-modules

{0} → An−1
{B},ϕ(χ) → A

n−2
{B},ϕ(χ) → A

n−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ) → {0}.

More precisely, we look at the part

· · · → Hn−1(g,K,An−1
{B},ϕ(χ))→ Hn−1(g,K,An−2

{B},ϕ(χ))→ Hn−1(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ))→
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→ Hn(g,K,An−1
{B},ϕ(χ))→ . . . ,

which, according to Thm. 3.1 and Prop. 4.4 becomes

· · · → Hn−1(g,K,1G(A))→ Hn−1(g,K,An−2
{B},ϕ(χ))→

→
⊕

n∈{(n−1,1),(1,n−1)}

Ind
G(Af )

Pn(Af )

(
e〈ρPn ,HPn (·)f 〉

)
→ Hn(g,K,1G(A))→ . . .

and hence by Lem. 3.2

(5.1) {0} → Hn−1(g,K,An−2
{B},ϕ(χ))→

⊕
n∈{(n−1,1),(1,n−1)}

Ind
G(Af )

Pn(Af )

(
e〈ρPn ,HPn (·)f 〉

)
→ 1G(Af ).

Since
⊕

n∈{(n−1,1),(1,n−1)} Ind
G(Af )

Pn(Af )

(
e〈ρPn ,HPn (·)f 〉

)
captures precisely two copies of 1G(Af ) as quo-

tients, the kernel of the last morphism of G(Af )-modules in (5.1) must contain one copy of 1G(Af ).

Hence, by exactness of (5.1), Hn−1(g,K,An−2
{B},ϕ(χ)) contains a copy of the trivial representation

1G(Af ) of G(Af ). �

Remark 5.5. The non-vanishing of H3(SL4(Z)) was also shown by completely different techniques
in [Lee-Szc78]. In fact, their paper completely computes the cohomology of SL4(Z) in all degrees.
See [Lee-Szc78], Thm. 2.

6. Applications for classes in the case of SL6(Z) and SL8(Z)

6.1. The mysterious class in H8(SL6(Z)) and a question of F. Brown. In [EVGS13], Elbaz-
Vincent, Gangl and Soulé have calculated the cohomology of SLn(Z) for n = 5, 6, 7. In particular,
they found a non-trivial cohomology class of SL6(Z) in degree q = 8, cf. [EVGS13], Thm. 7.3.(ii),
for whose existence, however, there seems to be no proper conceptual explanation: We refer to
Brown’s recent preprint [Bro23], in particular to its Thm. 1.1 and Table 1, for a discussion of this
phenomenon.

We present here a structural reason, arising from the point of view of automorphic forms, for
the existence of this non-trivial class, i.e., we will explain which automorphic forms represent the
one-dimensional space H8(SL6(Z),C).

To this end, we first apply our Thm. 3.1 to the case i = n − 2, i.e., to the second last non-
trivial step in Franke’s filtration of A{B},ϕ(χ), χ = e〈ρB ,HB(·)〉. Its cohomology is then computed
as

(6.1) Hq(g,K,An−2
{B},ϕ(χ)/A

n−1
{B},ϕ(χ))

∼=
⊕

n=(n1,n2)

Hq
(
g,K, Ind

G(A)
Pn(A)

(
e〈ρPn ,HPn (·)〉

)
⊗ S(ǎPn,C)

)
,
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which, invoking [Bor-Wal00], Thm. III.3.3 and [Fra98], p. 256, together with [Bor-Wal00], I.1.3.(2)
and I.5.1.(4), is isomorphic as G(Af )-module to⊕

n=(n1,n2)

⊕
r+s=q−n1n2

(
Hr(sln1(R),SO(n1), sgnn2)

⊗Hs(sln2(R), SO(n2), sgnn1)
)S(O(n1)×O(n2))/SO(n1)×SO(n2)

⊗ Ind
G(Af )

P(n1,n2)
(Af )

(
e
〈ρP(n1,n2)

,HP(n1,n2)
(·)f 〉

)
.(6.2)

Put now n = 6 in (6.2). Then, Hq(sl6(R), SO(6),A4
{B},ϕ(χ)/A

5
{B},ϕ(χ)) has five direct summands

as due to (6.1), indexed by the partitions (1, 5), (5, 1), (2, 4), (4, 2), (3, 3). By equation (3.1), the
partition (3, 3) only contributes to cohomology in degree q ≥ 3 · 3 = 9. Similarly, by (3.1) together
with Lem. 3.2, the partitions (1, 5) and (5, 1) may only contribute to degrees q = 5, 10, 14. While
for the same reason, the partitions (2, 4), (4, 2) may only contribute to degrees q = 8, 10, 13, 15. It
therefore follows that
H8(sl6(R), SO(6),A4

{B},ϕ(χ)/A
5
{B},ϕ(χ))

∼=(
H0(sl2(R), SO(2),C)⊗H0(sl4(R), SO(4),C)

)S(O(2)×O(4))/SO(2)×SO(4)

⊗ Ind
SL6(Af )

P(2,4)(Af )

(
e
〈ρP(2,4) ,HP(2,4) (·)f 〉

)
⊕(

H0(sl4(R), SO(4),C)⊗H0(sl2(R), SO(2),C)
)S(O(4)×O(2))/SO(4)×SO(2)

⊗ Ind
SL6(Af )

P(4,2)(Af )

(
e
〈ρP(4,2) ,HP(4,2) (·)f 〉

)
.

The only non-trivial element of S(O(2) × O(4))/SO(2) × SO(4) (resp. S(O(4) × O(2))/SO(4) ×
SO(2)) operates trivially on the one-dimensional spacesH0(sl2(R), SO(2),C)⊗H0(sl4(R), SO(4),C)
(resp. H0(sl4(R), SO(4),C)⊗H0(sl2(R), SO(2),C)), hence

H8(sl6(R), SO(6),A4
{B},ϕ(χ)/A

5
{B},ϕ(χ))

∼= Ind
SL6(Af )

P(2,4)(Af )

(
e
〈ρP(2,4) ,HP(2,4) (·)f 〉

)
⊕ Ind

SL6(Af )

P(4,2)(Af )

(
e
〈ρP(4,2) ,HP(4,2) (·)f 〉

)
.

If we plug this (and the knowledge on Hq(sl6(R), SO(6),A5
{B},ϕ(χ)) = Hq(sl6(R), SO(6),1SL6(A)),

which is given by Lem. 3.2) into the long exact sequence in cohomology, which comes from the
short exact sequence of (sl6(R), SO(6), SL6(Af ))-modules

{0} → A5
{B},ϕ(χ) → A

4
{B},ϕ(χ) → A

4
{B},ϕ(χ)/A

5
{B},ϕ(χ) → {0}.

i.e., into the exact sequence of SL6(Af )-modules

· · · → H8(sl6(R), SO(6),A5
{B},ϕ(χ))→ H8(sl6(R), SO(6),A4

{B},ϕ(χ))→

→ H8(sl6(R), SO(6),A4
{B},ϕ(χ)/A

5
{B},ϕ(χ))→ H9(sl6(R), SO(6),A5

{B},ϕ(χ))→ . . . ,

we obtain an exact sequence of SL6(Af )-modules

{0} → H8(sl6(R), SO(6),A4
{B},ϕ(χ))→
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→ Ind
SL6(Af )

P(2,4)(Af )

(
e
〈ρP(2,4) ,HP(2,4) (·)f 〉

)
⊕ Ind

SL6(Af )

P(4,2)(Af )

(
e
〈ρP(4,2) ,HP(4,2) (·)f 〉

)
→ 1SL6(Af ) → . . .

Recalling that both Ind
SL6(Af )

P(2,4)(Af )

(
e
〈ρP(2,4) ,HP(2,4) (·)f 〉

)
and Ind

SL6(Af )

P(4,2)(Af )

(
e
〈ρP(4,2) ,HP(4,2) (·)f 〉

)
contain

1SL6(Af ) with multiplicity one, it follows that H8(sl6(R), SO(6),A4
{B},ϕ(χ)) contains (at least) one

copy of 1SL6(Af ).

In order to determine automorphic forms that represent a non-trivial class in H8(SL6(Z),C), it
hence suffices to show by Thm. 2.2 that

H8(sl6(R), SO(6),A4
{B},ϕ(χ)) = H8(sl6(R), SO(6),A{B},ϕ(χ)).

But this is clear, once we realize that all the other quotients A6−k
{B},ϕ(χ)/A

6−k+1
{B},ϕ(χ) k ≥ 3, will only

have non-trivial (sl6(R), SO(6))-cohomology in degrees q ≥ 9 by inserting into (3.1). Therefore, in
summary, as Hecke-modules

H8(SL6(Z),C) ∼= H8(sl6(R), SO(6),A4
{B},ϕ(χ))

Kf ,

where recall that Kf = SL6(Ẑ) is the fixed maximal compact subgroup in SL6(Af ). Therefore, a
non-trivial class in H8(SL6(Z),C) is necessarily represented by the main values of some appropriate
partial derivatives of degenerate Eisenstein series attached to the associate class of the everywhere

unramified automorphic characters e
〈ρP(2,4) ,HP(2,4) (·)〉

and e
〈ρP(4,2) ,HP(4,2) (·)〉

of the Levi factor of P(2,4)

and P(4,2), respectively.

6.2. Two non-trivial classes in H15(SL8(Z)) and a question of A. Ash. As communicated
to the second named author by Brown, A. Ash, has asked for a description of the cohomology of
SL8(Z). Among others, degree q = 15 was of particular interest. Here we show that H15(SL8(Z),C)
is two-dimensional, and we describe, which automorphic forms of SL8(A) represent the non-trivial
classes in H15(SL8(Z),C).

We put n = 8 in (6.2). By the analogous arguments as presented in §6.1 above, i.e., by recall-
ing Lem. 3.2 and using the long exact sequence in cohomology, that stems from Franke’s filtration,
we obtain an isomorphism of SL8(Af )-modules

H15(sl8(R), SO(8),A6
{B},ϕ(χ))

∼= Ind
SL8(Af )

P(3,5)(Af )

(
e
〈ρP(3,5) ,HP(3,5) (·)f 〉

)
⊕Ind

SL8(Af )

P(5,3)(Af )

(
e
〈ρP(5,3) ,HP(5,3) (·)f 〉

)
.

Once more we use Lem. 3.2 and (3.1) and deduce that

H15(sl8(R), SO(8),A6
{B},ϕ(χ))

∼= H15(sl8(R), SO(8),A{B},ϕ(χ)).

Hence, invoking Thm. 2.2 and the fact that the induced representation Ind
SL8(Af )

P(3,5)(Af )

(
e
〈ρP(3,5) ,HP(3,5) (·)f 〉

)
as well as Ind

SL8(Af )

P(5,3)(Af )

(
e
〈ρP(5,3) ,HP(5,3) (·)f 〉

)
contain 1SL8(Af ) with multiplicity one as a quotient, it

follows that

H15(SL8(Z),C) ∼= H15(sl8(R), SO(8),A6
{B},ϕ(χ))

Kf ∼= C2
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as modules under the Hecke algebra attached to Kf = SL8(Ẑ). The cohomology classes in this
case are represented by the main values of some appropriate partial derivatives of degenerate Eisen-
stein series attached to the associate classes of the everywhere unramified automorphic characters

e
〈ρP(3,5) ,HP(3,5) (·)〉

and e
〈ρP(5,3) ,HP(5,3) (·)〉

of the Levi factors of P(3,5) and P(5,3), respectively.

6.3. A final remark on possible generalizations. Let now n = 2m be an arbitrary positive
even number. Then, it is well-known, cf. [Bor-Wal00], Prop. I.5.3, that the lowest degree in which a
tempered cuspidal automorphic representation of SL2m(A) may have non-zero cohomology is given
by q = m2. If we combine our considerations of §6.1 and §6.2 with Thm. 2.2 above, it therefore
seems tempting to ask – complementing our results on what happens right outside the stable range
– for a description of the cohomology of SL2m(Z) “right below” the tempered cuspidal range, i.e.,
to consider the following

Open Problem. Determine for which m ≥ 1, the cohomology Hm2−1(SL2m(Z),C) is non-zero.

By what we obtained above, Hm2−1(SL2m(Z),C) is non-zero for m = 1, 2, 3, 4. However, in higher
rank, the problem gets more and more complicated. The possible contributions to cohomology in
degree m2 − 1 of the quotients of Franke’s filtration associated to parabolic subgroups of lower
rank cannot be excluded by a simple argument based on the length of the Kostant representative.
In the cases of m = 1, 2, 3 there were no such contributions, and in the case of m = 4, the only
possible contributions arise from the associate class of the parabolic subgroup P(1,1,6), but it cannot

contribute to degree q = m2 − 1 = 15 by the Poincaré polynomial, cf. Lem. 3.2. As m grows, the
rank of parabolic subgroups associated to the quotients of Franke’s filtration that may contribute
to the cohomology in the considered degree can be bounded, but the bound is slightly larger than
m/2, which gives quite a lot of possibilities, and Lem. 3.2 cannot exclude all of them. Therefore,
although the problem is a natural generalization of our results, it seems that it is still out of reach.
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