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ABSTRACT. This paper investigates the cohomology of SL,(Z), n > 2, “right outside” what one
calls the “stable range”. More precisely, a qualitative non-vanishing result for the cohomology
HY(SL,(Z)) in degrees ¢ = n—1 and ¢ = n is shown, whose major novelty is to include the existence
of non-trivial cohomology classes, which are representable by everywhere unramified degenerate
Eisenstein series. In particular, these classes lie outside the image of the Borel map. In the last
section, we describe non-constant automorphic representatives of non-zero classes for SLg(Z) and
SLg(Z), whose degree lies right below the “cuspidal range”.
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INTRODUCTION

In order to describe the context and the results of this paper, let G/Q be a semisimple algebraic
group defined over Q and fix a choice of a maximal compact subgroup K of the real Lie group
G(R), i.e., of the group of R-points of G. We denote by X = G(R)/K the associated symmetric
space. Let g be the Lie algebra of G(R) and let I" be an arithmetic subgroup of G(Q).

Half a century ago, cf. [Bor74], A. Borel showed that the cohomology HY(I',C) of I' is — below
a certain degree q(G) — entirely spanned by classes, which are represented by G(R)-invariant dif-
ferential forms on X. Although Borel’s bound is not sharp in general, his result implies that below
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degree ¢(G), the cohomology HY(T",C) falls into what one calls ever since the “stable range”, i.e.,
the maximal range of degrees of cohomology, 0 < ¢ < st(G), in which H4(T',C) does not change,
even if the rank of G in its Cartan-type classification is allowed to grow to infinity (and I' varies
among the arithmetic subgroups of G).

If I" is a congruence subgroup, then the above can be rephrased in the more modern language
of adeles A = R x A (over Q) and automorphic forms: It can be expressed by saying that in a cer-
tain maximal range of degrees 0 < ¢ < st(G), all classes in the cohomology H?(I",C) are obtained
from HY(g, K,1g(a)), i-e., from the (g, K)-cohomology of the global trivial automorphic represen-
tation 1g(y) of G(A), realized as a square-integrable automorphic representation on the space of
constant functions G(A) — C. In other words, given the Lie group G(R), it is enough to study the
Poincaré-polynomial of H%(g, K, 1)), which is usually well-understood in terms of differential
geometry, in order to understand H?(I',C) for all congruence subgroups I' of G(Q) and degrees
q < st(G). See also [Spe83a] for further, general results on the contribution of HY(g, K, 1g(r)) to
HY(T,C).

In this paper we explore new phenomena in the automorphic cohomology of I' = SL,(Z), n > 4,
right beyond the “stable range” st(SL,) =n — 2.

To put ourselves in medias res, we recall that according to the work of Franke [Fra98] and
Franke-Schwermer [Fra-Schw98] on the space of adelic automorphic forms A(G), the cohomology
HY(SL,(Z),C) affords a description as Hecke-module as a direct sum

H(SLn(Z),C) = @ D H (9, K, A(py o) (G)) 5P,
{P} o(m)
Here, the first sum ranges over all associate classes { P} of standard parabolic Q-subgroups P of
SL, and the second sum ranges over all associate classes () of cuspidal automorphic represen-
tations of the Levi subgroup of P. The spaces Ay p}7¢(7r)(G) then denote the module of all possible
partial derivatives of regularized Eisenstein series attached to ¢(m), cf. §2.2.2, and the exponent

SLy(Z) stands for the invariants under the natural action of SLy(Z), i.e., the everywhere unrami-
fied vectors, where Z is the Prifer ring, i.e., the profinite completion of Z.

In particular, the summand HY(g, K, A{B},@(x)) attached to the Borel subgroup P = B and the
cuspidal support represented by the Hecke character

x=ePrHeO) = | " | |"T 9| T @0 |
of the adelic points of the maximal torus T' of SL,, shows up in this direct sum. In fact, the latter
summand comprises all of HY(SL,(Z),C), if n < 11, cf. our Thm. 2.2, which is based on funda-
mental work of Chenevier-Lannes [Che-Lan19].

Our main result in degree ¢ = n—1 now reads as follows: Given an ordered partition n = (ny,...,ng)
of n into positive integers, P, denotes the corresponding standard parabolic subgroup of SL,,
cf. §1.2. Suppressing the dependence on n, we let a(q) be the number of ways to write an integer
q > 1 as the sum of different integers of the form 4/ +1,1 </ < L%J See also Lem. 3.2. Then
we obtain
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Theorem A. Let n > 4. If n is odd, the cohomology space H" (g, K, .A{B}#,(X)) 18 isomorphic
to the G(Ay)-module H" (g, K,1¢(n)), whereas if n is even, it contains H" (g, K,1g(s)) as a
submodule with the quotient given as the kernel Eis™ of a natural connecting morphism (“Bockstein
homomorphism”) in degree n,

o G(Ay) o Hpy, (¢ a(n)
Eis"™ = ker GB IndPﬂ(‘gf) <e<p‘i PJ)f)) — 1G(Af) )
ﬂe{(n_lvl)V(lan_l)}

i.e., there is a natural short exact sequence of G(Ay)-modules
-1 - :
{0} — 1805 — H" (9, K, A(py o) — Eis" — {0}.
The everywhere unramified classes in Eis™ are represented by degenerate unramified Fisenstein
series associated with the trivial representation 1y (u) of the Levi factor of Py, evalualed at the
evaluation point X = pp,, where n € {(n —1,1),(1,n —1)}.

If n > 5 is odd, the free part of the Z-module H" ' (SL,(7Z)) is non-zero, if either n > 43,
orn € {15,19,23,27,31,35,39}, whereas H" *(SL,(Z)) consists entirely of torsion elements, if
n <11.

Moreover, if n > 4 is even, then the subspace of everywhere unramified, vectors in Eis™ does not van-
ish, if n € {4,6,8,10,12, 16, 20,24, 28,32,36,40}, and the free part of the Z-module H"~'(SL,(7Z))

1s non-zero for all even n > 4.

We emphasize that this is the first time that explicit automorphic representatives of non-trivial
Eisenstein cohomology classes for SL,(Z) are constructed which are neither holomorphic values,
nor square-integrable residues of Eisenstein series. We refer to our Thm. 4.1, Thm. 4.7 and Cor.
4.3 for a proof of Thm. A and all details left out here.

Our next theorem says, that this phenomenon does not persist in degree q¢ = n, i.e., there are no
degenerate Eisenstein cohomology classes in the summand H"(g, K, A{py} 4 (y)), or, slightly more
precisely, there are no other classes in H"(g, K, Ay 4(y)) — and hence in all of H"(SL,(Z),C), if
5 < n <11 — than the ones obtained from the Borel map:

Theorem B. Let n > 5. Then, the cohomology space H"(g, K, A{B},@(X)) 18 isomorphic to the
image of the natural map of G(Ay)-modules H"(g, K, 1gs)) — H" (g, K, A(G)).

See Thm. 4.10 for all explanations and a proof. Thm. B may be used to establish the following
explicit growth result on the complex dimension of H"(SL,(Z),C):

— 2, ifniseven

. n a(n)
dime H"(SLn(Z),C) > { a(n), if n is odd.

(

In particular, the free part of the Z-module H"(SL,(7Z)) is non-zero, in the following cases:

e for odd n, if either n > 25, or n € {5,9,13,17,21};
e for even n, if either n > 50, or n € {22, 26, 30, 34, 38,42,46}.

We refer to Cor. 4.13 for a proof of the latter simple corollary.
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Theorems A and B should be viewed in light of the results of Franke in [Fra08]. Although for-
mulated in a slightly different language, Franke provides in Thm. 1.1 and Cor. 3.5 of loc. cit. a
description of the module of everywhere unramified vectors in H*(g, K, A(p} ,(y)), Which in fact
applies to any (simply connected Q-split) semisimple algebraic group G. To recall it, let X, be the
compact dual of X, and let Ug denote the open subset of X, obtained by removing the union of
the compact duals of the symmetric spaces attached to the proper standard parabolic subgroups
of G. The main result in [Fra08] then implies that the module of everywhere unramified vectors
in H*(g, K, Ay (y)) i isomorphic to the space of (K N B(R))-invariant vectors in the deRham-
cohomology Hjy (Ug,C). Franke refers to this as a “topological model” of the respective summand
in Eisenstein cohomology, in analogy with the fact that Hj(X,,C) can be regarded as a topo-
logical model of H*(g, K,1¢(a)), viewed as a Hecke-module with trivial action. In fact, just as
H. Cartan’s classical description of Hjp(X,,C) as an exterior algebra with abstract generators of
degree 5,9, ..., cf. [Car60], p. 28 or [Bor74], p. 265, Franke’s topological model yields a powerful
description of the module of everywhere unramified vectors in H*(g, K, Ay B}w(x)) as an algebra
with formal generators. See [Fra08|, §.7.5 for the case of G = SL,,/Q at hand. However, this de-
scription does not provide any information about the automorphic nature of the classes in the direct
G(Ay)-summand H*(g, K, Ay o)) C H*(g, K, A(G)), that is, about their concrete automorphic
representatives. This is precisely where Thm. A and Thm. B enter. While Franke’s generators
are represented by certain tuples ¢ = (Xi,..., Xn) of subsets X; of {3,5,...,2 - L"THJ — 1}, their
automorphic correspondents — the actual elements of H*(g, K, A(G)) — remain implicit. Thm. A
and Thm. B explicitly identify their true cohomological automorphic representatives in the relevant
degrees, thereby revealing a previously unknown phenomenon: The existence of a concrete series of
examples of non-trivial Eisenstein cohomology classes for SL,(Z), which are represented by auto-
morphic forms, which are neither holomorphic values, nor square-integrable residues of Eisenstein
series associated with a cuspidal automorphic representation of a Levi factor. These Eisenstein
classes are, in particular, not captured by the image of the Borel map.

We would also like to compare our results to the vibrant recent literature on the subject: Thm. 1.1
of the recent preprint [Bro23] also implies a growth-condition on the dimension of the cohomology
of SL,(Z) by studying the kernel of the Borel map by means of Hopf algebras and a new, algebraic
approach to the Borel-Serre compactification of SL, and GL,. Though our methods here are au-
tomorphic and hence totally different, it is interesting to notice that for odd n > 5 the dimension
of the space of n-forms of “non-compact type” (as they are used and called in [Bro23], Thm. 1.1)
is the same as our constant a(n). Our formulas, however, differ from Brown’s in the case of even
n > 4, as here we get non-trivial Fisenstein cohomology classes, which are not representable by
constant automorphic functions, i.e., are not in the image of the Borel map.

There are several other complementary (and sometimes partly overlapping) results in the recent lit-
erature: We would like to mention [BHP24, Ash24, AMP24, BCGP24, KMP21, PSS20, Chu-Put17,
CFP14] as a chronologically decreasing selection of interesting recent sources and refer to Rem. 5.1
and §5.3 for more comments on the three most recent of these preprints.

In the very last section we consider questions related to the non-vanishing of the Eisenstein coho-
mology of SLa,(Z) in degree ¢ = m?—1, i.e., right below the range, in which cuspidal cohomological
representations of SLgy,(A) could contribute non-trivially to cohomology. Again, the non-trivial
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classes detected and considered here are not in the image of the Borel map, and they are represented
by degenerate Eisenstein series.

In §5.1, we reestablish the non-vanishing of H®(SLg(Z)), as originally shown by Elbaz-Vincent—
Gangl-Soulé, [EVGS13], but also determine, which (non-constant) degenerate Eisenstein series of
SLg(A) represent the non-trivial classes in H8(SLg(Z),C). See §5.1 for details.

Similarly, as communicated to the second named author by Brown, A. Ash has asked for a de-
scription of the cohomology of SLg(Z). Among others, degree ¢ = 15 was of particular interest.
Here we show that H'(SLg(Z),C) is two-dimensional by automorphic methods, and we describe,
which (non-constant) degenerate Eisenstein series of SLg(A) represent the non-trivial classes in
HY(SLg(Z),C). We refer to §5.2 for this result.

In memoriam: This paper is dedicated to the memory of Giinter Harder (f). We feel honoured and
grateful to have been in close exchange with Giinter, who was familiar with a first completed version of
this article, regarding the subsequent results. In fact, it was he who initially motivated us to work on the
questions addressed in this paper.

Acknowledgments: We are grateful to Francis Brown, Gaétan Chenevier and Christian Kaiser for several
extremely valuable hints and discussions, which followed various, very different approaches to the topic. We
would also like to thank the anonymous referee for her/his valuable comments, which made us rethink and
(hopefully) improve the whole paper. H.G. wants to thank the Hotel “Das Schmidt” in Morbisch and the
winterly Bundesland Salzburg, where major parts of this paper have been established in intensive work,
whereas in a very pleasant atmosphere. He is also grateful to Franz Ludwig Witiko Schellenbacher for his
kind motivation during several joint “Studierzeiten”.

1. PRELIMINARIES AND NOTATION

1.1. Groups. The symbols Z, Q, R, and C have their usual meaning. The ring of adeles of Q will
be denoted by A, its subring of non-archimedean elements by A ;.

For n > 1, let GL, be the general linear group defined over Q. If H is any Q-subgroup of
GL,, then S(H) will denote its elements of determinant equal to 1. In particular, we will write
G := S(GL,) = SL, for the (Q-split) special linear group defined over Q. If, however, H is a real
Lie group, we will use h to denote its Lie algebra and h¢ for its complexification.

1.2. Parabolic data. We fix once and for all the Borel subgroup B of G, consisting of upper-
triangular matrices in G. Let B = TU be the Levi decomposition of B, where T is a maximal split
torus in B, and U the unipotent radical. Then,

T(R) = {diag(tl, c. ,tn) t 1 € R*, Hti = 1}
i
for any commutative Q-algebra R. More generally, let P O B be a standard parabolic Q-subgroup of
G, cf. [Bor-Wal00], 0.3.4. They are parameterized by the tuples (ni,...,ng), k > 1,n; € N, > n; =
n, according to the block-sizes of the corresponding Levi subgroup L = S(GL,, x---xGLy,) C P.
Its group of real points L(R) admits a unique maximal semisimple direct factor, denoted by M. Its



6 NEVEN GRBAC AND HARALD GROBNER

Lie algebra is naturally complemented by the real Lie algebra ap of the split component Ap of L.
Its (complexified) dual is as usual denoted by ap (resp. by apc). We write S(apc) for the attached
symmetric (i.e., universal enveloping) tensor algebra. Moreover, we recall the set W of Kostant
representatives from [Bor-Wal00], II1.1.4: It is a uniquely determined set of minimal length right
coset representatives of the quotient Wi \W, where W (resp. W) denotes the Weyl group of G
(resp. L) with respect to T'. (Here we used the fact that G is Q-split.)

1.3. Compact subgroups. We assume to have fixed a maximal compact subgroup K of G(R)
and Ky of G(Ay) in good position with respect to B and T', in the sense of [Moe-Wal95], 1.1.4 or
[Gro23], §9.2. More explicitly, K = SO(n), the compact special orthogonal group of n x n-matrices
and Ky = SL,(Z) = [1, SLn(Zp), where 7= [1,Zy is the Priifer ring, i.e., the profinite completion
of Z.

1.4. Certain characters. We denote by sgn : R* — {£1} the sign-character of the multiplicative
group R* of non-zero real numbers. If A € ap, then C) denotes the one-dimensional module of
L(R) of highest weight A, i.e., if L(R) = S(GLp,(R) X -+ X GL,, (R)) and A = (Aq,......, Ag),
then Cy = detﬁi R ® det%’;, where det,,, denotes the determinant on GL,,(R). Going adelic, if
A € ap, then eMP()) denotes the one-dimensional representation of L(A) constructed from X and
the Harish-Chandra height function Hp(-), cf. [Fra98|, p. 185. If H is any subgroup of G(A), then
1y denotes the trivial representation of H.

2. A SUFFICIENT CONDITION FOR THE NON-VANISHING OF HY(SL,(Z))

2.1. Recap: The cohomology of SL,(Z) via automorphic forms. For the sake of later ref-
erence, we shall shortly recall some facts about the cohomology of SL,(Z) and its interconnection
to the cohomology of the space of automorphic forms of SL,(A).

In order to do so, we need to take a “transcendental” point of view, i.e., work with coefficient
modules over C. Just in this section, let us abbreviate I' = SL,,(Z) and let us also view Z and C as
trivial modules under T'. It is well-known that the group homology H.(I") := H,(I',Z) is a finitely
generated Z-module. Indeed, this follows easily from the fact that I has a subgroup of finite index,
which is torsion free, whence I itself is an arithmetic group of finite type, cf. [Ser79], §1.3. The
universal coefficient theorem for group homology hence shows that as C-vector spaces

H,(T') ®7 C = H,(T,C).

Using duality between singular homology and cohomology, we get again an isomorphism of group
cohomology as C-vector spaces

HYT)®zC= HIT,C).
It follows that the free part of the Z-module H4(SL,(Z)) must be non-zero, if H4(SL,(Z),C) is.

Let now A(G) be the space of automorphic forms on G(A), cf. [Bor-Jac79, Gro23], on which
the center of the universal enveloping algebra of gc = sl,,(C) acts trivially. Then, it is well-known,
that H4(I',C) allows a description as the space of K y-invariant vectors in the (g, K')-cohomology
of A(G), cf. [Bor-Wal00], Thm. VIL.2.2 in combination with Strong Approximation for G, cf.
[Pla-Rap94], Thm. 7.12, and [Fra98|, Thm. 18:

(2.1) HY(SL,(Z),C) = H(g, K, A(G))%7.
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Therefore, each cohomology class in H4(SLy,(Z),C) may be represented by everywhere unramified,
i.e., K¢-right invariant, automorphic forms in A(G).

2.2. Automorphic background a la Franke and a first consequence for the cohomology
of SL,(Z).

2.2.1. Parabolic supports. Let {P} be the associate class of the parabolic Q-subgroup P = LpNp
of G = SL,: It consists by definition of all parabolic Q-subgroups Q = LgNg of G, for which
Lg and Lp are conjugate by an element in SL,(Q). We denote by A¢p)(G) the space of all
f € A(G), which are negligible along every parabolic Q-subgroup @ ¢ {P}: This means that for all
g € SLy,(A), the function Ly(A) — C, which is given by ¢ — fo(€g), where fg denotes the constant
term of f along @, is orthogonal (with respect to the Petersson inner product) to the space of all
cuspidal automorphic forms on Lg(Q)\Lg(A). Having set up these notations, Langlands obtained
the following decomposition of A(G) as a (g, K, G(Ay))-module, cf. [BLS96] Thm. 2.4:

AG) = P Ay (G).
P}

2.2.2. Cuspidal supports. We recall now, cf. [Fra-Schw98], 1.2, and [Gro23], §15.2, the notion of an
associate class ¢(m) of cuspidal automorphic representations of the Levi subgroups of the elements
in the class {P}. Therefore, let {P} be represented by P = LN. Then, an associate class ¢(m)
may be parameterized by 7 = 7 - e?HP()) where
(1) 7 is a unitary cuspidal automorphic representation of L(A), whose central character vanishes
on the identity component Ap(R)° of Ap(R),
(2) Ar € apc, which is compatible with the infinitesimal character yz. of T (cf. [Fra-Schw98],
1.2, or [Gro23], §15.2, in particular (15.13)).

We let Wpz be the space of all smooth, K-finite functions
[ LQ)N(A)Ap(R)°\G(A) — C,

such that for every g € G(A) the function ¢ — f({g) on L(A) is contained in the 7-isotypic
component of the cuspidal spectrum L2, (L(Q)Ap(R)°\L(A)) of L(A). For a function f € Wpz,

cusp
X €dapc and g € G(A) an Eisenstein series is formally defined as

Ep(f,N(9):= Y,  flyg)etertirho),
1EP(Q\G(Q
It is known to converge absolutely and uniformly on compact subsets of G(A) x apc, if the real
part of A is sufficiently positive. In that case, Ep(f, A) is an automorphic form and the map A —
Ep(f,A)(g) can be analytically continued to a meromorphic function on all of apc, cf. [Mce-Wal95],
I1.1.5, IV.1.8, IV.1.9, [Lan76], §7, or, most concretely, the main result of [Ber-Lap23]. Given ¢(7),
represented by a cuspidal representation 7 of the above form, a (g, K, G(Ay))-submodule

A(py o) (G)

of A¢py(G) was defined in [Fra-Schw98], 1.3 as follows: It is the span of all possible partial deriva-
tives of holomorphic values or residues of all Eisenstein series attached to 7, evaluated at the point
A = A;. This definition is independent of the choice of the representatives P and =, due to the
functional equations satisfied by the Eisenstein series considered. For details, we refer the reader to
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[Fra-Schw98], 1.2-1.4, as the original source, or to [Gro23], §15.2-15.3. The following is a theorem
of Franke-Schwermer, see, [Fra-Schw98], Thm. 1.4, or [Gro23|, Thm. 15.21,

Theorem 2.1 (Franke-Schwermer). There is an isomorphism of (g, K, G(Ay))-modules
Agpy(G @ APy ot

Using Thm. 2.1, the next result refines the above description of H?(SL,(Z),C) in terms of auto-
morphic forms and reveals that the cohomology of SL,(Z) is in fact quite simply structured, if
n < 11. Namely, we will show that in the latter case it is strictly supported by the trivial character
of the Borel subgroup B = TU of (G. For this recall that an irreducible cuspidal automorphic repre-
sentation 7 of L(A) is called of level 1, if its non-archimedean component 7, as a representation of

L(Ay), satisfies 7, KynL(As) # {0}, i.e., if 7 is unramified at all non-archimedean places. Moreover,
recall from §1.2 that we denoted by M the maximal semisimple real Lie-subgroup of L(R).

Theorem 2.2. For all n > 2 and all degrees q of cohomology, there is an isomorphism of modules
of the Hecke algebra of SL,(Z ) (or, equivalently of the Hecke algebra attached to the maximal open
compact subgroup K¢ = SL,(Z) of SLn(Ay))

HQ( @ @ Hq(gaK7 A{P},g&(ﬁ)(G))Kfa
{P} o(m)
Xwoo—*w(P)lM
my is of level 1

where w € WF runs through the Kostant representatives for P.

If n < 11, then the following much simpler description holds:
(22) Hq(SL'rL(Z)a(C) = Hq(gaKa -A{B},<p(x)(G))Kf7
where @(x) is the cuspidal support represented by the Hecke character
n—1
x =P HE0) = | " T @ | ["T o] T e @2
of the torus T'(A).
Proof. From Franke—Schwermer’s theorem, cf. Thm. 2.1, we get
H(SLy(2),C) = H(g, K, AG))"/

~ PP HY 9, K, Appypm (G
(P} o(m)

For any representative m = 7 - emHP()) of an associate class ¢(7), the natural (g, K,G(Ay))-
homomorphism,

d53) (7 © S(apc)) — A(pypm(G)

given by summation of locally regularized Eisenstein series around A is surjective, cf. [Fra-Schw98],
3.3.(4). Hence, in order to obtain a non-zero space

H(g, K, Agpy o) (G) 7,
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it is necessary that 7., has the same infinitesimal character as the contragredient of a representation
of M of highest weight (w(p) — p)|a, w being a Kostant representative for P, see [Fra-Schw98],
1.2.c. For a given representative 7 = 7 - e HP()) of a class o(m), this Kostant representative w is
indeed unique, as we must have A\ = —w(p)|a, as well, cf. [Bor-Wal00], Thm. III.3.3. This implies
that x#., = —w(p)|m, see also [Bor-Wal00], Thm. II1.3.3.(i).(2). Moreover, invoking Frobenious
reciprocity for non-archimedean parabolic induction, it is clear that 7 must be unramified at every
place, i.e., of level 1. Collecting all that together, this shows the first assertion.

Let now be n < 11. Then, by [Che-Lan19], Thm. F on p. 13 (see also [Che-Tai20], Thm. 3
and §2.4.6), there is no level 1 irreducible unitary cuspidal automorphic representation of L(A),
whose infinitesimal character matches the one of the contragredient of (w(p) — p)|ar, w being a
Kostant representative for P, if L = S(GLy,, X ... x GL,, ) contains a general linear group of rank
n; > 1. It therefore follows that ¢(7) must be represented by an irreducible cuspidal automorphic
representation 7 with P = B and 7 = 1p(s). Moreover, for ¢(7) to give rise to a non-zero space
H*(g, K, A(By,o(r)(G)), we must have A\r = —w(p)|a, and, in fact, this element has to be in the
closed positive Weyl chamber of ap ¢ = fc, cf. [Fra-Schw98], 5.5. together with p. 772 ibidem. The
latter condition, however, is only satisfied by the longest element wg of W2 = W, which gives
A = —wag(p)|lay = pp. This shows the claim. O

Remark 2.3. As indicated in the introduction, this simple description of H9(SL,(Z),C) as in
(2.2) will generally fail, if n > 12, because of the existence of an irreducible unitary cuspidal
automorphic representation 7 of GL2(A) of level 1 and of infinitesimal character xz_ = (151, —%)
(namely the one constructed out of a non-zero cuspidal modular form of weight 12 and full level, i.e.,
out of a non-zero element in S12(SL2(Z)), e.g., the Ramanujan Delta-function). Indeed, suitably
extended by 10 Hecke characters, one obtains an irreducible cuspidal automorphic representation
7 of GLa(A) x [[;2, GL1(A) of level 1 which satisfies xz,, = (3, -3, 9,7, ..., —3) = —w(pcr,)

20 29202
for a suitable Kostant representative w.

3. AN EXAMINATION OF THE FRANKE FILTRATION AND CONSEQUENCES FOR AUTOMORPHIC
COHOMOLOGY

3.1. The Franke filtration of the cuspidal support of the trivial automorphic repre-
sentation. We recall that in [Fra98], §6, a certain, technically involved, finite-step filtration was
defined, which can be refined to apply to the individual summands Apy ,(x)(G), cf. [Grb12], §3,
[Grol3], §3.1, [Grb-Grol3], §3, or [Grb23], Chap. 4. The reader, who prefers to read a presentation
of this subject, which is taylored to the (special) linear group, is invited to consult [Grb-Gro24],

§2, for all relevant details. Our next result makes this filtration explicit for the datum ({B}, ¢(x)),
— lpBHB())
xX=e .

Theorem 3.1. Let p(x) be the cuspidal support represented by the Hecke character

n— n—1
2

x=ePrHeO) = | " g | |"T @] T @0 |

of the torus T'(A). Then, the Franke filtration of the space A(py ,(y) of automorphic forms with

cuspidal support in the associate class p(x) can be defined as the filtration

n—1

_ 0 1
AByet0 = AlByeto 2 ABren) 2 2 AlBet 2 (0}
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of length n, where the quotients of the filtration for i =0,1,...,n — 1 are isomorphic to

i i+1 ~ G(A) s H Py (¢ -
{B}7¢(X)/A{E}7W(X) = @ IndPH(A) <€<ppf Pf( )>) ® S(GPE,(C)

n=(n1,...,nr)
with r=n—1

,
N G(A njp1t+tnr—(nyi+-4ng_1) .
~ P mag) | @ ldets,| . ® S(ép,.c)
n=(n1,...,nr) Jj=1
with r=n—1i
as (g, K, G(Ay))-modules, where the direct sum is over the set of all ordered partitions n = (n1,...,n,)

of n into positive integers with r = n — 1, i.e., over all parabolic subgroups of rank i. In particular,

n—1 ~
ABy ot = 16,

where 1y 1s the trivial representation of G(A), realized as the residual automorphic representation
on the space of constant functions on G(A).

Proof. Tt follows from Theorem 4.1 in [Grb-Gro24], that the Franke filtration of the space of auto-
morphic forms with cuspidal support in ¢(x) can be arranged in such a way that the contributions
to the quotients of the filtration are determined by the rank of the parabolic subgroup on which the
degenerate Eisenstein series are supported, i.e., by the rank of the parabolic subgroup from which
the contribution is parabolically induced. The result then follows from the decomposition of the
sequence of exponents of the cuspidal support into segments.

The exponents in the induced representation from the parabolic subgroup P, may be easily
obtained by a direct calculation, or, can be found e.g., in (1.10) of [Gro-Lin21]. O

3.2. The isomorphisms in the Franke filtration. In the construction of explicit representatives
of non-trivial automorphic cohomology classes, an explicit description of the isomorphism between
the parabolically induced representations and the quotients of the filtration in Thm. 3.1 is required.
This isomorphism is obtained using the main values of the derivatives of Eisenstein series, which
we now discuss, as in [Fra98], see also [Fra-Schw98].

Consider the parabolically induced representation
Indgﬂ(ﬁi) (€<pPﬂ’HPﬂ(‘)>> ® S(ap,.c)

which appears as a direct summand of a quotient of the filtration in Thm. 3.1, and all the sum-
mands are of that form.

From the data in the induced representation, we construct a degenerate Eisenstein series asso-
ciated with the trivial representation 1y (4 of the Levi factor of P,, defined in the same way as
in Sect. 2.2.2. We denote it by Ep, (f, /\)TWhere A € ap, c is the complex parameter, and f ranges
through the space Wp, 1, | @ The evaluation point of interest is at A = p,, which is a singularity

Of Epﬂ(f, )\)

The symmetric algebra S(dp, c) is identified with the partial derivatives in (our fixed choice of)

Cartesian coordinates on ap, c. Given a multi-index «, the corresponding derivative E?Taa is thus
viewed as an element of the symmetric algebra.
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Given a function f € Wp, and a derivative 68% € S(ap,c), we would like to evaluate

oLy, (a)
the derivative of the Eisenstein series 5o
a)\a EPn (f7 )
at the evaluation point A = pp,. However, as already mentioned above, this Eisenstein series and
its derivative are not holomorphic at A = pp,. Therefore, we must use the notion of its main value
80{
MVicsr, (s Er1)

at A = pp,, as defined in [Fra98, p. 235], see also [Fra-Schw98, p. 775].

Although the main value is not well-defined as an automorphic form, one of the crucial obser-
vations of Franke is that it defines a unique element of the quotient of the Franke filtration. Hence,
for a given n = (n1,...,n,), the map from the parabolically induced representation

to the quotient
i i+1
AtB)000/ ABLet0
where ¢ = n — r, of the Franke filtration, given by the assignment

(8] (0]

0 0
(3.1) f® e — NIVA:ppH <0)\"‘ EPn (f, )) )

for all f € Wp, 1, ,, and 8Aa € S(ap,,c), is a well-defined injective intertwining of (g, K, G(Ay))-

modules. (Here, we silently identified the normalized global induction Indgiléi) (€<PP£7HPQ(~)>> with

Wp, 1, ,, through the e =PPotPa ) tyyisted evaluation of functions at id € G(A), cf. [Gro23],

(15.23).) Since the Eisenstein series of different summands in Thm. 3.1 are not related by func-
tional equations, the above construction for all summands gives rise to the isomorphisms between
the direct sums of parabolically induced representations and the quotients of the filtration in the
theorem. More precisely, for a given integer r such that 1 < r < n, the maps (3.1) for all ordered
partitions n in r positive integers give rise to the isomorphism

G(A) s Hp, (¢ - n—r+l
(3.2) (@ )Ind “ )(e@& PJ”) @ S(@r,c) — Alg] o0/ AlB] ot
n=(Ni,...,Npr
> ni=n
of Thm. 3.1.

3.3. Cohomology of the trivial representation of SL,(R). Given an integer n > 1, we let
a(q) be the number of ways to write an integer ¢ > 1 as the sum of different integers of the form
4041,1 < ¢ < |21, while we formally set a(g) = 0 for ¢ < 0. Recall that X = SL,(R)/SO(n).

Lemma 3.2. Let n > 1. The Poincaré polynomial of the cohomology H*(sl,(R), SO(n),C) of the
trivial reprepsentation 1gr, w) = C of SLn(R) is given by

P(t)_{ [T+t - (1 4+ 7) if n =2k
S G N (A ifn=2k+1
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Consequently, dime HO(sl,(R), SO(n),C) = 1, whereas for the degrees 1 < q < dimg X the complex
dimension of the cohomology H4(sl,(R), SO(n),C) is given as follows:

. q _ a(q) +alg—n) ifn=2k
dim¢ HY(sl,(R), SO(n),C) = { a(q) ifn—2k+1
Proof. As H*(sl,(R),SO(n),C) = Hir(SU(n)/SO(n),C), the Poincaré polynomial of the coho-
mology space H*(sl,(R),SO(n),C) can be read off [Car60], p. 28 or [Bor74], p. 265. See also
[GHV76], Table 1, p. 493, for an even more explicit source. The claim on the complex dimension
of dim¢ H*(sl,(R), SO(n),C) hence follows immediately. O

3.4. The Kostant representatives. Our next task is to determine the Kostant representatives
producing the correct exponents for the induced representations appearing in our Thm. 3.1. To
this end, recall the (very) well-known fact that the Weyl group W of G with respect to the fixed
maximal split torus 7" is isomorphic to the symmetric group of permutations &,, of n letters, and,
via this isomorphism, the action of w € W =2 &,, on the character of the torus given by the sequence

of exponents (s1,...,S,) is by permutation of these exponents. Here, recall that (s1,...,s,) € C"
corresponds to the character given by the assignment
(T 4 I 1) R [

where (t1,...,t,) € T(A). The Weyl group is generated by the simple reflections w;, i = 1,...,n—1,
corresponding to the simple roots of G. The length ¢(w) of an element w € W is the number of
simple reflections in any reduced decomposition of w into a product of simple reflections.

Clearly, if a standard parabolic Q-subgroup P = P, ., of G corresponds to the ordered partition
(n1,...,ng) of n into positive integers, then

WL =6, x--x Gy,
where &,,; is the symmetric group of permutations of n; letters.

Proposition 3.3. Let P, be the standard parabolic subgroup of G corresponding to the ordered

partition n = (n1,...,nk) of n into positive integers, and let Ly be its Levi factor. Let wy, be the
Kostant representative in W' such that

—wn(p)|.
ClpE

equals the exponents that appear in the induced representation from P, of Theorem 3.1. Then the
length of wy, is given by

(3.3) Uwp) = Y miny.

In particular, w, is the longest element in Wha,

Proof. Since the exponents in p are all different, there is a unique representative w, in W= pro-
ducing the required exponents for each n. It is the Weyl group element which acts as the longest
permutation of blocks of sizes ng,...,n1. More precisely, the block of last n; exponents should
be sent to the beginning of the sequence, the next to the last no exponents should be sent to the
second block of ng exponents, and so on, without changing the order inside the blocks. The first
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step of moving the block of last ny exponents can be made in nq(n—mnq) simple reflections, obtained
as interchange of position of all n; exponents in the last block with all n — n; exponents outside
the last block. The second step of moving the next to the last block of no exponents to become the
second block can be made in na(n — ny — ng) simple reflections. And so on, we obtain

lwp) < nin—ng)+ne(n—n1—ng)+---+ng_1(n—ny—ng — -+ —ng_1)

= g ngn;.

The other inequality follows from the fact that the steps of the above procedure are independent,
and each step cannot be made using less simple reflections. From the fact that w,, is the longest
permutation of blocks of the parabolic, it is clear that it is the longest element in W=, ]

3.5. Automorphic cohomology in low degrees.

Proposition 3.4. Letn > 4 and let <p( ) be the cuspidal support represented by the Hecke character

n—1

x=11"T el T e [T e el [T
of the torus T(A). Then, the natural map 'A{B} e s A(B},o(x) induces an isomorphism of
G(Af)-modules

H(g, K, A(p) o(v) = H(9. K, AT5 )

for all degrees 0 < g < n.

Proof. Let n > 4 as in the statement of the proposition and let k£ > 3. The short exact sequence of
(9, K,G(Ay))-modules

{0} = AT5y bt = Alst e = Aleco/Alsy b = {0}

{B},o(x {B},e(x)
gives rise to a long exact sequence of G(A¢)-modules
n—k+1 n—k n—k n—k+1
(34) 2 HY 9 K Ay o) = B8, K Ay o) = HU K Ay o0/ Alsrot0)
n—k+1
—H g, K, Ay b)) — -
It is hence enough to show that
(3-5) H(g, K, A{B} o(x /A?B]]?—;l ) = {O}

for all £k > 3 and all ¢ < n.
Recalling Frobenius reciprocity (as it was used in the proof of [Bor-Wal00], Thm. III.3.3 or in Eq.
(5) on p. 257 in [Fra98]) and the fact that for each parabolic subgroup P, of G,

see, [Fra98], p. 256, the G(A)-module H¢ (g,K Ind (‘(“) (e<ﬂPa’HPa(')>) ®S(apﬂ,@)) is isomorphic
to

Hq—f(wﬂ) (mﬂa Kn MQ, €<2PPQ’HPH(.)°°> ® (C*pr ) X IndP(?A{)) <e<pPQ’HP£(')f>> )
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where £(wy) = 31 j<kMin; is the length of the uniquely determined Kostant representative

Wy, € WP given by Prop. 3.3. Hence, our Thm. 3.1 implies that it is enough to prove that for all
k>3

(3.6) min Z ning >n+1,

= (11500 1<i<j<k
in order to show (3.5) for all £ > 3 and all ¢ < n. To this end, we rewrite

k—1

E nin; = E nin; + E ni(n—ny—ng—-+—ng_1)
1<i<j<k 1<i<j<k—1 i=1
k-1 k—1
_ 2
= —g ni—l—n-g n; — g nin;,
i=1 i=1 1<i<j<k—1

revealing ¢(wy,) as a quadratic polynomial in the variables n;, 1 <14 < k— 1. Since the coefficient of
n? is always negative, the minimum over all ordered partitions n = (n1,...,ny) is attained at the
boundary of the domain of possible values, which, in the present case, is (all boundary values lead

to the same outcome) at n; = ng = --- = ni_1; = 1. Hence, by inserting, we get that for all & > 3,

E(k—1
mln Z nin; =n(k —1) — (2 )

n=(n1seme) | Sk

Checking, when this expression satisfies (3.6), hence leads by a simple calculation to checking when

k? —k+2
3.7 > .
(87) "= ok —2)
Viewing the right-hand side of (3.7) as a function ¢(k) of a real variable k, it a matter of basic
calculus to show that the only local extreme in the domain 3 < k£ < n is the local minimum at
k = 4. Hence, the maximum of ¢(k) is attained at the boundary of the domain 3 < k < n, and it
remains to check that the inequalities

n

Y

¢(3) =4,

2
n°—n+2
> =
hold for n > 4. The former inequality is obvious, and the latter follows by writing it as a quadratic
inequality in n. Thus, the result follows. (|

3.6. Quotient—cohomology Let n >4 and let <p(x) be the cuspidal support represented by the

Hecke character x = |- |2 ol N ' ® B T c® | - |7an1 of the torus T'(A). We start with

an analysis of the G(A)-modules H9(g, K A{B} olx )/ ?];} so(x)) in degrees ¢ =n — 1 and ¢ = n.

Recall from Thm. 3.1 that A?B;go ) = = 1ga). We will first prove a simple lemma:
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Lemma 3.5. Forn > 4, the isomorphism (3.2) induces an isomorphism of G(Af)-modules
n—1 ~
H" e, K Ay o0/ Ay o) =
n—1 G(A) (VORI N O) -
H (gaKvIndP(l,n—l)(A) (e S >®S(ap(1’"*l>’(c))

o H" ! (g,K, Indg((le)(A) <e<pP<n—1,1>’HP(n—Ll)('))) ® S(ﬁp(n,l’m,(c)) .
For n > 5, the isomorphism (3.2) induces an isomorphism of G(Af)-modules
H™ (8. K, Ay o0/ Al o00) =

n G(A ( RN PPN ©) -
H (ngylndP((l) A (e PP(1,n—1)"P(1,n—1) )@S(apaynil),(c))

n 7H . d
o B (0. K ndg® (e e ) g sGap, o)),
whereas for n = 4
4 2 3 o~
H (Q’Ka 'A{B},Lp(x)/A{B}v‘P(X)) =
PPas P a) )>) ® S(ap, 3>’<C)>

€ pP(2 2)7HP(2 2 )>) ® S@‘P(Q,Q),C))
D ik (97[(7 Indp((3 1))(A) <6<PP(3,1)7HP(3,1)( )>) ® S(ElP(&l),(c)) .

Proof. Thm. 3.1, and in particular the isomorphism (3.2) in the case of r = 2, implies that for all
degrees g,

~ G(A) an n \" pe
(3.8)  Hig, A{B} o(x) /A{B},Lp(x)) = @ )Hq <97 K, IndPE(A) (e<pP* Pa )>) ® S(C‘Pg,C)> )
n=(n1,n2

with n = ny + ng, n1,ny € Zsp. As in the proof of Prop. 3.4 we invoke [Bor-Wal00], Thm.
I11.3.3 and pp. 256-257 in [Fra98], which shows that the lowest degree of cohomology, in which

H1 (g, K, Indgﬁ(ﬁi) (e<pPH’HPﬂ(')>> ® S(ﬁpﬂ,c)> may be non-zero is bounded from below by £(w,) =

1<i<j<o MiTyj = N1 - Na. Since n1 +no = n > 4, it is a very simple exercise to prove that
ni-no >n—11if 2 <ny <n—2. This shows the claim in degree ¢ = n — 1. Similarly, if n > 5,
then ny - ne > n if 2 < ny < n — 2, which shows the assertion for degree ¢ = n > 5. For the case
n = 4 one uses (3.8) again, but observes that the partition (2,2) also contributes (as 2 - 2 is not
strictly greater than n = 4). O

We continue by refining Lem. 3.5. We first treat the case of ¢ = n.

Proposition 3.6. Under the assumptions of Sect. 3.6, for n > 5,
H™ (8 K Ay 0/ Ay o00) = (0

whereas forn =4

4 2 3 ~ TG Y) PPy oy H Py o () f)
H (0, K, Ay o0/ ALy ping) Z IR0, ) (o700 a0
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Proof. Let n > 4. We first consider H"” (g,K, IndIijﬁ)l’l)(A) (e<pp<n71,1)’HP<n71,1)(')>) ® S(aP(n—m),(C))'

This cohomology space is obviously isomorphic to

n G(R ( H (Joo) i
H <97K, IndP((n_)lyl)(R) (6 PP(n_1,1)"" P(n-1,1) ) &® S(ap(n_171)7(c))

G(Af) (s 1o HP 4 (8
@Indy ™) ) (7o M OrF)

so, this space being zero is equivalent to the vanishing of
G(R (p H (-)oo) -
H" <93K7 Indp((n,)l,D(R) <e -1 1) ) ® S(ap(nﬂ,l)vc)) .

Recall that by our Prop. 3.3, {(w(,—11)) = n — 1. Hence, invoking [Bor-Wal00], Thm. II1.3.3 and
[Fra98], p. 256,

)

n GR (Prpy 11y Heg 4 1y (oo) )
H <g,K,IndP((n_)m)(R) (e Pln-1,0) M Pn-1,1) )®S(ap(n71,1>7<c))

~ 7l (2p H ()oo)
= H (Mp-1,1), KN Mg gy, ™m0 V@ Cgpp

)

)
= Hl(m(n_u), K N M,—1,1),sgn(det,—1) ® sgn™ ).
Using [Bor-Wal00], 1.1.3.(2) and 1.5.1.(4), the latter space is isomorphic to the vector space of
S(O(n—1) x O(1))/SO(n — 1) x SO(1)-invariant elemets in the direct sum
H'(sl,—1(R), SO(n — 1),sgn(det,_1)) ® H°(sl;(R), SO(1), sgn)

& HO(sl,_1(R), SO(n — 1), sgn(det,_1)) ® H'(sl;(R), SO(1), sgn).
However, as vector spaces, the latter sum is isomorphic to
H'(sl,_1(R),SO(n —1),C) ® H(sl;(R), SO(1),C)

® HO(sl,_1(R), SO(n —1),C) ® H'(sl;(R), SO(1),C),
which vanishes by Lem. 3.2. It is clear that the same argument implies the vanishing of the co-
G(A H . .
P<(1,Z,1)(A) (6<PP(1,n71> P(l,nfl)(») ® S(ap(l,n—l):(c)>' Hence, by Lem.
3.5, we are only left to show that there is an isomorphism

G(A (p H Q) - ~ G(Ay) (p H ()
H* (B,Ka IndP((Q’Z))(A) (6 o2 e ) ® S(ap(w),c)) = IndP(2’2f)(Af) (e P2,2) P2, I ) .

homology space H™ (g, K,Ind

i.e., that
4 G(R) (PP 5y Py 5 ()oo) . ~
H (g,K, IndP(m)(R) (e (2,2)777(2,2) ) ® S(ap(2’2>7<c)) =C
However, in view of the above argument, the latter cohomology space is isomorphic to

(3.9)  (H(sy(R), SO(2), 1s,m) ® HO(sha(R), SO(2), 1g1,))) O OP/SO@XS0C)

The only non-trivial element of S(O(2) xO(2))/S0(2) x SO(2) is represented by the pair of matrices
diag(1,—1) x diag(1,—1) and diag(1, —1) acts trivially on H(sl(R), SO(2),1g,(r)). Therefore,
(3.9) is isomorphic to H%(slx(R), SO(2),C) ® HY(sl3(R), SO(2),C) and Lem. 3.2 for n = 2 finally
implies the result. 0

Next we treat the case of g =n — 1. We get
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Proposition 3.7. Under the assumptions of Sect. 3.6,

Hn_l(g’KA?B}?w /A{B}wx)) {0},

if n > 5 is odd, whereas

n—1 ~ G(Ay) (PP 1y HP 1y O f)
H" N8, K AR o0 /A B o) = Ty (e (=D )
G(Ay) 0rs vy He 11 O9)

o g™ (e (-1 HP1) )

if n >4 is even.
Proof. Let n > 4 be of arbitrary parity. Again, one gets that
- G(A { H Q) .
HTL 1 <97 K, Indp((n—)l,l)(A) (6 'oP(n—l,l) P(n—l,l) ) R S(ap(n7171)7c))

~ gnt (g,K, Indgf_)l,l)(ﬂ%) <e<’”’<n—1,1>’HP<n—1,1>(')°°>) ® S(aP<n—1,1)y(C)>

G(Ay) (TN SN O 1)

and so [Bor-Wal00], Thm. III.3.3 together with [Fra98], p. 256, reveal that

anl (g,K, Indg((fg_)lin(R) <e<pp(n—1,1)»HP(7L71,1)(-)00>> X S(Elp(n_l,l),(c)>

= Ho(m(nfl,l)a KN Mg,—1,1),sgn(det,—1) ® sgn” ).

=~ (H%(sl,_1(R), SO(n — 1), sgn(det,, 1)) @ H(s (R), SO(1), sgn 1)) 3O =D xOW/S00=1x50()
We may represent the only non-trivial element of the quotient group S(O(n — 1) x O(1))/SO(n —
1) x SO(1) by the pair (diag(id,—2,—1); —1), which obviously acts by multiplication by —1 on
HO(sl,_1(R),SO(n — 1),sgn(det,_1)) and by multiplication by (—1)¢ by its adjoint action on
HO(sl1(R), SO(1),sgn®). Hence,

(H°(sl,—1(R), SO(n — 1),sgn(det,—1)) ® H%(sl;(R), SO(1),sgn™ 1))

~ C if niseven

1 {0} ifnisodd
Flipping factors in the Levi of the parabolic, the same argument applies to Py ,,_1) and so Lem.
3.5 finally implies the desired result. O

S(O(n—1)x0(1))/SO(n—1)x SO(1)

The above results on the cohomology of the quotient A"52 / At

(BY.o(x) easily generalize to smaller

{B} e(x)
degrees:

Lemma 3.8. Under the assumptions of Sect. 3.6,
H(9, K, A} o0/ Al 00) = 10}
forall0 < g<n-2.
Proof. Using [Bor-Wal00], Thm. II1.3.3 and pp. 256-257 in [Fra98] once more, we obtain that

l(wy), n = (n1,n2), is a lower bound for the degrees of cohomology ¢, in which H%(g, K A?Bf o(x )/

A?g}l @(X)) may be non-zero. However, ¢(wy) > n — 1, as we have seen in the proof of Lem. 3.5. O
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4. EISENSTEIN COHOMOLOGY CLASSES FOR SL,(7Z)

4.1. Non-trivial degenerate Eisenstein classes in H" 1(SL,(Z),C). In this section, we will
prove the existence of several non-zero Eisenstein classes in H"~!(SL,(Z)), which cannot be repre-
sented by constant automorphic functions and give a quite explicit description of the automorphic
representatives of these classes per means of concrete (degenerate) Eisenstein series via the mor-
phisms (3.1).

This aligns with the philosophy of Harder to construct non-trivial deRham cohomology classes in
the cohomology of locally symmetric spaces by representing them by Eisenstein differential forms,
i.e., by constructing a section to the natural restriction map to the cohomology of the boundary of
the Borel-Serre compactification of the given locally symmetric space. We refer to [Har87] and to
[Har90] for more details in the case of GL,,.

We recall once more that cp( ) denotes the cuspidal support represented by the Hecke charac-

ter x = \ |z T ® Biex °® | |%z 2 c® | - |_nT_1 of the torus T'(A). Moreover, for even n > 4, we
let Eis™ := ker a” be the kernel of the natural connecting morphism (“Bockstein homomorphism” )
a™ in degree g = n in the long exact sequence of (g, K)-cohomology,

n—1 n—1 a” n
= H' e K Ay o) —H" 0, K A 00/ ATy p0) — H' (8K Ay o00) = -
The next result is our first main theorem.

. _ . . ~1
Theorem 4.1. Let n > 4. If n is odd, then H" (g, K, AiByo(x)) 18 isomorphic to laG(&f)) as

G(Ay)-module. If n is even, then the G(Ay)-module Eis" is isomorphic to the kernel of the natural
map

G(Ay) (ppp Hp, () f) a(n)

D i, (rmtnOr) gy
ﬁE{(TL*LI),(l,n*l)}

induced by o™ and there is a natural short exact sequence

{0} — 180, Y — H" (8, K, A(p) o) — Bis” — {0},

Otherwise said, if n > 4 is even, then the G(Ag)-module H" (g, K, A{py o(y)) contains an iso-

1)

morphic copy of 12(&;) as a submodule, with the quotient given by Fis™.

Proof. Let n > 4. We consider the following part of the natural long exact sequence of G(Ay)-
modules

(4.1)
n—2 n—1 n—l1
S H" 0, KAL) oo /ATy p0) = B0 K Ay o)) = HY 8 KAL) =
n—1 n
—H"" (g, K A{B} olx )/A{B},@(x)) — H"(g, 'A{B} w(x)) -
Recalling Thm. 3.1 and Lem. 3.2, this exact sequence of G(Ay)-modules becomes
n—2 a(n—1) n—1
o HT (g, K ‘A{B} w(x)/‘A{B} w00) 7 1G(A ) > HT e K, A{B} o)) =

n—1 a(n)
—H" (g, K A{B}@ /A{B}@X))_)]_G(Af)%
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Moreover, using Lem. 3.8 and Prop. 3.7, it simplifies furthermore to

{0} = 1805 ) = H" Mo, K, AT ) — {0},

if n > 5 is odd, whereas, if n > 4 is even, it becomes

{0} = 1g ) = H" Mo, K AL ) = P Indp,/ )(eppf P f)ﬁlG(Af)ﬁ....
@6{(71—1,1),(1,71—1)}
As by Prop. 3.4, H" (g, K, A{B} o x)) ~ H" (g, K, A(B}s(x)), the assertion follows. O

The following corollary is now obvious:

Corollary 4.2. Assume n > 4. Then, dim¢ H" 1 (SL,(Z),C) is bounded below by a(n — 1) for n
odd, and by a(n — 1) + dim¢ <(Eis”)SL"(Z)) for n even.

Corollary 4.3. Assume that n > 4.

(i) If n is odd, then the free part of the Z-module H" 1(SL,(Z)) vanishes if n < 11 and is
non-zero, if either n > 43, or n € {15,19, 23,27, 31, 35, 39}.

(i) If n is even, then the subspace of K¢-invariant, i.e., everywhere unramified vectors, in
Eis™ does not vanish, if n € {4,6,8,10, 12,16, 20,24, 28,32,36,40} and the free part of the
Z-module H""1(SL,(Z)) is non-zero for all even n > 4.

Proof. (i): This is an immediate consequence of Thm. 4.1 and Thm. 2.2.

(ii) A direct calculation implies that for n € {4, 6,8, 10, 12, 16, 20, 24, 28, 32, 36,40} one has a(n) < 1.

Since @ne{(n 11),(1,n—1)} Ind (( )) ( <pP"’HP"(')f>) captures precisely two copies of 1g(a,) as quo-

tients, the kernel Eis" of the connecting morphism must contain one copy of 1gs BE Hence,

(Eis™)%r #£ {0} as claimed. Since a(n — 1) > 1 for even n > 26 and for n € {6,10, 14,18, 22},
we get dimc(H" Y(SL,(Z),C)) > 1 for all even n > 4 as desired. O

Remark 4.4. The non-vanishing of H3(SL4(Z)) was also shown by completely different techniques
in [Lee-Szc78]. In fact, their paper completely computes the cohomology of SL4(Z) in all degrees.
See [Lee-Szc78], Thm. 2.

Remark 4.5. Asa(5) = dim¢ ((EisG)SL6(Z)> = 1, combining Thm. 4.1 with Thm. 2.2 reestablishes

the fact that the rank of the free part of the Z-module H°(SLg(Z)) is two, as already shown in
[EVGS13], Thm. 7.3.

Remark 4.6. Moreover, Thm. 4.1 and Thm. 2.2 show that the rank of the free part of the Z-module
H?(SL1p(Z)) is either two or three.

4.2. Non-trivial automorphic representatives. In this section, we will explicitly exhibit, which
automorphic forms represent the classes in the Eisenstein space (Eis")®s. We recall from Thm.
4.1 that this space is non-trivial at least, if n € {4,6,8, 10,12, 16, 20, 24, 28, 32, 36,40}. We use the
notation regarding the Eisenstein series introduced in §2.2.2.

Theorem 4.7. Let n > 4 be even. A non-trivial cohomology class in the Eisenstein space (Eis™)%s
for H"=Y(SL,(Z),C), can be represented by an automorphic form obtained as the linear combination
of the main values of the two degenerate Eisenstein series Ep, (f°,\), constructed from the constant
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function f°, viewed as an element of the space Wp,, associated with the trivial representation

Lo (a)
11,a) of the Levi factor of P,, evaluated at the evaluation point A\ = pp,, where n € {(n —

1,1),(I,n —1)}.
Proof. Let n > 4 be even. Prop. 3.7 shows that

G(Ar) ( ApPaHPa()f) o pgn—1 n—2 n—1
(4.2) « 6)9( ) IndPQ(Af) (e i ) = H" (g, K, A{B}7s0(x)/“4{3}7w(x))
ne{(n—1,1),(1,n—1

where this isomorphism is constructed from the (g, K, G(Ay))-morphisms (3.1) using the main val-
ues of the derivatives of degenerate Eisenstein series. Hence, the non-trivial cohomology classes
in Eis™ can all be represented by linear combinations of the main values of the degenerate Eisen-
stein series Ep, (f, ), associated with the trivial representation 1 Ln(a) Of the Levi factor Ly, of Py,
evaluated at A\ = pp,, where n € {(n — 1,1),(1,n — 1)}. The function f ranges over the space
Wp, 1 Lo(h)® Observe that the main values are required, because there exist functions f, for which
the Eisenstein series in question have a pole of order one at the point of evaluation. The residues
actually span the trivial representation.

According to Thm. 2.2, in order to determine the representatives of non-trivial cohomology classes in
(Eis™)%7, it remains to find the K j-invariant representatives of non-trivial classes in Eis", i.e., from
the representation theoretic point of view, the everywhere unramified vectors. The K j-unramified
component in each of the two summands in (4.2) is the unique quotient of the parabolically in-
duced representation, which is of dimension one. The corresponding unramified Eisenstein series
are obtained by choosing the constant functions f = f° from the space Wp, 1, () in the Eisenstein
series construction. Thus, the K-invariant representatives of cohomology classes in Eis" are linear
combinations of the main values of the two Eisenstein series as in the statement. g

4.3. Intermezzo: On the contribution of the constant automorphic forms. Lem. 3.8,
Prop. 3.7 and Prop. 3.6 allow us to determine non-trivial cohomology classes in H?(SL,,(Z),C),
0 < g < n, which are represented by constant automorphic forms on G(A). This amounts to partly
rewriting results of Borel and Franke in a more automorphic language: We refer to [Bor74], Thm.
7.5, and to [Fra08], p. 61, where Franke gave a description of the kernel of the “Borel map”, or,
more precisely, of the morphism in deRham-cohomology induced by the usual (abstract) inclusion
of SU(n)-invariant differential forms on X, in the space of all SL, (Z)-invariant differential forms
on X, in terms of primitive elements of the exterior algebra Hj, (SU(n),C).

Proposition 4.8. Let n > 2. Then the natural inclusion 1gs) = A(G) induces an embedding of
G(Ay)-modules H(g, K, 1g(s)) = H(g, K, A(G)) for all0 < ¢ <n—1. Ifn >5 is odd, then the
assertion also holds in degree ¢ = n.

Proof. Since HY(g, K, A¢p} »(y)) 18 a direct G(Ay)-summand of HY(g, K, A(G)), the first assertion
follows from Prop. 3.4, Lem. 3.8, (3.4) and Thm. 3.1, whereas for the second one invokes the same
references, but uses Prop. 3.7 instead of Lem. 3.8. O

The case of degree ¢ = n for even n is treated in

Proposition 4.9. Let n > 4 be even. Then, the kernel of the natural homomorphism of G(Ay)-
modules H" (g, K, 1ga)) — H"(g, K, A(GQ)), induced from the natural inclusion 1g(n) — A(G), has
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dimension less than or equal to 2. Equivalently, the image of the G(Ay)-module H" (g, K, 1)) in
H™(g, K, A(GQ)) has dimension greater than or equal to dim¢ H"(g, K,C) — 2.

Proof. Let ¢(x) be the cuspidal support represented by the Hecke character y = |- |nT_1 ®]- |% ®
| |"2° @ ®|-|7" of the torus T(A). Since A(B},o(y) Is a direct (g, K, G(Ay))-summand of
A(G), it is enough to show this for H"(g, K, A{p} o(y)). We consider the respective part of the long
exact sequence in cohomology (3.4), which by Prop. 3.7 and Thm. 3.1 reads as

G(Ay) RN & N O ) G(Ay) (TN AN O F))
T IndP(l,f—l)(Af (6 Hnen e T ) @ IndP(n f1 1(Ag) (e T e T )
- Hn(gaKv 1G’(A)) _>Hn(97 A?Bf@(X)) —

Since the trivial representation 1gs ) of G(Af) appears precisely once as a quotient of the in-

( f)
duced representation Ind, (A

tation Ind, ( 1)1)(Af) ( <’)P(n 1,1)° P("*1’1>()f>) the connecting homomorphism above has at most

two- d1mens1onal image in H"(g, K, 1g(a)) = H"(g, K, C)@lg(Af) Hence, the kernel of the natural

) <e<pp<1’"—1)’HP(L”—I)('M), respectively of the induced represen-

map of G(Ay)-modules H" (g, K, 1g(s)) — H" (g, K A{B} ) has dimension less than or equal to
2, or, equivalently, the image of the G(Af)-module H" (g,K 1ga)) in H"(g, K, A?chp )) has di-
mension greater than or equal to dim¢ H"(g, K, C)—2 . However, by Prop. 3.4, H"(g, K, A{B} o ))

is nothing else than H"(g, K, A(py},4(y)), Whence the corollary follows.

4.4. Constant Eisenstein classes in H"(SL,(Z)). The following is our second main theorem: It
says that the phenomena involving degenerate Eisenstein series, which we encountered in the §4.1
in degree ¢ = n — 1, do not persist in degree ¢ = n. More precisely, we obtain that the summand
H"(g, K, -A{B},so(x)) of Eisenstein cohomology is exhausted by the image of the Borel map, i.e., all
its elements are represented by constant automorphic forms.

Theorem 4.10. Let n > 5. Then, the cohomology space H™ (g, K, A(p},,(y)) 5 isomorphic to the
image of the natural map of G(Ay)-modules H" (g, K, 1g(a)) — H"(g, K, A(G)).

Proof. We look at the following part of the long exact sequence of G(A ¢)-modules
(43) o o HM@ K ALy ) = H (0 K AT ) = BT (0 K A o ATy o) =
n+1
—H" g, K Ay o) =
given by the short exact sequence of (g, K, G(Af))-modules

n—2
{0} = Al5} 00 = AlBreto = AlBLe0o/AlBeto

As {B} o) = = 1g(a), cf. Thm. 3.1, and H"(g, K, A{B}@ X)/‘A{B}<p X)) is trivial, cf. Prop. 3.6, we
get from Prop. 3.4 that

Hn(g’Kv A{B},(p(x)) =~ H" ( A{B} )) = Im[H"(g,K, 1G(A)) - Hn(gaKvA(G))]

— {0}

0

Corollary 4.11. For 5 <n < 11, the cohomology of a congruence subgroup I' of SL,(Q) in degree
q = n 18 given as

H™(T',C) = Im[H" (g, K, 1¢(a)) — H" (g, K, A(G))].



22 NEVEN GRBAC AND HARALD GROBNER

Proof. This is clear from Thm. 4.10 and Thm. 2.2. ]

Remark 4.12. Cor. 4.11, as combined with Prop. 4.8 and Lem. 3.2, reestablishes the fact that the
rank of the free part of the Z-module H°(SLs(Z)) is one, as already shown in [EVGS13], Thm. 7.3.

We recall the number a(q) from §3.3, which (given an integer n > 1) denoted the number of ways
to write a positive integer ¢ as the sum of different integers of the form 4¢ + 1, 1 < ¢ < L"T_lj
Then, we obtain the following corollary:

Corollary 4.13. Let n > 5. Then,

a(n) —2 ifn is even

dime H"(SLy(Z),C) > { a(n) if n is odd.

In particular, the free part of the Z-module H"(SLy,(Z)) is non-zero, in the following cases:
e for odd n, if either n > 25, orn € {5,9,13,17,21};
e for even n, if either n > 50, or n € {22,26,30, 34, 38,42, 46}.

Proof. This is a consequence of Thm. 4.10, our propositions Prop. 4.9 and Prop. 4.8 and Lem.
3.2. ]

5. APPLICATIONS TO DEGENERATE EISENSTEIN CLASSES BELOW THE TEMPERED RANGE

5.1. The non-trivial automorphic representatives of the class in H%(SLg(Z)). In [EVGS13],
Elbaz-Vincent, Gangl and Soulé have calculated the cohomology of SL,(Z) for n =5,6,7. In par-
ticular, they found a non-trivial cohomology class of SLg(Z) in degree ¢ = 8, cf. [EVGS13], Thm.
7.3.(ii), for whose existence, however, there seemed to be no proper conceptual explanation by the
time of [EVGS13] and until very recent: We refer to Brown’s recent preprint [Bro23|, in particular
to its Thm. 1.1 and Table 1, for a discussion of this phenomenon.

We present here a structural reason, arising from the point of view of automorphic forms, for
the existence of this non-trivial class, i.e., we will explain which automorphic forms represent the
one-dimensional space H8(SLg(Z),C).

To this end, we first apply our Thm. 3.1 to the case ¢ = n — 2, i.e., to the second last non-

trivial step in the Franke filtration of Ay ,(y), X = elrs:HB())  Tts cohomology is then computed

as

n—2 n—1 ~ G(A) [ (ppy,Hp, () *

(5-1)  HU8, K, Alpy o0/ AL} o) = (ED )H (0.5 mdg ) (0t ) @ S(ar,0))
n=(ni,nz

which, invoking [Bor-Wal00], Thm. II1.3.3 and [Fra98|, p. 256, together with [Bor-Wal00], 1.1.3.(2)

and 1.5.1.(4), is isomorphic as G(A ¢)-module to

B P (H 6 R.LSOM),se™)

n=(n1i,ng) r+s=qg—nin2
S(O(n1)x0(n2))/SO(n1)xSO(n2)
®H5(5[n2(R),SO(ng),sgn”1)> e v ’

G(Ay) (PPl oy TPy gy ()F)
(5.2) & IndP(nl,n2)(Af) (e (n1,m2) (n1:m2) >
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Put now n = 6 in (5.2). Then, Hi(slg(R), SO(6), A{B}cp /A{B}w )) has five direct summands
as due to (5.1), indexed by the partitions (1,5), (5,1), (2, ) (4,2), (3,3). By equation (3.3), the
partition (3, 3) only contributes to cohomology in degree ¢ > 3 -3 = 9. Similarly, by (3.3) together
with Lem. 3.2, the partitions (1,5) and (5,1) may only contribute to degrees ¢ = 5,10, 14. While
for the same reason, the partitions (2,4), (4,2) may only contribute to degrees ¢ = 8,10,13,15. It
therefore follows that

H8(5[6( ), SO(6), ‘A{B} (%) /A?B},w(x)) =

5(0(2)x0(4))/S0(2)x SO(4
(Ho(ﬁlz(R),SO(Q),C) ®H0(5[4(R),SO(4),(C)) x (2)xS0(4)

® Ind>Fets) <e<”P<2,4> ’HP<2,4>(')f>)

Pa4)(Ay)

S(0(4)x0(2))/SO(4)xSO(2
D (HO(1(R). SO().C) © HO(sla(®), SO@).C)) T

& TSt (P run O

The only non-trivial element of S(O(2) x O(4))/SO(2) x SO(4) (resp. S(O(4) x O(2))/SO(4) x
SO(2)) operates trivially on the one-dimensional spaces H(sl3(R), SO(2), C)@H(sl4(R), SO(4), C)
(resp. H(sl4(R), SO(4),C) ® H'(sl3(R), SO(2),C)), hence

H*(slo(R), SO(6), A{B} #( x)/A?B},so(x )=In dsiﬁjﬁg)f) (6<pp(274>7HP<274)(.m)

SLe(Ay) PPy oy P o ()
Pra,2y(Ay) (6 o ) )

If we plug this (and the knowledge on H(slg(R), SO(6), A{B} o)) = H(sl6(R), SO(6), 1gr4(a))
which is given by Lem. 3.2) into the long exact sequence in cohomology, which comes from the
short exact sequence of (slg(R), SO(6), SLe(Af))-modules

@ Ind

{0} = Ay o0 = Alpren = Alreco/ Ao = 10
i.e., into the exact sequence of SLg(A f)-modules

- = H(sl6(R), SO(6), A7y o)) = H®(s16(R), SO(6), Al py o) =

— H(sl5(R), SO(6), Af gy o) /AlBy o) = H' (816(R), SO(6), A7y oy =

we obtain an exact sequence of SLg(A )-modules

{0} — H®(sls(R), 30(6)7A?B},¢(x>) -

SLe(A H ) SLe(A H :
= Indpt) (e a0 O0) @ il (e Trea ) S ag g o

Recalling that both IndSL6(‘?g)f) <e<pp<2,4) ’HP(2,4)(')f>) and Indp4 ()(A)) <e<pp(4,2) ’HP(4,2>(')f>) contain

1sr4(a;) With multiplicity one as a quotient, it follows that H8(5[6(R), SO(6),A‘{13} o(y)) contains
(at least) one copy of Lsre(a,)-
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In order to determine automorphic forms that represent a non-trivial class in H8(SLg(Z),C), it
hence suffices to show by Thm. 2.2 that

HP(sl5(R), SO(6), A gy o)) = H (s16(R), SO(6), A(5} o(x))-

6— k+1 :
But this is clear, once we realize that all the other quotients A% { B} o x)/ A (B.o(x k > 3, will only

have non-trivial (slg(R), SO(6))-cohomology in degrees ¢ > 9 by inserting into (3 3). Therefore, in
summary, as Hecke-modules

H®(SL¢(Z),C) = H¥(sls(R), SO(6), Al gy o))"

To conclude, the arguments presented in the proof of Thm. 4.7 apply in the current situation and
show that a non-trivial class in H®(SLg(Z), C) is necessarily represented by a linear combination
of main values of degenerate Eisenstein series Ep, (f°, A), constructed from the constant function
J°, viewed as an element of the space Wp, 1, @) ‘associated with the trivial representation 1 Ln(A)

of the Levi factor of P,, evaluated at A\ = pp,, where n € {(4,2),(2,4)}.

Remark 5.1. Shortly after our “automorphic explanation” of the existence of the non-trivial
class in H®(SLg(Z),C) was communicated to the public, Ash-Miller-Patzt could also describe it,
following a completely different approach, as a certain product of classes coming from GLy(Z)
and GL4(7Z), by putting a Hopf algebra structure on the homology of G La,(Z) with coefficients in
the Steinberg module, tensored with the determinant. We refer to [AMP24] and also to Brown-
Hu-Panzer, [BHP24], table 1, where the non-trivial class in H®(SLg(Z),C) is written explicitly as
Pfaffians.

5.2. Two non-trivial classes in H'°(SLg(Z)) and a question of A. Ash. As communicated
to the second named author by Brown, A. Ash has asked for a description of the cohomology of
SLg(Z). Among others, degree ¢ = 15 was of particular interest. Here we show by an automorphic
argument that H'°(SLg(Z),C) is two-dimensional, and we describe, which automorphic forms of
SLg(A) represent the non-trivial classes in H'®(SLg(Z),C).

We put n = 8 in (5.2). By the analogous arguments as presented in §5.1 above, i.e., by recalling
Lem. 3.2 and using the long exact sequence in cohomology, that stems from the Franke filtration,
we obtain an isomorphism of SLg(A f)-modules

15 6 ~ SLs(Ay) {p Hp oy o () SLs(Ay) (pPys 5y HP 5 () f)
H7(6ls(R), SO®), Aty o) = IndP(:jm(gf) (e Teoee )@Indajm(f&f) (6 Heares )

Once more we use Lem. 3.2 and (3.3) and deduce that

HY(sl3(R), SO(8), Al py o)) = H' (s13(R), SO(8), Arpy,p(x))-

Hence, invoking Thm. 2.2 and the fact that the induced representation IndSLg(‘X)f) (e<p Pia,5) HP(a,5) ()1 >)

SLS(A )

o (Ay) <e<pp(5,3)’HP<5,3)() >) contain Lgy,(a,) with multiplicity one as a quotient, it

as well as Ind

follows that
HY(SLg(Z),C) = H(sI3(R), SO(8), A{B} o) = C?

as modules under the Hecke algebra attached to K; = SLg( ). The arguments presented in the
proof of Thm. 4.7 apply in the current situation and show that the cohomology classes under consid-
eration are represented by the main values of degenerate Eisenstein series Ep, (f°, ), constructed
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from the constant function f°, viewed as an element of the space Wp, associated with the

1r,(a)

trivial representation 17, (4) of the Levi factor of P, evaluated at A = pp,, where n € {(5,3), (3,5)}.

5.3. A final remark on H™ ~1(SLy,,(Z),C). Let now n = 2m be an arbitrary positive even
number. It is well-known (cf. [Spe83b]) that every cohomological irreducible cuspidal automorphic
representation of SLgy,(A) is tempered at infinity (as it is obtained by restriction from a cuspidal
automorphic — and hence globally generic, cf. [Sha74] — representation of G Loy, (A)), and therefore,
by [Bor-Wal00], Prop. 1.5.3 the lowest degree in which it may have non-zero cohomology is given
by ¢ = m?.

Our Thm. 4.7 (for n = 4) together with our considerations of §5.1 and §5.2 above, may there-
fore be viewed as a first description of the non-constant automorphic functions, which represent a
non-trivial cohomology class of SLa,,(Z) “right below” the cuspidal range for m = 2,3, 4.

It is a very recent result of Ash-Miller-Patzt (see Thm. B in [AMP24] and apply Borel-Serre dual-
ity) and also of Brown-Chan-Galatius-Payne’s (see Cor. 1.10 in [BCGP24]) that the phenomenon
of non-vanishing of H™ (S Ly (Z),C) persists for all m > 5. It would hence be worthwhile to
give a structural description of the automorphic representatives for these classes as well.

However, in higher rank, the problem gets more and more complicated. The possible contribu-
tions to cohomology in degree m? — 1 of the quotients of the Franke filtration associated with
parabolic subgroups of lower rank cannot be excluded by a simple argument based on the length
of the Kostant representative. In the cases of m = 2,3 there were no such contributions, and in
the case of m = 4, the only possible contributions arise from the associate class of the parabolic
subgroup F(y,1 ), but it cannot contribute to degree ¢ = m? — 1 = 15 by the Poincaré polynomial,
cf. Lem. 3.2. As m grows, the rank of parabolic subgroups associated with the quotients of the
Franke filtration that may contribute to the cohomology in the considered degree can be bounded,
but the bound is slightly larger than m/2, which gives quite a lot of possibilities, and Lem. 3.2
cannot exclude all of them. Therefore, although the problem is a natural generalization of our
results, it seems that it is still out of reach.
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