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Abstract

Eisenstein cohomology is the non‐cuspidal part of automorphic cohomology of a

reductive group (over a number field). It decomposes into a direct sum arising from

the decomposition of the space of automorphic forms along the cuspidal support.
The non‐vanishing of the summands, and their internal structure, is subject to a

subtle combination of geometric (cohomological) and arithmetic (in terms of auto‐

morphic L‐functions) conditions. In this expository paper we present necessary non‐

vanishing conditions for certain summands in (the square‐integrable subspace of)
Eisenstein cohomology, and their consequences. This is a joint work with Joachim

Schwermer.

アイゼンシュタインコホモロジーとは(数体上の) 簡約群の保型コホモロジーの非カ
スプ的成分である.保型形式の空間はカスプ台に関する直和に分解されるので,アイ
ゼンシュタインコホモロジーもカスプ台に関する直和に分解する.それら直和成分が
0 になるかどうか,そしてその内部構造には,幾何 (コホモロジー) 的条件と (保型 \mathrm{L} 関

数に関する) 数論的条件が関係している.この概説論文では,アイゼンシュタインコホ
モロジーの (平方可積分保型形式からの部分空間の) 直和成分が 0 にならないための

必要条件を与え,その応用を述べる.この研究はヨアヒム シュベルマ 一 氏との共同

研究である.

1 Introduction

The cohomology of an arithmetic congruence subgroup  $\Gamma$ of a reductive connected

linear algebraic group  G ) defined over a totally real number field, is closely related to

automorphic forms with respect \mathrm{t}\dot{\mathrm{o}} $\Gamma$ . This relationship is best understood in the adèlic

setting. It is captured in the object called the automorphic cohomology of  G . The

automorphic cohomology of G is defined as the relative Lie algebra cohomology of the

space of all automorphic forms on the group G(\mathrm{A}) of adèlic points of G.

*This work has been supported in part Uy Croatian Science Foundation under the project 9364 and

by University of Rijeka research grant 13.14.1.2.02.

数理解析研究所講究録
第2036巻 2017年 161-172

161



The natural decomposition of the space of automorphic forms along their cuspidal
support gives rise to the corresponding decomposition in automorphic cohomology. The

summands corresponding to cuspidal automorphic forms form the cuspidal cohomology.
The natural complement of the cuspidal cohomology is called the Eisenstein cohomology.
The summands in the Eisenstein cohomology correspond to the spaces of automorphic
forms supported in the associate class of cuspidal automorphic representations of the

Levi factors of an associate class of proper parabolic subgroups. These summands in

Eisenstein cohomology, in particular, their non‐vanishing, are the main object of concern

in this paper.

The square‐integrable cohomology is the subspace in cohomology represented by square‐

integrable automorphic forms. It is an important subspace in itself, but also serves as a

starting point in the study of the internal structure of cohomology. The square‐integrable
Eisenstein cohomology is also called the residual Eisenstein cohomology, although the

residues of Eisenstein series are not always square‐integrable automorphic forms. In the

decomposition along the cuspidal support, we may study the individual summands of the

square‐integrable cohomology.
Given a cuspidal automorphic representation  $\pi$ of the Levi factor of a standard proper

parabolic subgroup  P of G ,
there is a possibly trivial summand in Eisenstein cohomol‐

ogy supported in the associate class of  $\pi$ . There are certain necessary conditions on  $\pi$,

and appropriate automorphic  L\leftrightarrow‐functions associated to  $\pi$
, for non‐vanishing of such a

summand and its subspace in the square‐integrable cohomology. These conditions are

made explicit here for the case of the split symplectic group  G=Sp_{n} , defined over \mathbb{Q},
and the summand in Eisenstein cohomology supported in the associate class of a cuspidal
automorphic representation of the Levi factor of the Siegel parabolic subgroup.

In this expository paper we mainly present the results obtained in a joint work with

J. Schwermer [10]. The example of G = Sp_{n} and P the Siegel parabolic subgroup is

borrowed from that paper. There is a large body of our joint work [9], [12], [11], and

the very recent preprint [13], which complements the results presented here, but is not

covered at all. In another paper [8], we study the case of the split symplectic group of

rank two over a totally real number field.

The paper is organized as follows. Sect. 2 provides the definition and classical moti‐

vation for the study of automorphic cohomology. In Sect. 3 the decomposition along the

cuspidal support of the space of automorphic forms, and the corresponding decomposition
in cohomology, as well as the squaxe‐integrable cohomology, are explained. The necessary

non‐vanishing conditions for the summands in the decomposition along the cuspidal sup‐

port are presented in Sect. 4. The application to the case of the split symplectic group is

given in Sect. 5.

* * *

This paper follows the talk given by the author at the workshop Automorphic Forms,
Automorphic L‐functions and Related Topics, held in February 2016 at the Research

Institute for Mathematical Sciences (RIMS), Kyoto, Japan. We express our gratitude to

Shunsuke Yamana for his kind invitation to Kyoto at the time of the workshop. We are

very grateful to Shunsuke Yamana and Atsushi Ichino for their hospitality and making
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the visit to Kyoto such a memorable experience. We would like to thank the organizers of

the workshop, Shuichi Hayashida and Shoyu Nagaoka, for the opportunity to give a talk.

2 Automorphic cohomology
We begin with introducing the main objects considered in the paper, in particular,

automorphic and Eisenstein cohomology, and relate them to the cohomology of arithmetic

groups. This serves as a motivation for study.ng the Eisenstein cohomology of a reductive

group.

2.1 Classical setting

Let G be a connected semisimple linear algebraic group defined over the field \mathbb{Q} of

rational numbers. One could work with a reductive group over any totally real number

field, but for simplicity we take G to be semisimple over \mathbb{Q}.
Let G(\mathbb{R}) be the Lie group of real points of G , and K_{\mathbb{R}} a fixed maximal compact

subgroup of G(\mathbb{R}) . Let X=G(\mathbb{R})/K_{\mathbb{R}} be the corresponding symmetric space. Let  $\Gamma$ be

a torsion‐free arithmetic subgroup of  G , viewed as a discrete subgroup of the Lie group

G(\mathbb{R}) . We form the locally symmetric space  $\Gamma$\backslash X.
Let E be a finite‐dimensional algebraic representation of G in a complex vector space.

We denote by \mathrm{g} the real Lie algebra of G(\mathbb{R}) ) and by \mathcal{Z} the center of the universal

enveloping algebra of the complexification of \mathrm{S}.
We let C^{\infty}( $\Gamma$\backslash G(\mathbb{R})) the space of smooth left  $\Gamma$-\dot{\mathrm{m}}variant functions on G(\mathbb{R}) , considered

as a representation of G(\mathbb{R}) via the action by right translations.

Then we have the following sequence of isomorphisms, where the last isomorphism
requires additional assumption that  $\Gamma$ is a congruence subgroup,

 H^{*}( $\Gamma$, E)\cong H^{*}( $\Gamma$\backslash X, E)\cong H^{*}(\mathfrak{g}, K_{\mathbb{R}};C^{\infty}( $\Gamma$\backslash G(\mathbb{R}))\otimes E)
\cong H^{*}(\mathfrak{g}, K_{\mathbb{R}};C_{\mathrm{J}\mathrm{m}\mathrm{g}}^{\infty}( $\Gamma$\backslash G(\mathbb{R}))\otimes E)
\cong H^{*}(\mathfrak{g}, K_{\mathbb{R}};A( $\Gamma$\backslash G(\mathbb{R}))\otimes E) .

Here H^{*}( $\Gamma$, E) is the Eilenberg‐McLane cohomology of the arithmetic group  $\Gamma$ with re‐

spect to  E, H^{*}( $\Gamma$\backslash X, E) is the de Rham cohomology of the locally symmetric space  $\Gamma$\backslash X
with respect to the local system given by E

, and H^{*}(\mathfrak{g}, K_{\mathrm{R}};V) is the relative Lie algebra
cohomology of \mathrm{a}(\mathfrak{g}, K_{\mathbb{R}})‐module V . For all these notions see [4]. The space C_{ $\omega$ \mathrm{n}\mathrm{g}}^{\infty}( $\Gamma$\backslash G(\mathbb{R}))
is the subspace of C^{\infty}( $\Gamma$\backslash G(\mathbb{R})) consisting of functions with uniform moderate growth,
and A( $\Gamma$\backslash G(\mathbb{R})) the space of automorphic forms on G(\mathbb{R}) with respect to  $\Gamma$ (see [3]). The

first two isomorphisms can be found in [4], the third one is proved in [1], and the last one

in [5] (in the adèlic setting, hence the assumption that  $\Gamma$ is a congruence subgroup).
This isomorphism provides a link between the geometry of a locally symmetric space

and the arithmetic of automorphic forms. In that way, cohomological arguments may

produce a flow of information in both directions, and moreover, in explicit calculations of

cohomology of arithmetic groups both points of view should be combined.

163



2.2 Adèlic setting

For a prime  p ,
finite or not, let \mathbb{Q}_{p} be the completion of \mathbb{Q} at p . For  p=\infty , we have

\mathbb{Q}_{\infty}=\mathbb{R} . Let A be the ring of adèles of \mathbb{Q} , and \mathrm{A}_{f} the subring of finite adèles. Let G(\mathrm{A})
be the group of adèlic points of G.

We fix, once for all, a maximal compact subgroup K of G(\mathrm{A}) of the form K =

K_{\mathrm{R}}\displaystyle \times\prod_{p<\infty}K_{p} ) where K_{p} is a fixed maximal compact subgroup of G(\mathbb{Q}_{p}) for  p<\infty , and

 K_{\mathbb{R}} is as in Sect. 2.1. We may assume that K_{p} is hyperspecial for almost all p<\infty.
Given an open compact subgroup C of G(\mathrm{A}_{f}) , consider the space

X_{C}=G(\mathbb{Q})\backslash G(\mathrm{A})/K_{\mathbb{R}}C.

It is a finite disjoint union of locally symmetric spaces, and its cohomology H^{*}(X_{C}, E)
with respect to E can be computed as de Rham cohomology. These cohomology spaces

form a directed system with respect to inclusion of open compact subgroups, because

for C' \subset  C open compact subgroups of G(\mathrm{A}_{f}) , we have a finite covering X_{C'} \rightarrow  X_{C},
which gives rise to the inclusion H^{*}(X_{C}, E)\rightarrow H^{*}(X_{C'}, E) . The group G(\mathrm{A}_{f}) acts on the

directed system by conjugation. Then, the direct limit

H^{*}(G, E)=\displaystyle \frac{1\mathrm{i}_{\mathfrak{R}}}{c'}H^{*}(X_{C}, E)
is called the automorphic cohomology of G with respect to E . It comes with a G(\mathrm{A}_{f})
action, and the original spaces H^{*}(X_{C}, E) may be recovered as C‐invariants.

The name automorphic cohomology resembles the fact that, for the same reasons as

in the classical setting of Sect. 2.1, we have the following isomorphism

H^{*}(G, E)\cong H^{*}(\mathfrak{g}, K_{\mathbb{R}};\mathcal{A}\otimes E) ,

where \mathcal{A}=A(G(\mathbb{Q})\backslash G(\mathrm{A})) is the space of all automorphic forms on G(\mathrm{A}) as in [3].
According to Wigner�s lemma [4, Sect. I.4], only a subspace of A consisting of au‐

tomorphic forms matching the infinitesimal character of E may possibly contribute to

H^{*}(G, E) . More precisely, let J be the annihilator in \mathcal{Z} of the conjugate dual of E . It is

an ideal of finite codimension in \mathcal{Z} . Then,

H^{*}(G, E)\cong H^{*}(\mathrm{g}, K_{\mathbb{R}};\mathcal{A}_{J}\otimes E) ,

where \mathcal{A}_{J} is the subspace of automorphic forms annihilated by a power of J.

3 Decomposition along the cuspidal support

As a first step in the study of automorphic cohomology H^{*}(G, E) , one should decom‐

pose this space according to the decomposition of the space of automorphic forms along
the cuspidal support.

3.1 Decomposition of the space of automorphic forms

We fix, once for all, a minimal parabolic \mathbb{Q}‐subgroup P_{0} of G , with the Levi decompo‐
sition P_{0}=M_{0}N_{0} , which is in good position with respect to the fixed maximal compact
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subgroup K of G(\mathrm{A}) , as in [17, Sect. I.1.4]. Let P = M_{P}N_{P} be a standard parabohc
\mathbb{Q}‐subgroup of G.

Let \{P\} be the associate� class of parabolic \mathbb{Q}‐subgroups of G represented by P.

Denote by C the set of all associate classes of parabolic \mathbb{Q}‐subgroups of G.

Let  $\pi$ Ue \mathrm{a} (not necessarily unitary) cuspidal automorphic representation of the Levi

factor M_{P}(\mathrm{A}) . We may write  $\pi$\cong$\pi$^{u}\otimes $\lambda$ , where  $\pi$^{u} is conveniently normalized2 unitary
cuspidal automorphic representation of M_{P}(\mathrm{A}) , and  $\lambda$ is a character3 of  M_{P}(\mathrm{A}) given by
an element  $\lambda$\in\check{a}_{P}=X^{*}(P)\otimes_{\mathrm{Z}}\mathbb{R} , with X^{*}(P) the \mathbb{Z}-‐module of \mathbb{Q}‐rational characters of

P.

Let $\phi$_{ $\pi$}=($\phi$_{ $\pi$,Q})_{Q\in\{P\}} be the associate class of cuspidal automorphic representations
of Levi factors of parabohc subgroups in \{P\} ) represented by  $\pi$ . Then  $\phi$_{ $\pi$,Q} is a finite set,
which consists of ffi conjugates of  $\pi$ by elements of the Weyl group which conjugate  M_{Q}
to M_{P} (cf. [16, Sect. 1.3]). By replacing  $\pi$ (and possibly  P) by an associate representative,
we may assume that  $\lambda$ is in the closure of the positive Weyl chamber in dp determined

by  P.

In order to stay in A_{J} , there is a certain compatibility condition on $\phi$_{ $\pi$} (cf. [16,
Sect. 1.3]). We denote by $\Phi$_{J,\{P\}} the family of associate classes $\phi$_{ $\pi$} which are compatible
with J.

Then, there is a direct sum decomposition, referred to as the decomposition along the

cuspidal support,

\displaystyle \mathcal{A}_{J}\cong\bigoplus_{\{P\}\in C}A_{J,\{\mathrm{P}\}}
\cong \oplus \oplus A_{J,\{P\},$\phi$_{ $\pi$}},

\{P\}\in C$\phi$_{ $\pi$}\in$\Phi$_{J,\{P\}}

where the spaces of automorphic forms A_{J,\{P\}} , resp. A_{J,\{P\},$\phi$_{ $\pi$}} , supported in \{P\} , resp. in

$\phi$_{ $\pi$} , appearing on the right‐hand side, are introduced below.

3.2 Definition of the summands

We define the summands in the decomposition of A_{J} along the cuspidal support using
Eisenstein series.�

For \mathrm{v}\in\check{ $\alpha$}_{P,\mathbb{C}}=\check{ $\alpha$}_{P}\otimes \mathbb{C} and $\pi$^{u} as in Sect. 3.1, consider the induced representation

\mathrm{I}\mathrm{n}\mathrm{d}_{P(\mathrm{A})}^{G(\mathrm{A})}($\pi$^{u}\otimes $\nu$) ,

where, as above, we abuse the notation by writing \mathrm{v} for the character of M_{P}(\mathrm{A}) corre‐

sponding to  $\nu$\in\check{a}_{P,\mathbb{C}} . Induction is normalized.

'Recall that two parabolic \mathbb{Q}‐subgroups P and Q of G are associate if their Levi factors M_{P} and M_{Q}
are G(\mathrm{Q})‐conjugate. Observe that it is sufficient to consider conjugation by elements of the Weyl group.

�The normalization is such that the poles of Eisenstein series associated to $\pi$^{u} are real. This can

always be achieved (cf. [14, Sect. 4.1] or the RIMS Kôkyûroku paper [7, Sect. 2.3]).
3We are deliberately imprecise here to avoid technicalities. See [21] or [17] for a precise statement.

4This is the definition as in [6, Sect. 1.3]. Another definition of these spaces is given in [17, Sect. Ill.2.6]
(see also [6, Sect. 1.2]), but these are equivalent according to [6, Thm. 1.4].
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Taking f_{ $\nu$} , an appropriate section of these induced representations, we may define

the Eisenstein series� E(f_{ $\nu$},g) associated to $\pi$^{u} . The defining series is absolutely and

locally uniformly convergent in a cone deep enough in the positive Weyl chamber in \check{a}_{P,\mathrm{C}}
determined by P . It may be analytically continued to a meromorphic function on all of

\check{a}_{P,\mathrm{C}} . The singularities in the closure of the positive Weyl chamber are along a locally
finite set of singular hyperplanes. See [17, Sect. IV.1] for these facts.

Recall that we may assume  $\pi$\cong$\pi$^{u}\otimes $\lambda$ , with  $\lambda$ real and in the closure of the positive
Weyl chamber of \check{a}_{P,\mathbb{C}} . Uecause of the local finiteness of singular hyperplanes, there is a

polynomial F(\mathrm{v}) such that F( $\nu$)E(f_{ $\nu$ 9}) is holomorphic around  $\nu$= $\lambda$.

Now the space A_{J,\{P\},$\phi$_{ $\pi$}} , of automorphic forms supported in $\phi$_{ $\pi$} , is defined as the span

of all coefficients in the Taylor expansion of F( $\nu$)E(f_{ $\nu$},g) around  $\nu$= $\lambda$ . This is clearly
independent of the choice of a polynomial  F(\mathrm{v}) . The space \mathcal{A}_{J,\{P\}} is then simply defined

as the direct sum of \mathcal{A}_{J,\{P\},$\phi$_{ $\pi$}} over all $\phi$_{ $\pi$}\in$\Phi$_{J,\{P\}}.

3.3 Decomposition in cohomology
The direct sum decomposition of A_{J} along the cuspidal support, gives rise to the

corresponding decomposition in cohomology

H^{*}(G, E)\displaystyle \cong\bigoplus_{\{P\}\in \mathcal{C}}H^{*}(\mathrm{g}, K_{\mathbb{R}_{\rangle}}\cdot A_{J,\{P\}}\otimes E)
\cong \oplus \oplus H^{*}(\mathrm{g}, K_{\mathbb{R}};A_{J,\{P\},$\phi$_{ $\pi$}}\otimes E) .

\{P\}\in \mathcal{C}$\phi$_{ $\pi$}\in$\Phi$_{J.\{P\}}

Since the summand A_{J,\{G\}} , indexed by the full group G , consists precisely of all cuspidal
automorphic forms compatible with \mathcal{J} , we define the cvspidal cohomology of G with

respect to E as

H_{\mathrm{c}\mathrm{u}s\mathrm{p}}^{*}(G, E)=H^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{G\}}\otimes E)\cong \oplus H^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{G\},$\phi$_{ $\pi$}}\otimes E) .
$\phi$_{ $\pi$}\in$\Phi$_{J,\{G\}}

The natural complement of cuspidal cohomology, indexed by all \{P\}\neq\{G\} ,
forms the

Eisenstein cohomology

H_{\mathrm{E}\mathrm{i}\mathrm{s}}^{*}(G, E)=\displaystyle \bigoplus_{\{P\}\neq\{G\}}H^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{P\}}\otimes E\rangle\cong\bigoplus_{\{P\}\neq\{G\}}\bigoplus_{$\phi$_{ $\pi$}\in$\Phi$_{J,\{P\}}}H^{*}(\mathrm{g}, K_{\mathbb{R}};\mathcal{A}_{J,\{P\},$\phi$_{ $\pi$}}\otimes E)
.

Our main goal is to understand the individual summands

H^{*}(\mathfrak{g}, K_{\mathbb{R}};\mathcal{A}_{J,\{P\},$\phi$_{ $\pi$}}\otimes E) , \{P\}\neq\{G\}, (*)

in the decomposition of the Eisenstein cohomology. In particular, we would like to find

some kind of non‐vanishing criterion, and, in the case of non‐vanishing, investigate the

internal structure of these summands.

5We are again skipping the definition. See [21] or [17].
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3.4 Square‐integrable cohomology

The first step in understanding the internal structure of the summand (*) in the

decomposition of the Eisenstein cohomology is to understand its square‐integrable part.
Let L_{J,\{P\},$\phi$_{ $\pi$}} be the (possibly trivial) subspace of \mathcal{A}_{J,\{P\},$\phi$_{ $\pi$}} ,

which consists of square‐

integrable automorphic forms with cuspidal support in $\phi$_{ $\pi$} . By the Langlands spectral
theory, roughly speaking, \mathcal{L}_{J,\{P\},$\phi$_{ $\pi$}} is spanned by the square‐integraule iterated residues

at  $\nu$= $\lambda$ of the Eisenstein series  E(f_{ $\nu$},g) associated to $\pi$^{u}.

The inclusion \mathcal{L}_{J,\{P\},$\phi$_{ $\pi$}}\rightarrow \mathcal{A}_{J,\{P\},$\phi$_{ $\pi$}} gives rise to a map in cohomology

H^{*}(\mathfrak{g}, K_{\mathbb{R}};\mathcal{L}_{J,\{P\},$\phi$_{ $\pi$}}\otimes E)\rightarrow H^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{P\},$\phi$_{ $\pi$}}\otimes E) ,

which may not be injective any more. The image of this map is called the square‐integrable
cohomology with cuspidal support in $\phi$_{ $\pi$} , or sometimes the residual Eisenstein cohomology,
although the residues of Eisenstein series are not always square‐integraule. It is denoted

by
H_{(\mathrm{s}\mathrm{q})}^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{P\},$\phi$_{ $\pi$}}\otimes E) , (*_{\mathrm{s}\mathrm{q}})

and may be thought of as a summand in the full square‐integrable cohomology H_{(\mathrm{s}\mathrm{q})}^{*}(G, E) ,
which is the image of the map induced in cohomology by the inclusion \mathcal{L}_{J}\hookrightarrow A_{J} of the

space \mathcal{L}_{J} of all square integrable automorphic forms compatible with J.

4 Necessary conditions for non‐vanishing

The study of the summand (*) , for a given cuspidal support $\phi$_{ $\pi$} , represented by a

cuspidal automorphic representation  $\pi$\cong$\pi$^{u}\otimes $\lambda$ of the Levi factor  M_{P}(\mathrm{A}) , is closely related

to the structure of the space A_{J,\{P\},$\phi$_{ $\pi$}} . The latter is determined by the analytic properties
of the Eisenstein series E(f_{ $\nu$},g) associated to $\pi$^{u} at  $\nu$ =  $\lambda$ , and the Eisenstein series

provide a link to the representation theoretic approach via the induced representation

\mathrm{I}\mathrm{n}\mathrm{d}_{P(\mathrm{A})}^{G(\mathrm{A})}($\pi$^{u}\otimes $\lambda$) . We are very vague at this point, but some sort of Frobenius reciprocity,
combined with a result of Kostant about the Lie algebra cohomology of the unipotent
radical [15, Th. 5.13], reduces the study of necessary conditions for non‐vanishing of the

summand (*) to the non‐vanishing of cuspidal cohomology for the Levi factor M_{P} with

respect to certain coefficient systems. The details are explained in [16) Sect. 3].

4.1 Geometric conditions

Before stating the necessary conditions for non‐vanishing of the summand (*) ,
we need

more notation. Let W , resp. W_{P} , be the absolute Weyl group of G , resp. M_{P} . The set of

minimal coset representatives for the right cosets in W_{P}\backslash W , sometimes called the Kostant

representatives, is denoted by W^{P}.
Let \check{a}_{0}=X^{*}(P_{0})\otimes_{\mathrm{Z}}\mathbb{R} be the analogue of \check{a}_{P} for the minimal parabolic subgroup P_{0}.

Then, \check{a}_{P} may be viewed as a subspace of \check{\mathfrak{a}}_{\mathrm{O}} , and restriction of characters gives rise to a

natural complement
\check{a}_{0}=\check{a}_{P}\oplus\check{a}_{0}^{P}.

Let  $\Lambda$ be the highest weight of  E
, viewed as an element of \check{a}_{0} , and let  $\rho$ be the half‐sum

of positive absolute roots of  G.
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Then, the summand (*) vanishes, except possibly if the following assertions are all

simultaneously satisfied, with the same w\in W^{P},

Gl.  $\lambda$=-w( $\Lambda$+ $\rho$)|_{\check{a}_{P}},
G2. the infinitesimal character of the archimedean component $\pi$_{\infty}^{u} of $\pi$^{u} is -w( $\Lambda$+ $\rho$)|_{\check{a}_{0}^{P}},
G3. -v\mathrm{r}_{\mathrm{o}\mathrm{n}\mathrm{g},P}($\mu$_{m}|_{\overline{\mathfrak{g}}_{0}^{P}})=$\mu$_{w}|_{\overline{ $\alpha$}_{0}^{P}} , where  $\mu$_{w}=w( $\Lambda$+ $\rho$)- $\rho$ and  u $\Lambda$ \mathrm{o}\mathrm{n}\mathrm{g},P is the longest element

in W_{P},

G4. the archimedean component $\pi$_{\infty}^{\prime u} of $\pi$^{u} is cohomological (with respect to some coef‐

ficient system),

where the vertical line stands for projections with respect to the above decomposition
of \check{u}_{\mathrm{O}} . The first two assertions, obtained in [19], follow from the compatibility with \mathcal{J}.
The third assertion arises from the square‐integrauility on the level of Levi factors, as

in [2]. The last assertion is obvious. We refer to these four assertions as the geometric
conditions, because they are related to cohomological considerations.

4.2 Arithmetic conditions

A natural question to ask is when is the summand (*_{\mathrm{s}\mathrm{q}}) non‐trivial. Besides the

geometric conditions of Sect. 4.1, there is an obvious arithmetic necessary condition for

non‐vanishing of the summand (*_{\mathrm{s}\mathrm{q}}) . It says that

A. \mathcal{L}_{J,\{P\},$\phi$_{ $\pi$}}\neq 0,

or in other words, the Eisenstein series E(f_{ $\nu$,9}) associated to $\pi$^{ $\tau$ 4} has a non‐trivial square‐

integrable residue at  $\nu$=  $\lambda$ . This condition cannot be stated explicitly in general, and

is related to automorphic L‐‐functions appearing in the constant term of the Eisenstein

series. In some examples, we make it explicit in the theorems below.

5 Application for the case of the symplectic group

As an example of the application of the necessary conditions presented in Sect. 4, we

consider the case of the split symplectic group  G=Sp_{n} , of rank n , defined over \mathbb{Q} , and

the cuspidal support in the Siegel maximal proper parabolic \mathbb{Q}‐subgroup. This is one of

the cases studied in [10].
More precisely, let G=Sp_{n} be the split symplectic group defined over \mathbb{Q} , preserving

the symplectic form on a 2n_{r}‐dimensional vector space over \mathbb{Q} given, in some \mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{s}_{\rangle} by the

matrix

\left(\begin{array}{ll}
0 & J_{n}\\
-J_{n} & 0
\end{array}\right),
where

J_{n}= \left(\begin{array}{lll}
 &  & 1\\
 & \cdot & \\
1 &  & 
\end{array}\right) ,
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with zeros outside the secondary diagonal. In this matrix realization of the split symplectic
group Sp_{n} , we may choose for the Borel Gsubgroup P_{0} the group of all upper triangular
matrices in Sp_{n} . The Levi factor M_{0} of P_{0} is a maximal \mathbb{Q}‐split torus of Sp_{n} , which

consists of all diagonal matrices in Sp_{n} , that is,

M_{0}(\mathbb{Q})= { \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(t_{1}, \ldots

,  t_{n},t_{n}^{-1}, \ldots

,  t_{1}^{-1}) : t\mathrm{i} ) \cdots ,  t_{n}\in \mathbb{Q}^{\mathrm{x}} }.

Let e_{i} , for i=1_{\text{）}}\ldots, n , denote the projection of M_{0} to the ith coordinate,

e_{i} (diag(t_{1}, . . .

, t_{n},t_{n}^{-1}, \ldots, t_{1}^{-1}) ) =t_{i}.

We have e_{i} \in  X^{*}(P_{0}) is a \mathbb{Q}‐rational character of P_{0} . We choose these projections
\{e_{1}, \cdots, e_{n}\} as a basis of \check{a}_{ $\theta$,\mathrm{C}} . The choice of the Borel subgroup P_{0} determines the set

of positive and simple roots in the root system of G with respect to M_{0} . The set  $\Delta$ of

simple roots consists of

 $\Delta$=\{e_{1}-e_{2}, e_{2}-e_{3}\ldots , e_{n-1}-e_{n}, 2e_{n}\},

written in terms of e_{i}.

Let P=M_{P}N_{P} be the Siegel maximal proper parabolic \mathbb{Q}‐subgroup of Sp_{n} . It is the

parabolic \mathbb{Q}‐subgroup of Sp_{n} corresponding to the subset  $\Delta$\backslash \{2e_{n}\} of the set  $\Delta$ of simple
roots. It is characterized by the fact that its Levi factor  M_{P} is isomorphic to GL_{n}.

Theorem 5.1 (G., Schwermer [10]). Let G = Sp_{n} be the split symplectic group Sp_{n},
of rank n, defined over \mathbb{Q} . Let P = M_{P}N_{P} be the Siegel standard parabohc subgroup,
i. e., M_{P}\cong GL_{n} . Let $\pi$^{u} be a unitary cuspidal automorphic representation of  M_{P}(\mathrm{A})\cong
 GL_{n}(\mathrm{A}) , and let  $\lambda$ \in \check{a}_{P} correspond to the character |\det|^{s\mathrm{o}} of M_{P}(\mathrm{A}) , where s_{0} \geq  0.

Let  $\pi$ \cong $\pi$^{u}\otimes|\det|^{s0} . Let the highest weight  $\Lambda$ = \displaystyle \sum_{i=1}^{n}$\lambda$_{i}e_{i} \in \check{a}_{\mathrm{O},\mathbb{C}} , with  $\lambda$ \in \mathbb{Z} and

$\lambda$_{1}\geq\cdots\geq$\lambda$_{n}\geq 0 . Then, the spaoe (*_{\mathrm{s}\mathrm{q}}) , that is,

H_{(\mathrm{s}\mathrm{q})}^{*}(\mathfrak{g}, K_{\mathbb{R}};A_{J,\{P\},$\phi$_{ $\pi$}}\otimes E)
is trivial, except possibly if the following assertions hold

1. s_{0}=1/2,

2. the exterior square L‐function L(s, $\pi$^{u}, \wedge^{2}) has a pole at \mathcal{S}=1,

3. the pn
\cdot

ncipal L‐function  L(s, $\pi$^{u}) is non‐zero at s=1/2,

4. n is even,

5.  $\Lambda$ is such that  $\lambda$_{2j-1}=$\lambda$_{2j} forj=1 ,
. ..

, n/2,

6. the archimedean component

$\pi$_{\infty}^{u}\cong \mathrm{I}\mathrm{n}\mathrm{d}_{Q(\mathbb{R})}^{GL_{n}(\mathbb{R})}(\otimes_{j=1}^{n/2}D(2$\mu$_{j}+2n-4j+4)) ,

where $\mu$_{j} = $\lambda$_{2j-1} = $\lambda$_{2j} , the parabolic subgroup Q of GL_{n} ha\mathcal{S} the Levi factor
M_{Q}\cong GL_{2}\times\cdots\times GL_{2} with n/2 copies of GL_{2} ,

and D(k) , for k\geq 2 , is the discrete

series representation of GL_{2}(\mathbb{R}) of lowest 0(2) ‐type k.
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This theorem shows how the subtle interplay of geometric and arithmetic necessary

conditions for non‐vanishing of the summand (*_{\mathrm{s}\mathrm{q}}) , produces a quite restrictive set of

necessary conditions in a given example. The conditions are not only arithmetic conditions

on  $\pi$ , but also the rank  n of the group G=Sp_{n} must be even, the highest weight  $\Lambda$ must be

of a special form, and the infinite component  $\pi$_{\infty}^{u} is a certain fixed tempered representation
of GL_{n}(\mathbb{R}) . It is an open problem to determine if there exists such  $\pi$

,
for which all six

assertions hold. To illustrate these six assertions in a low rank example, we take a special
case in the following corollary.

Corollary 5.2. In the notation of the previous theorem, let  G=Sp_{2} , i. e., n=2_{f} and let

E=\mathbb{C} be tnvial2 i. e., $\lambda$_{i}=0 , for i=1 , .. ., n . Then, the space (*_{\mathrm{s}\mathrm{q}}) , that is,

H_{(\mathrm{s}\mathrm{q})}^{*}(\mathfrak{g}, K_{\mathbb{R})}\cdot A_{J,\{P\},$\phi$_{ $\pi$}})

is trivial, except possibly if the following assertions hold

1, s_{0}=1/2,

2. the central character $\omega$_{$\pi$^{u}} of $\pi$^{ $\tau \iota$} is trivial,

3. L(1/2, $\pi$^{\mathrm{u}})\neq 0,

4. $\pi$_{\infty}^{u}\cong D(4) .

In a recent preprint [13], we study carefully such low rank cases. In the case of the

corollary, we show in loc. cit. that $\pi$^{u} , satisrng necessary non‐vanishing conditions of the

corollary, really exist. It is a consequence of a non‐trivial result of Trotabas [22].
However, the existence of $\pi$^{\mathrm{u}} satisfying all assertions of the corollary is still not suf‐

ficient to show that the summand (*_{\mathrm{s}\mathrm{q}}) is non‐trivial. We need an additional argument,
showing that the image of the map in cohomology is non‐trivial. This was pursued in the

preprint [13] using [18].
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