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On non-vanishing conditions for certain
summands in Eisenstein cohomology
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Abstract

Eisenstein cohomology is the non-cuspidal part of automorphic cohomology of a
reductive group (over a number field). It decomposes into a direct sum arising from
the decomposition of the space of automorphic forms along the cuspidal support.
The non-vanishing of the summands, and their internal structure, is subject to a
subtle combination of geometric (cohomological) and arithmetic (in terms of auto-
morphic L-functions) conditions. In this expository paper we present necessary non-
vanishing conditions for certain summands in (the square-integrable subspace of)
Eisenstein cohomology, and their consequences. This is a joint work with Joachim
Schwermer.
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1 Introduction

The cohomology of an arithmetic congruence subgroup I' of a reductive connected
linear algebraic group G, defined over a totally real number field, is closely related to
automorphic forms with respect to I'. This relationship is best understood in the adélic
setting. It is captured in the object called the automorphic cohomology of G. The
automorphic cohomology of G is defined as the relative Lie algebra cohomology of the
space of all automorphic forms on the group G(A) of adélic points of G.

*This work has been supported in part by Croatian Science Foundation under the project 9364 and
by University of Rijeka research grant 13.14.1.2.02.
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The natural decomposition of the space of automorphic forms along their cuspidal
support gives rise to the corresponding decomposition in automorphic cohomology. The
summands corresponding to cuspidal automorphic forms form the cuspidal cohomology.
The natural complement of the cuspidal cohomology is called the Eisenstein cohomology.
The summands in the Eisenstein cohomology correspond to the spaces of automorphic
forms supported in the associate class of cuspidal automorphic representations of the
Levi factors of an associate class of proper parabolic subgroups. These summands in
Eisenstein cohomology, in particular, their non-vanishing, are the main object of concern
in this paper.

The square-integrable cohomology is the subspace in cohomology represented by square-
integrable automorphic forms. It is an important subspace in itself, but also serves as a
starting point in the study of the internal structure of cohomology. The square-integrable
Eisenstein cohomology is also called the residual Eisenstein cohomology, although the
residues of Eisenstein series are not always square-integrable automorphic forms. In the
decomposition along the cuspidal support, we may study the individual summands of the
square-integrable cohomology.

Given a cuspidal automorphic representation 7 of the Levi factor of a standard proper
parabolic subgroup P of G, there is a possibly trivial summand in Eisenstein cohomol-
ogy supported in the associate class of w. There are certain necessary conditions on m,
and appropriate automorphic L-functions associated to , for non-vanishing of such a
summand and its subspace in the square-integrable cohomology. These conditions are
made explicit here for the case of the split symplectic group G = Spy,, defined over Q,
and the summand in Eisenstein cohomology supported in the associate class of a cuspidal
automorphic representation of the Levi factor of the Siegel parabolic subgroup.

In this expository paper we mainly present the results obtained in a joint work with
J. Schwermer [10]. The example of G = Sp, and P the Siegel parabolic subgroup is
borrowed from that paper. There is a large body of our joint work [9], [12], [11], and
the very recent preprint [13], which complements the results presented here, but is not
covered at all. In another paper [8], we study the case of the split symplectic group of
rank two over a totally real number field.

The paper is organized as follows. Sect. 2 provides the definition and classical moti-
vation for the study of automorphic cohomology. In Sect. 3 the decomposition along the
cuspidal support of the space of automorphic forms, and the corresponding decomposition
in cohomology, as well as the square-integrable cohomology, are explained. The necessary
non-vanishing conditions for the summands in the decomposition along the cuspidal sup-
port are presented in Sect. 4. The application to the case of the split symplectic group is
given in Sect. 5.

This paper follows the talk given by the author at the workshop Automorphic Forms,
Automorphic L-functions and Related Topics, held in February 2016 at the Research
Institute for Mathematical Sciences (RIMS), Kyoto, Japan. We express our gratitude to
Shunsuke Yamana for his kind invitation to Kyoto at the time of the workshop. We are
very grateful to Shunsuke Yamana and Atsushi Ichino for their hospitality and making
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the visit to Kyoto such a memorable experience. We would like to thank the organizers of
the workshop, Shuichi Hayashida and Shoyu Nagaoka, for the opportunity to give a talk.

2 Automorphic cohomology

We begin with introducing the main objects considered in the paper, in particular,
automorphic and Eisenstein cohomology, and relate them to the cohomology of arithmetic
groups. This serves as a motivation for studying the Eisenstein cohomology of a reductive

group.

2.1 Classical setting

Let G be a connected semisimple linear algebraic group defined over the field @ of
rational numbers. One could work with a reductive group over any totally real number
field, but for simplicity we take G to be semisimple over Q.

Let G(R) be the Lie group of real points of G, and Kg a fixed maximal compact
subgroup of G(R). Let X = G(R)/Kr be the corresponding symmetric space. Let I be
a torsion-free arithmetic subgroup of G, viewed as a discrete subgroup of the Lie group
G(R). We form the locally symmetric space I'\ X..

Let E be a finite-dimensional algebraic representation of GG in a complex vector space.
We denote by g the real Lie algebra of G(R), and by Z the center of the universal
enveloping algebra of the complexification of g.

We let C°(I'\G(R)) the space of smooth left I'-invariant functions on G(R), considered
as a representation of G(R) via the action by right translations.

Then we have the following sequence of isomorphisms, where the last isomorphism
requires additional assumption that I is a congruence subgroup,

H*(T, E) & H*(T'\X, E) = H*(g, Kr; C*(I'\G(R)) ® E)
= H*(g, Kr; Cing (T\G(R)) ® E)
~ H*(g, Kr; AT\G(R)) ® E).

Here H*(T', E) is the Eilenberg-McLane cohomology of the arithmetic group I' with re-
spect to E, H*(I'\ X, E) is the de Rham cohomology of the locally symmetric space I'\ X
with respect to the local system given by E, and H*(g, Kgr; V) is the relative Lie algebra
cohomology of a (g, Kg)-module V. For all these notions see [4]. The space Cgp,, (I'\G(R))
is the subspace of C®°(I"'\G(R)) consisting of functions with uniform moderate growth,
and A(T'\G(R)) the space of automorphic forms on G(R) with respect to I' (see [3]). The
first two isomorphisms can be found in [4], the third one is proved in [1], and the last one
in [5] (in the adelic setting, hence the assumption that I' is a congruence subgroup).

This isomorphism provides a link between the geometry of a locally symmetric space
and the arithmetic of automorphic forms. In that way, cohomological arguments may
produce a flow of information in both directions, and moreover, in explicit calculations of
cohomology of arithmetic groups both points of view should be combined.
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2.2 Adélic setting

For a prime p, finite or not, let Q, be the completion of Q at p. For p = co, we have
Qo = R. Let A be the ring of adéles of Q, and A; the subring of finite adeles. Let G(A)
be the group of adélic points of G.

We fix, once for all, a maximal compact subgroup K of G(A) of the form K =
Kg x [] <o, Kp, where K, is a fixed maximal compact subgroup of G(Qy) for p < 0o, and
Kz is as in Sect. 2.1. We may assume that K, is hyperspecial for almost all p < oo.

Given an open compact subgroup C of G(Ay), consider the space

Xc = G(Q\G(A)/KxC.

It is a finite disjoint union of locally symmetric spaces, and its cohomology H*(Xc, E)
with respect to F can be computed as de Rham cohomology. These cohomology spaces
form a directed system with respect to inclusion of open compact subgroups, because
for C’ C C open compact subgroups of G(Ay), we have a finite covering X¢or — X,
which gives rise to the inclusion H*(X¢, E) - H*(X¢r, E). The group G(Ay) acts on the
directed system by conjugation. Then, the direct limit

H*(G,E) = lig H*(Xc, E)
(o

is called the automorphic cohomology of G with respect to E. It comes with a G(Ay)
action, and the original spaces H*(X¢, E') may be recovered as C-invariants.

The name automorphic cohomology resembles the fact that, for the same reasons as
in the classical setting of Sect. 2.1, we have the following isomorphism

H*(G,E) = H*(g9, Kn; A® E),

where A = A(G(Q)\G(A)) is the space of all automorphic forms on G(A) as in [3].

According to Wigner’s lemma [4, Sect. 14], only a subspace of A consisting of au-
tomorphic forms matching the infinitesimal character of E may possibly contribute to
H*(G, E). More precisely, let J be the annihilator in Z of the conjugate dual of E. It is
an ideal of finite codimension in Z. Then,

H*(G’ E) = H*(g’ KR; AJ ®E)1

where A7 is the subspace of automorphic forms annihilated by a power of J.

3 Decomposition along the cuspidal support

As a first step in the study of automorphic cohomology H*(G, E), one should decom-
pose this space according to the decomposition of the space of automorphic forms along
the cuspidal support.

3.1 Decomposition of the space of automorphic forms

We fix, once for all, a minimal parabolic Q-subgroup P, of G, with the Levi decompo-
sition Py = MyNy, which is in good position with respect to the fixed maximal compact
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subgroup K of G(A), as in [17, Sect. 1.1.4]. Let P = MpNp be a standard parabolic
Q-subgroup of G.

Let {P} be the associate! class of parabolic Q-subgroups of G represented by P.
Denote by C the set of all associate classes of parabolic Q-subgroups of G.

Let 7 be a (not necessarily unitary) cuspidal automorphic representation of the Levi
factor Mp(A). We may write 7 = 7% ® )\, where 7* is conveniently normalized® unitary
cuspidal automorphic representation of Mp(A), and ) is a character® of Mp(A) given by
an element \ € dp = X*(P) @z R, with X*(P) the Z-module of Q-rational characters of
P.

Let ¢r = (¢r,Q)@eqp} be the associate class of cuspidal automorphic representations
of Levi factors of parabolic subgroups in {P}, represented by #. Then ¢, ¢ is a finite set,
which consists of all conjugates of 7 by elements of the Weyl group which conjugate Mg
to Mp (cf. [16, Sect. 1.3]). By replacing 7 (and possibly P) by an associate representative,
we may assume that ) is in the closure of the positive Weyl chamber in dp determined
by P.

In order to stay in Az, there is a certain compatibility condition on ¢, (cf. [16,
Sect. 1.3]). We denote by ® 7 (p} the family of associate classes ¢, which are compatible
with J.

Then, there is a direct sum decomposition, referred to as the decomposition along the
cuspidal support,

A7 P Azimy

{P}eC

= @ @ AZ (P} ées

{P}eC ¢n€®7 1Py

where the spaces of automorphic forms Az (py, resp. Az (p},4,, supported in { P}, resp. in
¢r, appearing on the right-hand side, are introduced below.

3.2 Definition of the summands

We define the summands in the decomposition of A 7 along the cuspidal support using
Eisenstein series.*
For v € apc = ap ® C and 7" as in Sect. 3.1, consider the induced representation
G(A
Ind PE A; (™" ®v),
where, as above, we abuse the notation by writing v for the character of Mp(A) corre-
sponding to v € dpc. Induction is normalized.

IRecall that two parabolic Q-subgroups P and Q of G are associate if their Levi factors Mp and Mg
are G(Q)-conjugate. Observe that it is sufficient to consider conjugation by elements of the Weyl group.

2The normalization is such that the poles of Eisenstein series associated to 7% are real. This can
always be achieved (cf. [14, Sect. 4.1] or the RIMS Kokyiiroku paper [7, Sect. 2.3]).

3We are deliberately imprecise here to avoid technicalities. See [21] or [17] for a precise statement.

4This is the definition as in [6, Sect. 1.3]. Another definition of these spaces is given in [17, Sect. ITI.2.6]
(see also [6, Sect. 1.2]), but these are equivalent according to [6, Thm. 1.4].



Taking f,, an appropriate section of these induced representations, we may define
the Eisenstein series® E(f,,g) associated to n*. The defining series is absolutely and
locally uniformly convergent in a cone deep enough in the positive Weyl chamber in dapc
determined by P. It may be analytically continued to a meromorphic function on all of
dpc. The singularities in the closure of the positive Weyl chamber are along a locally
finite set of singular hyperplanes. See [17, Sect. IV.1] for these facts.

Recall that we may assume 7 = 7% ® A, with )\ real and in the closure of the positive
Weyl chamber of dpc. Because of the local finiteness of singular hyperplanes, there is a
polynomial F(v) such that F(v)E(f,,g) is holomorphic around v = A.

Now the space Ay (p},¢4,, of automorphic forms supported in ¢y, is defined as the span
of all coefficients in the Taylor expansion of F(v)E(f,,g) around v = A. This is clearly
independent of the choice of a polynomial F'(v). The space Az p} is then simply defined
as the direct sum of Az (py 4, over all ¢, € 7 (p}.

3.3 Decomposition in cohomology

The direct sum decomposition of A7 along the cuspidal support, gives rise to the
corresponding decomposition in cohomology

H'(G,E)= @ H*(9,Kn; As,p) @ E)

{P}eC
*@P P H o ErAsirre, @B
{P}ecC ¢w€§‘7.{p}

Since the summand Ay, (g}, indexed by the full group G, consists precisely of all cuspidal
automorphic forms compatible with 7, we define the cuspidal cohomology of G with
respect to F as

H:,. (G, E) = H'(g,Kn; A7y ® E) = €D  H*(g, Kv; Az (616, ® E)-
€27 (G}

The natural complement of cuspidal cohomology, indexed by all {P} # {G}, forms the
Eisenstein cohomology

Hyo(G,E)= P H(s,Kn; A7 m®E) 2 P D H(9,Ke; Az (pre. ©E).
{P}#{G} {P}#{G} ¢=€® 7 (P}

Qur main goal is to understand the individual summands

H*(g, Kkg; AJ,{P},¢,, ® E)v {P} # {G}) (*)

in the decomposition of the Eisenstein cohomology. In particular, we would like to find
some kind of non-vanishing criterion, and, in the case of non-vanishing, investigate the
internal structure of these summands.

5We are again skipping the definition. See [21] or [17].
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3.4 Square-integrable cohomology

The first step in understanding the internal structure of the summand (%) in the
decomposition of the Eisenstein cohomology is to understand its square-integrable part.

Let £7,(p},4. be the (possibly trivial) subspace of Az (p} ¢4,, Which consists of square-
integrable automorphic forms with cuspidal support in ¢,. By the Langlands spectral
theory, roughly speaking, L7 (p}¢, is spanned by the square-integrable iterated residues
at v = A of the Eisenstein series E(f,,g) associated to 7*.

The inclusion L7 (p} 4, <+ A7,(P}s, 8ives rise to a map in cohomology

H*(g, Kr; L7,(P}.4. ® E) = H*(9, Kr; Az,(P}.6. ® E),

which may not be injective any more. The image of this map is called the square-integrable
cohomology with cuspidal support in ¢, or sometimes the residual Fisenstein cohomology,
although the residues of Eisenstein series are not always square-integrable. It is denoted
by

Hieo (9, Kr; Az 4Py.e. ® E), (*sa)

and may be thought of as a summand in the full square-integrable cohomology H, (sa) (G, E),
which is the image of the map induced in cohomology by the inclusion L5 — A7 of the
space L7 of all square integrable automorphic forms compatible with 7.

4 Necessary conditions for non-vanishing

The study of the summand (%), for a given cuspidal support ¢,, represented by a
cuspidal automorphic representation 7 = 1%®\ of the Levi factor Mp(A), is closely related
to the structure of the space Ay (p} 4,. The latter is determined by the analytic properties
of the Eisenstein series E(f,,g) associated to n* at ¥ = A, and the Eisenstein series
provide a link to the representation theoretic approach via the induced representation
Indgg:; (7* ® A). We are very vague at this point, but some sort of Frobenius reciprocity,
combined with a result of Kostant about the Lie algebra cohomology of the unipotent
radical [15, Th. 5.13], reduces the study of necessary conditions for non-vanishing of the
summand (*) to the non-vanishing of cuspidal cohomology for the Levi factor Mp with

respect to certain coefficient systems. The details are explained in [16, Sect. 3].

4.1 Geometric conditions

Before stating the necessary conditions for non-vanishing of the summand (%), we need
more notation. Let W, resp. Wp, be the absolute Weyl group of G, resp. Mp. The set of
minimal coset representatives for the right cosets in Wp\W, sometimes called the Kostant
representatives, is denoted by WF.

Let 6o = X*(Pp) ®z R be the analogue of dp for the minimal parabolic subgroup F.
Then, dp may be viewed as a subspace of @, and restriction of characters gives rise to a
natural complement

do=dp D a.
Let A be the highest weight of E, viewed as an element of dg, and let p be the half-sum
of positive absolute roots of G.
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Then, the summand (*) vanishes, except possibly if the following assertions are all
simultaneously satisfied, with the same w € W7,

G1. A =-w(A+p)|,
G2. the infinitesimal character of the archimedean component 7% of 7* is —w(A+p) la{,”

G3. —wlo,,g,p(p,,,l &{,’) = ,uwlap, where g, = w(A+p) — p and Wieng p is the longest element
(]
in Wp,

GA4. the archimedean component 7% of 7 is cohomological (with respect to some coef-
ficient system),

where the vertical line stands for projections with respect to the above decomposition
of dy. The first two assertions, obtained in [19], follow from the compatibility with 7.
The third assertion arises from the square-integrability on the level of Levi factors, as
in [2]. The last assertion is obvious. We refer to these four assertions as the geometric
conditions, because they are related to cohomological considerations.

4.2 Arithmetic conditions

A natural question to ask is when is the summand (%) non-trivial. Besides the
geometric conditions of Sect. 4.1, there is an obvious arithmetic necessary condition for
non-vanishing of the summand (). It says that

A. £Jl{P}r¢1 # 0’

or in other words, the Eisenstein series E(f,, g) associated to 7" has a non-trivial square-
integrable residue at ¥ = A. This condition cannot be stated explicitly in general, and
is related to automorphic L-functions appearing in the constant term of the Eisenstein
series. In some examples, we make it explicit in the theorems below.

5 Application for the case of the symplectic group

As an example of the application of the necessary conditions presented in Sect. 4, we
consider the case of the split symplectic group G = Sp,, of rank n, defined over Q, and
the cuspidal support in the Siegel maximal proper parabolic Q-subgroup. This is one of
the cases studied in [10].

More precisely, let G = Sp,, be the split symplectic group defined over Q, preserving
the symplectic form on a 2n-dimensional vector space over QQ given, in some basis, by the

matrix
0 Jn
—Jp, 0 )’

where
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with zeros outside the secondary diagonal. In this matrix realization of the split symplectic
group Sp,, we may choose for the Borel Q-subgroup Fp the group of all upper triangular
matrices in Sp,. The Levi factor My of P, is a maximal Q-split torus of Sp,, which
consists of all diagonal matrices in Sp,,, that is,

Mo(Q) = {diag(ts, .., tn,tn .-, 1Y) t b1y, tn € Q).
Let e;, for 2 =1,...,n, denote the projection of My to the ith coordinate,
e; (diag(ty, ... ta, 7%, 80)) =t

We have e; € X*(FB,) is a Q-rational character of Fy. We choose these projections
{e1,...,en} as a basis of dypc. The choice of the Borel subgroup P, determines the set
of positive and simple roots in the root system of G with respect to M. The set A of
simple roots consists of

A={61~32,62'—€3---,€n—1 —€n,2€n},

written in terms of e;.

Let P = MpNp be the Siegel maximal proper parabolic Q-subgroup of Sp,. It is the
parabolic Q-subgroup of Sp,, corresponding to the subset A\ {2e,} of the set A of simple
roots. It is characterized by the fact that its Levi factor Mp is isomorphic to GLy,.

Theorem 5.1 (G., Schwermer [10]). Let G = Sp, be the split symplectic group Sp,
of rank n, defined over Q. Let P = MpNp be the Siegel standard parabolic subgroup,
i.e., Mp & GL,. Let 7 be a unitary cuspidal automorphic representation of Mp(A) =
GL,(A), and let X € ap correspond to the character |det|* of Mp(A), where so > 0.
Let m & 7% @ |det|*0. Let the highest weight A = ) i Nie; € dpc, with X € Z and
AL > -+ 2> A, > 0. Then, the space (*sq), that is,

Hiy)(8, Kr; Ag,ipr.o. @ E)

1s trivial, except possibly if the following assertions hold

1. so=1/2,

2. the exterior square L-function L(s, 7", A?) has a pole at s =1,
3. the principal L-function L(s, ") is non-zero at s =1/2,

4. n is even,

5. A is such that Agj_y = Agj for j=1,...,n/2,

6. the archimedean component

7%, 2 IndGa® (13D (u; +2n — 45 +4)) ,

where p; = Agj—1 = Agj, the parabolic subgroup @ of GLy, has the Levi factor
Mg 2 GLy % -+ x GLy with n/2 copies of GLg, and D(k), for k > 2, is the discrete
series representation of GLa(R) of lowest O(2)-type k.
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This theorem shows how the subtle interplay of geometric and arithmetic necessary
conditions for non-vanishing of the summand (%), produces a quite restrictive set of
necessary conditions in a given example. The conditions are not only arithmetic conditions
on 7, but also the rank n of the group G' = Sp,, must be even, the highest weight A must be
of a special form, and the infinite component 7% is a certain fixed tempered representation
of GL,(R). It is an open problem to determine if there exists such «, for which all six
assertions hold. To illustrate these six assertions in a low rank example, we take a special
case in the following corollary.

Corollary 5.2. In the notation of the previous theorem, let G = Spa, i.e., n =2, and let
E = C be trivial, i.e., \; =0, for i =1,...,n. Then, the space (*sq), that is,

H{ig)(9, Kr; Az,(P}.¢.)
is trivial, except possibly if the following assertions hold
1. s0=1/2,
2. the central character wq« of 7 is trivial,
3. L(1/2,7%) #0,
4. 7% = D(4).

In a recent preprint [13], we study carefully such low rank cases. In the case of the
corollary, we show in loc. cit. that 7%, satisfying necessary non-vanishing conditions of the
corollary, really exist. It is a consequence of a non-trivial result of Trotabas [22].

However, the existence of 7% satisfying all assertions of the corollary is still not suf-
ficient to show that the summand (%sq) is non-trivial. We need an additional argument,
showing that the image of the map in cohomology is non-trivial. This was pursued in the
preprint [13] using [18].
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