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THE RESIDUAL SPECTRUM
OF AN INNER FORM OF Sp8 SUPPORTED
IN THE MINIMAL PARABOLIC SUBGROUP

NEVEN GRBAC

Abstract. The part of the residual spectrum of an inner form of the split
group Sp8 supported in the minimal parabolic subgroup is decomposed. Since
the considered inner form is not quasi–split, the normalization of the stan-
dard intertwining operators, required for the calculation of the poles of the
Eisenstein series, is out of the reach of the Langlands–Shahidi method. Hence,
a normalization technique, based on the transfer of the Plancherel measure
between the split group and its inner form, is applied. The obtained decompo-
sition reveals certain features of the residual spectrum of the inner form which
do not appear for the split group.

Introduction

In this paper we consider the residual spectrum of the hermitian quaternionic
group H ′

2 defined as an algebraic group over an algebraic number field k in Section
1 below. It is a non–quasi–split inner form of the split group Sp8. Although, in
principle, the results of this paper could be obtained using the Arthur trace formula
explained in [1], our strategy of the calculation is a more direct approach of the
Langlands spectral theory explained in [20] and [25].

The residual spectrum of various quasi–split groups was considered by several
authors. Among them are Mœglin and Walspurger [24], Mœglin [21], [22], [23],
Kim [16], [17], [18], Žampera [39], and Kon–No [19]. In those papers the approach
is also the Langlands spectral theory. For quasi–split groups the normalization of
the intertwining operators required for the application of the Langlands spectral
theory is obtained using the Langlands–Shahidi method explained in [31] and [32].

However, our situation is different. Since H ′
2 is not quasi–split, it is out of

the scope of the Langlands–Shahidi method. Therefore, we had to develop a new
technique of the normalization of the intertwining operators based on the Jacquet–
Langlands correspondence explained in [5] and the transfer of the Plancherel mea-
sure based on the global idea explained in [29]. This technique was already used
by the author of this paper in [6], [8] and [9], where we considered the residual
spectrum of a non–quasi–split inner forms of SO4, Sp4, SO8 and the parts of the
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3978 NEVEN GRBAC

residual spectra of non–quasi–split inner forms of SO4n and Sp4n. See also [7]
where the residual spectrum of GLn over a division algebra is obtained.

In this paper we decompose the part of the residual spectrum of H ′
2 coming

from the residues of the Eisenstein series attached to cuspidal automorphic repre-
sentations of the minimal standard parabolic subgroup of H ′

2 defined over k. The
results are given as Theorems 3.2.1, 3.2.2, 3.3.1, 3.3.2, 3.3.3, 3.3.6, 3.3.8, 3.3.11,
3.3.13, and 3.3.15. When compared to the residual spectrum of the split group
Sp8, in addition to the interesting parity conditions (which appear for split groups
as well) in Theorems 3.2.1, 3.3.3, and 3.3.13, the results show certain features of
hermitian quaternionic groups such as the local conditions on the non–triviality
of the one–dimensional representation at non–split places in Theorems 3.2.2, 3.3.2,
3.3.13, 3.3.15, and the condition on the number of non–quasi–split places of a global
quaternion algebra used to define H ′

2 in Theorem 3.3.15. The reason for occurrence
of such conditions lies in the different local normalization factors at split and non–
quasi–split places which give local L–functions in the global normalizing factors.
This is never the case for split groups.

The paper consists of three sections. In Section 1 we define the groups involved,
review their structure and recall the Jacquet–Langlands correspondence. In Section
2 the normalizing factors for the intertwining operators are obtained. Finally, in
Section 3 the considered part of the residual spectrum of H ′

2 is decomposed.
This paper is an outgrowth of the author’s Ph.D. thesis. He would like to thank

his advisor G. Muić for many useful discussions and constant help during the prepa-
ration of this paper. He would also like to thank M. Tadić for supporting his research
and for showing interest in his work. Conversations with H. Kim and E. Lapid were
useful in clarifying several issues in automorphic forms and those with A.I. Bad-
ulescu in the representation theory of GLn over division algebras. Also the author
would like to thank his friend M. Hanzer for many useful conversations on the local
representation theory of hermitian quaternionic groups which she has studied in
[10] and [11]. The figures in the paper were carefully drawn by A. Žgaljić, and the
author is grateful for that. Finally, the author would like to thank his wife Tiki for
always being by his side.

1. Preliminaries

In this section we define the groups considered in this paper, review their struc-
ture and introduce the notation. Also we recall the local and global Jacquet–
Langlands correspondence.

Throughout this paper, let k be an algebraic number field, kv its completion at a
place v and A its ring of adeles. Let D be a quaternion algebra central over k and τ
the involution fixing the center of D. Then, D splits at all but finitely many places v
of k, i.e. at those places where the completion D⊗k kv is isomorphic to the additive
group M(2, kv) of 2 × 2 matrices with coefficients in kv. In this paper we assume
that D splits at all archimedean places. This is a technical assumption which could
be removed if one had a better understanding of the local representation theory
of H ′

2 and its Levi subgroups over the Hamilton quaternions. At finitely many
non–archimedean places v of k where D is non–split, the completion D ⊗k kv is
isomorphic to the quaternion algebra Dv central over kv. The finite non–empty
set of non–archimedean places of k where D is non–split is denoted by SD. The
cardinality of SD, denoted by |SD|, is even for every D.
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The algebraic group over k of invertible elements of D is denoted GL′
1. At a

split place v �∈ SD we have GL′
1(kv) ∼= GL2(kv), where GL2 is the split group over

k of invertible 2×2 matrices. At a non–split place v ∈ SD we have GL′
1(kv) ∼= D×

v .
Let det′ denote the reduced norm of the simple algebra D ⊗k A and det′v the

corresponding reduced norm at a place v. If v �∈ SD is split, then det′v = detv is
just the determinant for 2 × 2 matrices, while if v ∈ SD is non–split, then det′v is
the reduced norm of the quaternion algebra Dv. The absolute value of the reduced
norms det′ and det′v is denoted by ν.

Let V be a 2n–dimensional right vector space over D with the basis {e1, . . . , e2n}.
Then

(ei, ej) = δi,2n−j+1 for 1 � i � j � n

defines a hermitian form on V by

(v, v′) = τ ((v′, v)) and (vx, v′x′) = τ (x)(v, v′)x′

for all v, v′ ∈ V and x, x′ ∈ D. The group of isometries of the hermitian form (·, ·)
regarded as a reductive algebraic group defined over k will be denoted by H ′

n. It is
an inner form of the group Sp4n. Hence, H ′

n(kv) ∼= Sp4n(kv) for every split place
v �∈ SD. In this paper we consider the residual spectrum of the group H ′

2 which is
an inner form of the split group Sp8.

Let T ′ be the maximal split torus in H ′
2. It is isomorphic to GL1×GL1. Denote

by Φ′ the set of the roots of H ′
2 with respect to T ′. Then

Φ′ = {±e1 ± e2,±2e1,±2e2},

where ei(t1, t2) = ti for all (t1, t2) ∈ T ′. For the set of positive roots take

Φ′+ = {e1 ± e2, 2e1, 2e2}.

The corresponding set of simple roots is

∆′ = {e1 − e2, 2e2}.

Let W ′ be the Weyl group of H ′
2 with respect to T ′. Then

W ′ = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2},

where w1 and w2 are the simple reflections with respect to the simple root e1 − e2

and 2e2, respectively. The minimal parabolic subgroup P ′
0 = M ′

0N
′
0 of H ′

2 defined
over k has the Levi factor M ′

0
∼= GL′

1 × GL′
1.

Let T ∼= GL1 × GL1 × GL1 × GL1 be the maximal split torus of the split
Sp8. Fix the positive roots of Sp8 with respect to T in such a way that the split
form P0 = M0N0 of the parabolic subgroup P ′

0 = M ′
0N

′
0 is the standard parabolic

subgroup of the split Sp8 with the Levi factor M0
∼= GL2 × GL2. Let W (M0) be

the subgroup of the Weyl group of Sp8 with respect to T isomorphic to the quotient
of the normalizer of M0 modulo M0. Then W (M0) ∼= W ′, and we identify their
elements.

For a Levi factor M of a standard parabolic subgroup of a reductive group, let
a∗M,C

∼= X(M) ⊗Z C denote the complexification of the Z–module X(M) of k–
rational characters of M . Then a∗M0,C

∼= a∗M ′
0,C are two–dimensional complex vector

spaces. The isomorphisms with C
2 are fixed by choosing for the basis the reduced

norm on every copy of GL′
1 in M ′

0 and the determinant on every copy of GL2 in
M0. The elements of a∗M0,C

∼= a∗M ′
0,C written in that fixed basis will be denoted
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Table 1.1. Action of W ′

w w(s) = w(s1, s2) w(π′) ∼= w(π′
1 ⊗ π′

2)
1 (s1, s2) π′

1 ⊗ π′
2

w1 (s2, s1) π′
2 ⊗ π′

1

w2 (s1,−s2) π′
1 ⊗ π̃′

2

w1w2 (−s2, s1) π̃′
2 ⊗ π′

1

w2w1 (s2,−s1) π′
2 ⊗ π̃′

1

w1w2w1 (−s1, s2) π̃′
1 ⊗ π′

2

w2w1w2 (−s2,−s1) π̃′
2 ⊗ π̃′

1

w1w2w1w2 (−s1,−s2) π̃′
1 ⊗ π̃′

2

s = (s1, s2), where s1, s2 ∈ C. The positive Weyl chamber is given by inequalities
Re(s1) > Re(s2) > 0.

The action of the Weyl group element w ∈ W ′ on s = (s1, s2) ∈ aM ′
0,C and

a cuspidal automorphic representation π′ ∼= π′
1 ⊗ π′

2 of the Levi factor M ′
0(A) ∼=

GL′
1(A) × GL′

1(A) is induced by the conjugation of the Levi factor. It is given in
Table 1.1, where ·̃ denotes the contragredient representation.

In this paper the parabolic induction from a standard parabolic subgroup P of a
reductive group G with the Levi factor M will be denoted by IndG

M instead of IndG
P .

This will not cause any confusion, since all the parabolic subgroups appearing in
the paper are standard. The induction is always normalized in a sense that the
representation induced from a unitary representation is again unitary.

Finally, let us recall the Jacquet–Langlands correspondence following Section 8
of [5]. In this paper we refer to the Jacquet–Langlands correspondence as the local
and global lift of representations from the group GL′

1 to the split group GL2.
Let π′ ∼= ⊗vπ′

v be a cuspidal automorphic representation of GL′
1(A) which is not

one–dimensional. Then, at non–split places the local lift πv of π′
v is the square–

integrable representation of GL2(kv) defined by the character relation as in Theorem
(8.1) of [5]. At split places we have GL′

1(kv) ∼= GL2(kv), and the local lift is just
πv

∼= π′
v. The global lift of π′ is defined using the local lifts as π ∼=

⊗
v πv.

By Theorem (8.3) of [5] the global lift π is isomorphic to a cuspidal automorphic
representation of GL2(A). Hence, its local components πv are generic.

Let χ ◦ det′ = ⊗v

(
χv ◦ det′v

)
be a one–dimensional cuspidal automorphic rep-

resentation of GL′
1(A). Here χv are unitary characters of k×

v and χ is a unitary
character of A×/k×. Then, in this paper, the global lift of χ ◦ det′ is defined to
be just the one–dimensional representation χ ◦ det = ⊗v (χv ◦ detv) of GL2(A). It
belongs to the residual spectrum of GL2(A). At non–split places the local lift of
χv ◦ det′v is defined by the Jacquet–Langlands correspondence as in Theorem (8.1)
of [5] to be the unique irreducible subrepresentation of the induced representation
IndGL2(kv)

GL1(kv)×GL1(kv)

(
χv| · |1/2 ⊗ χv| · |−1/2

)
. At non–archimedean places it is the

Steinberg representation of GL2(kv) twisted by χv, but we denote this representa-
tion by Stχv

at all places. Observe that by our definition in this case the global and
local lift are not consistent. The reason is that the global lift is supposed to be in
the discrete spectrum of GL2(A), while the local lift should preserve the Plancherel
measure.
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In this paper a unitary character µ of A×/k× and µv of k×
v are said to be

quadratic if, respectively, µ2 and µ2
v are trivial. Thus, the trivial character is

among quadratic characters as well.

2. Normalization of intertwining operators

This section is devoted to the local and global normalization, using scalar mero-
morphic normalizing factors, of standard intertwining operators for H ′

2 attached
to a cuspidal automorphic representation of the Levi factor M ′

0(A) of the minimal
standard parabolic subgroup of H ′

2. The main requirement of the normalization is
that the normalized intertwining operators are holomorphic and non–vanishing in
the regions required for the calculation of the residual spectrum in Section 3.

The normalizing factors are first defined locally, at every place v of k, in the
first three subsections. Subsections 2.1, 2.2, and 2.3 correspond, respectively, to the
possible cases: a generic representation at a split place, a non–generic representation
at a split place and any unitary representation at a non–split place. Subsection 2.4
combines the results of the previous subsections to obtain the global normalizing
factors as a product over all places of the local ones. All the normalizing factors
are given as ratios of L–functions and ε–factors.

2.1. Generic representation at a split place. For the generic split case the
normalization is given by the Langlands–Shahidi method of [31] and [32] for the
standard intertwining operators attached to a generic irreducible representation of
the Levi factor of a standard proper parabolic subgroup of any quasi–split reductive
group over kv. Of course, generic always means generic with respect to the fixed
continuous non-trivial additive character ψv of kv. We omit the details in this
section since the proofs may be found in Section 1.1 of [8] and are based on [38].

In this subsection let G be a split classical group defined over kv. For every subset
θ of the set of simple roots ∆ of G with respect to the fixed maximal split torus,
let Pθ = MθNθ be the corresponding standard parabolic subgroup of G, where Mθ

is the Levi factor and Nθ the unipotent radical. Let a∗Mθ,C be the complexification
of the Z–module of kv–rational characters of Mθ. It is an r–dimensional complex
vector space, and its elements are denoted by s = (s1, . . . , sr) ∈ Cr. Let W be
the Weyl group of G. Let rθ be the adjoint representation of the Langlands dual
L–group of Mθ on the Lie algebra of the L–group of Nθ.

In the special case of a maximal proper parabolic subgroup we have θ = ∆ \ {α}
for a simple root α. Then a∗Mθ,C is one-dimensional (except for G = GLn when it
is one–dimensional modulo center). We fix a basis vector

α̃ = 〈ρP , α∨〉−1ρP ,

where ρP equals half of the sum of positive roots of G not being roots of M , and we
write sα̃ = α̃⊗s for s ∈ C. Observe that in the maximal proper parabolic subgroup
case there is at most one non-trivial element w ∈ W such that w(∆ \ {α}) ⊂ ∆.

For s ∈ a∗Mθ,C, an irreducible representation πv of Mθ(kv) and an element w ∈ W

such that w(θ) ⊂ ∆, we denote by A(s, πv, w) the standard intertwining operator
intertwining the induced representations

I(s, πv) = IndG(kv)
Mθ(kv) (πv|s(·)|) → I(w(s), w(πv)) = IndG(kv)

Mw(θ)
(w(πv)|w(s)(·)|) ,

where |s(·)| and |w(s)(·)| are viewed as characters of Mθ(kv). The scalar meromor-
phic normalizing factor for A(s, πv, w), defined via the Langlands–Shahidi method
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(see [32] for more details), is denoted by r(s, πv, w), and the normalized intertwining
operator N(s, πv, w) is then defined by

A(s, πv, w) = r(s, πv, w)N(s, πv, w).

Following [38], the main result of Section 1.1 of [8] shows the holomorphy and non–
vanishing of the normalized intertwining operators in a certain open set slightly
bigger than the closure of the positive Weyl chamber for a generic irreducible tem-
pered representation πv. For the convenience we recall it here.

Proposition 2.1.1. Let Pθ = MθNθ be the standard proper parabolic subgroup of
G corresponding to θ and w an element of the Weyl group W such that w(θ) ⊂
∆. Let πv be an irreducible generic tempered representation of Mθ(kv). Then the
normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing for
s ∈ a∗Mθ,C such that

〈Re(s), α∨〉 > −1/�α for all α ∈ Φ+
w,θ,

where �α is the length of the corresponding adjoint representation rα in a decom-
position of the standard intertwining operator as in Section 2.1 of [31] and where
Φ+

w,θ is the set of all positive roots α such that wα is a negative root.

Next, we consider the case of any irreducible unitary generic representation but
only for the parabolic subgroup P0 = M0N0 of the split group Sp8. We omit the
proof since it is the same as the proof of the analogous proposition in Section 1.1
of [8].

Proposition 2.1.2. Let P0 = M0N0 be the standard proper parabolic subgroup of
the split group Sp8 with the Levi factor M0

∼= GL2×GL2. Let πv
∼= π1,v⊗π2,v be an

irreducible generic unitary representation of M0(kv). Then, for every w ∈ W (M0),
the normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing
for s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) � Re(s2) � 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 1/2 < s1 < 1 and s1 − s2 = 1.

Finally, we collect in the following corollary normalizing factors for the maximal
standard proper parabolic cases needed in the sequel. The normalizing factors in
non–maximal cases are by definition the products of the normalizing factors of the
maximal cases appearing in a decomposition of the standard intertwining operator
according to the reduced decomposition of the Weyl group element as in Section
2.1 of [31].

Corollary 2.1.3. For the case GL2 × GL2 ⊂ GL4, the normalizing factor for the
standard intertwining operator A((s1, s2), π1,v ⊗ π2,v, w1), where π1,v ⊗ π2,v is an
irreducible generic representation of GL2(kv) × GL2(kv) and w1 the unique non-
trivial Weyl group element, equals
(2.1)

r((s1, s2), π1,v ⊗ π2,v, w1) =
L(s1 − s2, π1,v × π̃2,v)

L(1 + s1 − s2, π1,v × π̃2,v)ε(s1 − s2, π1,v × π̃2,v, ψv)
,

where the L–function and ε–factor are the Rankin–Selberg ones of pairs.
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For the case GL2 ⊂ Sp4, the normalizing factor for the intertwining operator
A(s, πv, w2), where πv is an irreducible generic representation of GL2(kv) and w2

the unique non-trivial Weyl group element, equals

(2.2) r(s, πv, w2) =
L(s, πv)

L(1 + s, πv)ε(s, πv, ψv)
L(2s, ωπv

)
L(1 + 2s, ωπv

)ε(2s, ωπv
, ψv)

,

where the L–functions and ε–factors are the principal Jacquet ones and the Hecke
ones of the central character ωπv

of πv.

2.2. Non–generic representation at a split place. A non–generic irreducible
representation πv

∼= π1,v ⊗ π2,v of M0(kv) ∼= GL2(kv) × GL2(kv) is the local com-
ponent at a split place of a cuspidal automorphic representation π′ ∼= π′

1 ⊗ π′
2 of

M ′
0(A) if at least one of the representations π′

1 and π′
2 is one–dimensional. Then,

the definition of the normalizing factor and the proof of the holomorphy and non–
vanishing of the normalized intertwining operators in the closure of the positive
Weyl chamber follow the proof of Lemma I.8 of [24]. It was already used in Section
1.2 of [8] for an inner form of SO8, and hence we omit the details.

For the moment let G be any classical split group defined over kv. Let Pθ =
MθNθ be the standard proper parabolic subgroup of G defined over kv correspond-
ing to a subset θ of the set of simple roots ∆ with respect to the fixed maximal
split torus. Let πv be an irreducible unitary non–generic representation of Mθ(kv).
Assume that there exists a standard parabolic subgroup of Mθ with the Levi factor
L, an irreducible tempered generic representation τv of L(kv) and s′ ∈ a∗L,C such
that πv is isomorphic to the unique irreducible subrepresentation of

IMθ

L (s′, τv) = IndMθ(kv)
L(kv) (τv|s′(·)|) .

Then, for every Weyl group element w such that w(θ) ⊂ ∆, the following diagram
is commutative:

I(s, πv) ↪→ I(s + s′, τv)

A(s, πv, w)
⏐⏐� ⏐⏐�A(s + s′, τv, w)

I(w(s), w(πv)) ↪→ I(w(s + s′), w(τv)),

where s is embedded into a∗L,C. In other words, A(s, πv, w) is the restriction of
A(s + s′, τv, w) to I(s, πv). Hence, the normalizing factor for A(s, πv, w) is defined
to be

(2.3) r(s, πv, w) = r(s + s′, τv, w),

and the normalized operator N(s, πv, w) is actually the restriction of N(s+s′, τv, w)
to I(s, πv). The proof of the holomorphy and non–vanishing will follow from the
following lemma, which we recall without a proof since it is in fact a part of the
proof of Lemma I.8 in [24].

Lemma 2.2.1. Assume that in the notation as above there exists a Weyl group
element w′ such that the image of the normalized intertwining operator

N(w′−1(s + s′), w′−1(τv), w′) : I(w′−1(s + s′), w′−1(τv)) → I(s + s′, τv)

is I(s, πv). Then, for all s ∈ a∗M,C such that w′−1(s + s′) satisfies the inequalities
of Proposition 2.1.1 for ww′, the normalized intertwining operator N(s, πv, w) is
holomorphic and non–vanishing at s.
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Now, we apply the lemma to the possible cases for M0 ⊂ Sp8 and omit the details
since the proofs follow closely the proofs of the analogous propositions in Section
1.2 of [8]. The basic idea is always to find an appropriate w′ which satisfies both
conditions of the lemma. In some cases such w′ does not exist, and we excluded
those cases in the propositions below. Further investigation of those cases is made
in Section 3, where they are treated as possible poles of the Eisenstein series when
decomposing the residual spectrum. In all the propositions P0 = M0N0 is the
standard proper parabolic subgroup of the split group Sp8 with the Levi factor
M0

∼= GL2 × GL2.

Proposition 2.2.2. Let πv
∼= (χ1,v ◦ detv) ⊗ π2,v be an irreducible non–generic

unitary representation of M0(kv), where χ1,v is a unitary character of k×
v and π2,v

is a unitary generic representation of GL2(kv). Then, for every w ∈ W (M0), the
normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing for
s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) � Re(s2) � 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2.

Proof. Along the same lines as the proof of the last proposition in Section 1.2 of
[8]. �

Proposition 2.2.3. Let πv
∼= π1,v ⊗ (χ2,v ◦ detv) be an irreducible non–generic

unitary representation of M0(kv), where χ2,v is a unitary character of k×
v and π1,v

a unitary generic representation of GL2(kv). Then, for every w ∈ W (M0), the
normalized intertwining operator N(s, πv, w) is holomorphic and non–vanishing for
s = (s1, s2) ∈ a∗M0,C such that

• Re(s1) � Re(s2) � 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (r, 3/2) for some 0 <

r < 1/2; at the exceptional point, if π1,v is not a complementary series
representation of the form π1,v

∼= µv| · |r ⊗ µv| · |−r, where µv is a unitary
character of k×

v , then it is always holomorphic and non–vanishing.

Proof. For the last claim when verifying the surjectivity of the appropriate w′

of Lemma 2.2.1, one uses the irreducibility of certain induced representations for
GL3(kv) and GL4(kv). These are given in [37] and [33]. �

Proposition 2.2.4. Let πv
∼= (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv) be a one–dimensional

non–generic unitary representation of M0(kv), where χ1,v and χ2,v are unitary
characters of k×

v . Then, for every w ∈ W (M0), the normalized intertwining oper-
ator N(s, πv, w) is holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M0,C such
that

• Re(s1) � Re(s2) � 0 except Re(s1) = Re(s2) = 0, i.e. the closure of the
positive Weyl chamber except at the origin,

• 0 < s1 < 1/2 and s2 = 1/2,
• 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (1/2, 3/2); at the excep-

tional point if χ1,v �= χ2,v, then it is always holomorphic and non–vanishing,
while if χ1,v = χ2,v, then it is holomorphic and non–vanishing at least for
w ∈ {1, w2, w1w2, w2w1w2},
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• 1 < s1 < 2 and s1 − s2 = 2, except at (s1, s2) = (3/2,−1/2); at the
exceptional point if χ2,v is not quadratic, then it is always holomorphic
and non–vanishing, while if χ2,v is quadratic, then it is holomorphic and
non–vanishing at least for w ∈ {1, w1, w2w1, w1w2w1}.

Proof. For the third claim see the comment on the proof of the previous proposition
and also [24]. For the last claim one uses the irreducibility of certain induced
representations for Sp4(kv) given in [30], [27] and [28]. �

At the end of this subsection we collect the normalizing factors for the maximal
standard proper parabolic subgroup cases needed in the sequel.

Corollary 2.2.5. For the case GL2 × GL2 ⊂ GL4, the normalizing factor for the
standard intertwining operator A((s1, s2), (χ1,v ◦ detv) ⊗ π2,v, w1), where χ1,v is a
unitary character of k×

v , π2,v is an irreducible unitary generic representation of
GL2(kv) and w1 the unique nontrivial Weyl group element, equals
(2.4)
r((s1, s2), (χ1,v ◦ detv) ⊗ π2,v, w1)

=
L(s1 − s2 − 1/2, χ1,vπ̃2,v)

L(s1 − s2 + 3/2, χ1,vπ̃2,v)ε(s1 − s2 + 1/2, χ1,vπ̃2,v, ψv)ε(s1 − s2 − 1/2, χ1,vπ̃2,v, ψv)
,

where the L–function and ε–factor are the principal Jacquet ones. In the case of
π1,v irreducible unitary generic and π2,v

∼= χ2,v ⊗ detv, where χ2,v is a unitary
character of k×

v , the normalizing factor is of the same form with the principal
Jacquet L–functions and ε–factors for π1,vχ−1

2,v instead of χ1,vπ̃2,v.
For the case GL2 × GL2 ⊂ GL4, the normalizing factor for the standard inter-

twining operator A((s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv), w1), where χ1,v and χ2,v

are unitary characters of k×
v and w1 is the unique non-trivial Weyl group element,

equals

(2.5) r((s1, s2), (χ1,v ◦ detv) ⊗ (χ2,v ◦ detv), w1) = rv(s1 − s2, χ1,vχ−1
2,v),

where for s ∈ C and a unitary character χv of k×
v ,

(2.6)

rv(s, χv) =
L(s, χv)L(s − 1, χv)

L(s + 2, χv)L(s + 1, χv)ε(s + 1, χv, ψv)ε(s, χv, ψv)2ε(s − 1, χv, ψv)
,

and the L–function and ε–factor are the Hecke ones.
For the case GL2 ⊂ Sp4, the normalizing factor for the intertwining operator

A(s, χv ◦ detv, w2), where χv is a unitary character of k×
v and w2 the unique non-

trivial Weyl group element, equals

(2.7)
r(s, χv ◦ detv, w2) =

L(s − 1/2, χv)
L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s − 1/2, χv, ψv)

· L(2s, χ2
v)

L(1 + 2s, χ2
v)ε(2s, χ2

v, ψv)
,

where the L–functions and ε–factors are the Hecke ones of χv and of the central
character χ2

v of χv ◦ detv.

2.3. Non–split place. In this subsection let v ∈ SD be a place of k where D does
not split. By our assumption v is non–archimedean. Let π′

v
∼= π′

1,v ⊗ π′
2,v be a

unitary irreducible representation of the Levi factor M ′
0(kv) ∼= GL′

1(kv) ×GL′
1(kv)

of the minimal parabolic subgroup of H ′
2. Observe that π′

v is supercuspidal since
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M ′
0 has no proper parabolic subgroups defined over kv. Let πv

∼= π1,v ⊗ π2,v be the
local lift of π′

v from M ′
0(kv) to M0(kv) as defined in Section 1 using the Jacquet–

Langlands correspondence. It is a square–integrable representation of M0(kv).
For s ∈ a∗M ′

0,C and w ∈ W ′, the standard intertwining operator A(s, π′
v, w) is

defined as in the split case. For the precise definition see Section 2 of [29] or
Section 1.3 of [8]. It is important to choose the Haar measures on the unipotent
radicals for the split group and its inner form compatibly as explained in Section
2 of [29]. See also [26]. In this case a decomposition of the standard intertwining
operators according to a reduced decomposition of the Weyl group element as in
Section 2.1 of [31] still holds.

The normalizing factor for the standard intertwining operator A(s, π′
v, w) is de-

fined to be

(2.8) r(s, π′
v, w) = r(s, πv, w),

where the normalizing factor on the right is the generic split case normalizing factor
attached to the local lift πv which is square–integrable. Then, the normalized
intertwining operator is defined by

(2.9) A(s, π′
v, w) = r(s, π′

v, w)N(s, π′
v, w),

as usual. Here we just give a sketch of the proof of the holomorphy and non–
vanishing of N(s, π′

v, w) in the required regions since it follows closely the same
proof for an inner form of SO8 as in Section 1.3 of [8]. It is based on the comparison
of the Plancherel formula of [29].

Proposition 2.3.1. Let π′
v
∼= π′

1,v ⊗ π′
2,v be an irreducible unitary representation

of the Levi factor M ′
0(kv). Then, for every w ∈ W ′, the normalized intertwining

operator N(s, π′
v, w) is holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M ′

0,C

such that
• Re(s1) � Re(s2) � 0, i.e. the closure of the positive Weyl chamber,
• 0 < s1 < 1/2 and s2 = 1/2,
• if π′

2,v is one–dimensional, then 0 < s1 < 3/2 and s2 = 3/2,
• 1/2 < s1 < 1 and s1 − s2 = 1,
• 1 < s1 < 2 and s1 − s2 = 2 except at (s1, s2) = (3/2,−1/2); at the excep-

tional point if the central character ωπ′
2,v

of π′
2,v is non–trivial, then it is

always holomorphic and non–vanishing, while if ωπ′
2,v

is trivial, then it is
holomorphic and non–vanishing at least for w ∈ {1, w1, w2w1, w1w2w1}.

Proof. The proof goes along the same lines as in the proof of the analogous propo-
sition in Section 1.3 of [8]. The third claim would not be true if one removed the
condition of one–dimensionality. The reason lies in the reducibility points for the
induced representations of GL′

2(kv) which are a special case of the results in [34].
For the last claim one needs the irreducibility of certain induced representations for
H ′

1(kv) obtained in [29]. �

In the following corollaries we collect the normalizing factors for the maximal
standard proper parabolic subgroup cases needed in the sequel. The first is a direct
consequence of equation (2.8).

Corollary 2.3.2. For the case GL′
1 × GL′

1 ⊂ GL′
2, the normalizing factor for

the standard intertwining operator A((s1, s2), π′
1,v ⊗ π′

2,v, w1), where π′
1,v ⊗ π′

2,v is
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an irreducible unitary representation of GL′
1(kv) × GL′

1(kv) and w1 the unique
nontrivial Weyl group element, equals
(2.10)

r((s1, s2), π′
1,v ⊗ π′

2,v, w1) =
L(s1 − s2, π1,v × π̃2,v)

L(1 + s1 − s2, π1,v × π̃2,v)ε(s1 − s2, π1,v × π̃2,v, ψv)
,

where the L–function and ε–factor are the Rankin–Selberg ones of pairs for the local
lifts π1,v and π2,v.

For the case GL′
1 ⊂ H ′

1, the normalizing factor for the intertwining operator
A(s, π′

v, w2), where π′
v is an irreducible unitary representation of GL′

1(kv) and w2

the unique nontrivial Weyl group element, equals

(2.11) r(s, π′
v, w2) =

L(s, πv)
L(1 + s, πv)ε(s, πv, ψv)

L(2s, ωπv
)

L(1 + 2s, ωπv
)ε(2s, ωπv

, ψv)
,

where the L–functions and ε–factors are the principal Jacquet ones of the local lift
πv and the Hecke ones of the central character ωπv

of πv. Observe that ωπ′
v

= ωπv
.

The next corollary gives the normalizing factors in a more precise form if at
least one of the representations π′

1,v and π′
2,v is one–dimensional. The form of the

normalizing factors is made suitable for obtaining the global normalizing factors in
Subsection 2.4.

Recall from Section 1 that the local lift of the one–dimensional representation
χv ◦ det′v of GL′

1(kv), where χv is a unitary character of k×
v , is the Steinberg

representation Stχv
of GL2(kv). Then, the corollary is obtained from the previous

corollary using the expressions for the Rankin–Selberg and principal Jacquet L–
functions and ε–factors involving the Steinberg representations and the fact that
the central character of Stχv

is χ2
v. These expressions are given in Theorem (3.1),

Sections 8 and 9 of [15] and Section (3.1) of [13].

Corollary 2.3.3. For the case GL′
1 × GL′

1 ⊂ GL′
2, the normalizing factor for the

standard intertwining operator A((s1, s2), (χ1,v ◦ det′v) ⊗ π′
2,v, w1), where χ1,v is a

unitary character of k×
v , π2,v is the local component at v of a non–one–dimensional

cuspidal automorphic representation of GL′
1(A) and w1 is the unique nontrivial

Weyl group element, equals
(2.12)
r((s1, s2), (χ1,v ◦ det′v) ⊗ π′

2,v, w1)

=
L(s1 − s2 − 1/2, χ1,vπ̃2,v)

L(s1 − s2 + 3/2, χ1,vπ̃2,v)ε(s1 − s2 + 1/2, χ1,vπ̃2,v, ψv)ε(s1 − s2 − 1/2, χ1,vπ̃2,v, ψv)
,

where the L–function and ε–factor are the principal Jacquet ones for χ1,vπ̃2,v and
π2,v is the local lift of π′

2,v. In the case of π′
1,v being the local component at v of a

non–one–dimensional cuspidal automorphic representation of GL′
1(A) and π′

2,v
∼=

χ2,v ⊗ det′v, where χ2,v is a unitary character of k×
v , the normalizing factor can be

written in the same form with the principal Jacquet L–functions and ε–factors for
π1,vχ−1

2,v instead of χ1,vπ̃2,v.
For the case GL′

1 × GL′
1 ⊂ GL′

2, the normalizing factor for the standard inter-
twining operator A((s1, s2), (χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v), w1), where χ1,v and χ2,v

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3988 NEVEN GRBAC

are unitary characters of k×
v and w1 is the unique nontrivial Weyl group element,

equals
(2.13)

r((s1, s2), (χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v), w1)

= rv(s1 − s2, χ1,vχ−1
2,v)

L(s1 − s2, χ1,vχ−1
2,v)L(s1 − s2 + 1, χ1,vχ−1

2,v)

L(−(s1 − s2), χ−1
1,vχ2,v)L(1 − (s1 − s2), χ−1

1,vχ2,v)
,

where rv(s, χv), for s ∈ C and a unitary character χv, is defined by equation (2.6)
in Corollary 2.2.5 and where the L–functions and ε–factors are the Hecke ones.

For the case GL′
1 ⊂ H ′

1, the normalizing factor for the intertwining operator
A(s, χv ◦ det′v, w2), where χv is a unitary character of k×

v and w2 the unique non-
trivial Weyl group element, equals

(2.14)
r(s, χv ◦ det′v, w2) =

L(s − 1/2, χv)
L(s + 3/2, χv)ε(s + 1/2, χv, ψv)ε(s − 1/2, χv, ψv)

· L(s + 1/2, χv)
L(1/2 − s, χ−1

v )
L(2s, χ2

v)
L(1 + 2s, χ2

v)ε(2s, χ2
v, ψv)

,

where the L–functions and ε–factors are the Hecke ones.

2.4. Global normalization. In this subsection we combine the local results of the
previous subsections to obtain the global normalizing factors. Let π′ ∼= π′

1⊗π′
2 be a

cuspidal automorphic representation of the Levi factor M ′
0(A) ∼= GL′

1(A)×GL′
1(A)

in H ′
2(A). In the rest of the paper we distinguish three cases depending on the type

of π′:
A. Both π′

1 and π′
2 are not one–dimensional.

B. One among π′
1 and π′

2 is one–dimensional and the other is not.
C. Both π′

1 and π′
2 are one–dimensional.

The global lifts defined in Section 1 of π′, π′
1 and π′

2 are denoted π, π1 and π2.
Recall that if π′

i is not one–dimensional, then πi is cuspidal.
Let π′ ∼= ⊗vπ′

v, where π′
v
∼= π′

1,v ⊗ π′
2,v, be the decomposition of a cuspidal

automorphic representation into the restricted tensor product as in [4]. For s ∈
a∗M ′

0,C and w ∈ W ′, the global standard intertwining operator denoted by A(s, π′, w)
is defined by the global integral of the same form as the local integrals defining the
local standard intertwining operators. For more details see Section II.1.6 of [25]. It
is a tensor product of the local intertwining operators over all places. At unramified
places the local standard intertwining operator sends the unique suitably normalized
vector invariant for the fixed maximal compact subgroup into the invariant vector
normalized in the same way multiplied by the local normalizing factor r(s, π′

v, w).
The global normalizing factor for A(s, π′, w) is defined as

(2.15) r(s, π′, w) =
∏
v

r(s, π′
v, w).

It is meromorphic in s ∈ a∗M ′
0,C. Then, the global normalized intertwining operator

is given by
A(s, π′, w) = r(s, π′, w)N(s, π′, w).

It is a tensor product of the local normalized intertwining operators over all places.
At unramified places it just sends the suitably normalized invariant vector for the
fixed maximal compact subgroup into the invariant one normalized in the same way.
The following theorem deals with the holomorphy and non–vanishing of the global
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normalized intertwining operators. The standard proof, which is omitted, reduces
the question to the local results of the previous subsection. The excluded points
of the theorem are just the possible poles of the normalized intertwining operators,
and in the calculation we regard these points as possible poles of the Eisenstein
series.

Theorem 2.4.1. Let π′ ∼= π′
1 ⊗ π′

2 be a cuspidal automorphic representation of
the Levi factor M ′

0(A) in H ′
2(A). Then, for every w ∈ W ′, the global normalized

operator N(s, π′, w) is holomorphic and non–vanishing for s = (s1, s2) ∈ a∗M ′
0,C

such that

• Re(s1) � Re(s2) � 0 except at Re(s1) = Re(s2) = 0 in the case C, i.e. in
the closure of the positive Weyl chamber except at the origin in the case C,

• 0 < s1 < 1/2 and s2 = 1/2 in all the cases,
• in the case B with π′

2 one–dimensional, 0 < s1 < 3/2 and s2 = 3/2,
except at (s1, s2) = (r, 3/2) for certain 0 < r < 1/2 depending on π′; the
exceptional point does not appear if the global lift π1 of π′

1 satisfies the
Ramanujan conjecture,

• in the case C, 0 < s1 < 3/2 and s2 = 3/2, except at (s1, s2) = (1/2, 3/2);
at the exceptional point it is always holomorphic and non–vanishing if w ∈
{1, w2, w1w2, w2w1w2},

• in the case A, 1/2 < s1 < 1 and s1 − s2 = 1,
• in the case C, 1 < s1 < 2 and s1 − s2 = 2, except at (s1, s2) = (3/2,−1/2);

at the exceptional point it is always holomorphic and non–vanishing if w ∈
{1, w1, w2w1, w1w2w1}.

Finally, for Cases A, B and C, we collect the global normalizing factors for the
maximal standard proper parabolic subgroups needed in the sequel. For GL′

1 ×
GL′

1 ⊂ GL′
2 in Case A the local normalizing factors are given by equation (2.1)

of Corollary 2.1.3 and (2.10) of Corollary 2.3.2. For GL′
1 ⊂ H ′

1 in Case A the
local normalizing factors are given by equation (2.2) of Corollary 2.1.3 and (2.11)
of Corollary 2.3.2.

Corollary 2.4.2 (Case A). For GL′
1 ×GL′

1 ⊂ GL′
2, the global normalizing factor

for the standard intertwining operator A((s1, s2), π′
1 ⊗ π′

2, w1), where π′
1 ⊗ π′

2 is a
case A cuspidal automorphic representation of GL′

1(A) × GL′
1(A), equals

(2.16) r((s1, s2), π′
1 ⊗ π′

2, w1) =
L(s1 − s2, π1 × π̃2)

L(1 + s1 − s2, π1 × π̃2)ε(s1 − s2, π1 × π̃2)
,

where the L–function and ε–factor are the global Rankin–Selberg ones of pairs for
the global lifts π1 and π2.

For GL′
1 ⊂ H ′

1, the global normalizing factor for the standard intertwining op-
erator A(s, π′, w2), where π′ is a cuspidal automorphic representation of GL′

1(A)
which is not one–dimensional, equals

(2.17) r(s, π′, w2) =
L(s, π)

L(1 + s, π)ε(s, π)
L(2s, ωπ)

L(1 + 2s, ωπ)ε(2s, ωπ)
,

where the L–function and ε–factor are the global principal Jacquet ones for the
global lift π and the global Hecke ones for the central character ωπ of the global lift
π. Observe that ωπ = ωπ′ .
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For GL′
1 × GL′

1 ⊂ GL′
2 in Case B the local normalizing factors are given by

equation (2.4) of Corollary 2.2.5 and (2.12) of Corollary 2.3.3. For GL′
1 ⊂ H ′

1 in
Case B the global normalizing factor is already obtained in the corollaries for either
Case A or Case C.

Corollary 2.4.3 (Case B). For GL′
1 ×GL′

1 ⊂ GL′
2, the global normalizing factor

for the standard intertwining operator A((s1, s2), (χ1 ◦ det′) ⊗ π′
2, w1), where χ1

is a unitary character of A×/k× and π′
2 a cuspidal automorphic representation of

GL′
1(A) which is not one–dimensional, equals

(2.18)
r((s1, s2), (χ1 ◦ det′) ⊗ π′

2, w1)

=
L(s1 − s2 − 1/2, χ1π̃2)

L(s1 − s2 + 3/2, χ1π̃2)ε(s1 − s2 + 1/2, χ1π̃2)ε(s1 − s2 − 1/2, χ1π̃2)
,

where the L–function and ε–factor are the global principal Jacquet ones for χ1π̃2

and π2 is the global lift of π′
2. For the intertwining operator A((s1, s2), π′

1 ⊗ (χ2 ◦
det′), w1), where now π′

1 is not one–dimensional and χ2 is a unitary character of
A

×/k×, the normalizing factor is of the same form with the global principal Jacquet
L–function and ε–factor for π1χ

−1
2 instead of χ1π̃2.

For GL′
1 × GL′

1 ⊂ GL′
2 in Case C the local normalizing factors are given by

equation (2.5) of Corollary 2.2.5 and (2.13) of Corollary 2.3.3. For GL′
1 ⊂ H ′

1 in
Case C the local normalizing factors are given by equation (2.7) of Corollary 2.2.5
and (2.14) of Corollary 2.3.3.

Corollary 2.4.4 (Case C). For GL′
1 ×GL′

1 ⊂ GL′
2, the global normalizing factor

for the standard intertwining operator A((s1, s2), (χ1 ◦det′)⊗ (χ2 ◦det′), w1), where
χ1 and χ2 are unitary characters of A

×/k×, equals
(2.19)

r((s1, s2), (χ1 ◦ det′) ⊗ (χ2 ◦ det′), w1)

= r(s1 − s2, χ1χ
−1
2 )

∏
v∈SD

L(s1 − s2, χ1,vχ−1
2,v)L(s1 − s2 + 1, χ1,vχ−1

2,v)

L(−(s1 − s2), χ−1
1,vχ2,v)L(1 − (s1 − s2), χ−1

1,vχ2,v)
,

where, for s ∈ C and a unitary character χ of A×/k×, r(s, χ) is a product over all
places of rv(s, χv) defined in equation (2.6) of Corollary 2.2.5, i.e.

(2.20) r(s, χ) =
L(s, χ)L(s − 1, χ)

L(s + 2, χ)L(s + 1, χ)ε(s + 1, χ)ε(s, χ)2ε(s − 1, χ)
,

and the L–functions and ε–factors are the global and local Hecke ones.
For GL′

1 ⊂ H ′
1, the global normalizing factor for the intertwining operator

A(s, χ ◦ det′, w2), where χ is a unitary character of A×/k×, equals

(2.21)

r(s, χ ◦ det′, w2) =
L(s − 1/2, χ)

L(s + 3/2, χ)ε(s + 1/2, χ)ε(s − 1/2, χ)

·
∏

v∈SD

L(s + 1/2, χv)
L(1/2 − s, χ−1

v )
· L(2s, χ2)
L(1 + 2s, χ2)ε(2s, χ2)

,

where the L–functions and ε–factors are the global and local Hecke ones.
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3. Calculation of the residual spectrum

Let L2
res denote the residual spectrum of H ′

2(A). By definition it is the orthogonal
complement of the cuspidal spectrum inside the discrete spectrum of H ′

2(A). By
the Langlands spectral theory, explained in [20] and [25], the constituents of L2

res

are obtained by taking the iterated residues at the poles of the Eisenstein series
attached to cuspidal automorphic representations of the Levi factors of standard
proper parabolic subgroups of H ′

2. In this paper we decompose the part L2
res,M ′

0

of the residual spectrum coming from the poles of the Eisenstein series attached to
cuspidal automorphic representations of the Levi factor M ′

0(A) ∼= GL′
1(A)×GL′

1(A)
of the minimal parabolic subgroup P ′

0(A) of H ′
2(A). Now, very briefly, we explain

the application of the Langlands spectral theory in our case. For more details see
Section V of [25] or, for the low rank examples, [16] and [8].

3.1. Brief overview of the method. Let π′ be a cuspidal automorphic repre-
sentation of M ′

0(A). Let s ∈ a∗M ′
0,C and fs ∈ I(s, π′), where the dependency of

automorphic forms fs on s is analytic on a∗M ′
0,C and Paley–Wiener with values in

the space of the induced representation. Then, the Eisenstein series is defined as
the analytic continuation from the domain of the convergence of the series

(3.1) E(s, g; fs, π
′) =

∑
γ∈P ′

0(k)\H′
2(k)

fs(γg)

for g ∈ H ′
2(A). It is meromorphic as a function of s. By the Langlands spectral

theory, the contribution of π′ to the whole space of square–integrable automorphic
forms of H ′

2(A) is generated by the integrals

(3.2) g 
→ 1
(2πi)2

∫
Re(s)=s0

E(s, g; fs, π
′)ds,

where s0 is deep enough in the positive Weyl chamber so that the integral defining
the global intertwining operators and the sum defining the Eisenstein series converge
absolutely at s0.

During the calculation of the poles of the Eisenstein series we always assume that
they are real. There is no loss of generality because that can be achieved just by
twisting a cuspidal automorphic representation of a Levi factor by the appropriate
imaginary power of the absolute value of the reduced norm of the determinant.
Hence, this assumption is just a convenient choice of coordinates, and in the sequel
we always assume that s1, s2 ∈ R. In the figures in the following subsections only
the real part of a∗M ′

0,C is presented.
When deforming the line of integration in (3.2) from s0 to the origin inside the

positive Weyl chamber as in the figures below, we cross the singular hyperplanes
which are the poles of the Eisenstein series. The integral at the origin gives a
part of the continuous spectrum, while the residues at the singular hyperplanes are
the possible contributions to the residual spectrum. Next, we take the coordinate
system on the singular hyperplane such that the origin is the orthogonal projection
of the origin in a∗M ′

0,C and continue with the same procedure. In such a way after
taking the iterated residues at the poles of the Eisenstein series we are left with the
contribution of π′ to L2

res,M ′
0
.

The analytic properties of the Eisenstein series coincide with the analytic prop-
erties of their constant terms along P ′

0. Therefore, instead of the poles and square
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integrability of the Eisenstein series we can study the poles and square integrability
of their constant terms. The benefit lies in the fact that, by Proposition II.1.7. of
[25], the constant term equals

(3.3)
∑

w∈W ′

A(s, π′, w)fs(g),

and for the standard intertwining operators A(s, π′, w) we have defined in Section
2 the scalar meromorphic normalizing factors r(s, π′, w). By Theorem 2.4.1, the
normalized intertwining operators N(s, π′, w) are holomorphic and non–vanishing
in the regions required in the calculations below. Thus, the calculation of the poles
of (3.3) reduces to the poles of the global normalizing factors. The points excluded
in Theorem 2.4.1 are also treated as possible poles during calculation.

The first step in the decomposition of L2
res,M ′

0
is according to the type of π′, i.e.

Cases A, B or C. Thus,

(3.4) L2
res,M ′

0
∼= L2

A ⊕ L2
B ⊕ L2

C ,

where L2
A, L2

B and L2
C are the parts of L2

res,M ′
0

obtained as the iterated residues at
the poles of the Eisenstein series attached to Cases A, B and C cuspidal automorphic
representations of M ′

0(A), respectively. In the following Subsections 3.2 and 3.3 we
decompose L2

B and L2
C . The decomposition of L2

A is omitted because it can be
rewritten line by line from the Case A decomposition in Section 2.2 of [8]. The only
difference is the additional non–vanishing condition at s = 1/2 for the principal
L–functions L(s, πi) attached to the global Jacquet–Langlands lifts of π′

i. This
condition comes from the principal L–function in the Case A global normalizing
factor for the H ′

1 intertwining operator attached to w2 given in Corollary 2.4.2.
For the inner form G′

2 of SO8 the principal L–function does not appear in the
corresponding normalizing factor.

Before proceeding to the calculation we recall the Langlands square integrability
criterion given in Section I.4.11 of [25] and on page 104 of [20], and the analytic
properties of L–functions given for the Hecke L–functions in [36], for the principal
Jacquet L–functions for GL2 in [14] and for the Rankin–Selberg L–functions of
pairs for GL2 × GL2 in [12]. Observe that the global Hecke L–function L(s,1) for
the trivial character 1 of A×/k× is nothing other than the Dedekind ζ–function
of the algebraic number field k. Recall that in this paper a unitary character µ of
A

×/k× is said to be quadratic if µ2 is trivial.

Lemma 3.1.1. The space obtained as the iterated residue at the pole s = (s1, s2) ∈
a∗M ′

0,C of the Eisenstein series attached to a cuspidal automorphic representation
π′ of M ′

0(A) consists of square–integrable automorphic forms if and only if w(s) =
(s′1, s′2) satisfies s′1 < 0 and s′1+s′2 < 0, for every w ∈ W ′, such that the correspond-
ing intertwining operator in the constant term (3.3) gives a non-trivial contribution.

Lemma 3.1.2. The global Rankin–Selberg L–function of pairs L(s, σ1 × σ2) for
cuspidal automorphic representations σ1 and σ2 of GL2(A) has simple poles at
s = 0 and s = 1 if σ1

∼= σ̃2, and it is entire otherwise. It has no zeroes for
Re(s) � 1.

The global principal Jacquet L–function L(s, σ) for a cuspidal automorphic rep-
resentation σ of GL2(A) is entire. It has no zeroes for Re(s) � 1.
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The global Hecke L–function L(s, µ) for a unitary character µ of A×/k× has
simple poles at s = 0 and s = 1 if µ is trivial, and it is entire otherwise. It has no
zeroes for Re(s) � 1.

The local Hecke L–function L(s, µv) for a unitary character µv of a non–archi-
medean field k×

v has the only real simple pole at s = 0 if µv is trivial, and it is
entire otherwise. It has no zeroes.

The proof of the following elementary lemma repeatedly used in the calculations
is omitted.

Lemma 3.1.3. Let L(s) be a meromorphic function on C having only simple poles,
L(0) �= 0, and satisfying the functional equation L(s) = ε(s)L(1− s), where ε(s) is
an entire non–vanishing function such that ε(0)ε(1) = 1. Then

L(s)
L(1 + s)ε(s)

∣∣∣∣
s=0

=
{

−1, if s = 0 is a simple pole of L(s),
1, otherwise.

The following simple lemma is very helpful in describing the images of the nor-
malized intertwining operators obtained below as the residues of the constant terms
of the Eisenstein series. The same lemma was used several times in our previous
paper [8]. Hence, here we skip the details. When applying the lemma, w′ and w′′

are carefully chosen in such a way that, besides (1) and (2), w′′ww′ is the longest
Weyl group element and w′−1(s + s′) is at least in the closure of the positive Weyl
chamber. This enables a description of the image using the Langlands classification.

Lemma 3.1.4. Let πv be an irreducible unitary representation of the Levi factor
M0(kv) of the standard parabolic subgroup of Sp8, s ∈ a∗M0,C and w ∈ W (M0). As-
sume that there is a Levi subgroup L ⊂ M0, s′ ∈ a∗L,C and a tempered representation
τv of L(kv) such that πv is the unique irreducible subrepresentation of the induced
representation IM

L (s′, τv). Suppose that w′ and w′′ are the elements of the Weyl
group W of Sp8 such that the

(1) image of the normalized intertwining operator N(w′−1(s+s′), w′−1(τv), w′)
is I(s, πv),

(2) restriction of the normalized intertwining operator N(w(s + s′), w(τv), w′′)
to the induced representation I(w(s), w(πv)) is injective,

where we identified s with an element of a∗L,C. Then the image of the
normalized intertwining operator N(s, πv, w) is isomorphic to the image of
N(w′−1(s + s′), w′−1(τv), w′′ww′).

Proof. The lemma is a simple consequence of the decomposition property of nor-
malized intertwining operators. �

3.2. Case B. In this case a cuspidal automorphic representation π′ ∼= π′
1 ⊗ π′

2 of
M ′

0(A) is such that one of the representations π′
1 and π′

2 is one–dimensional and the
other is not. The global normalizing factors for the maximal standard proper para-
bolic subgroup with the Levi factor GL′

1 ×GL′
1 ⊂ GL′

2 are given in Corollary 2.4.3
and the Levi factor GL′

1 ⊂ H ′
1 in Corollary 2.4.2 for non–one–dimensional represen-

tations and Corollary 2.4.4 for one–dimensional representations. By the analytic
properties of the L–functions of Lemma 3.1.2, the possible singular hyperplanes of
the normalizing factors for the intertwining operators in the sum (3.3) are shown
in Figure 3.1 if π′

1 is one–dimensional and in Figure 3.2 if π′
2 is one–dimensional.
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Figure 3.1. Case B singular hyperplanes for π′
1 one–dimensional

There are four possible iterated poles at points

B1(3/2, 1/2), B2(1/2, 1/2)

if π′
1 is one–dimensional and

B3(1/2, 3/2), B4(1/2, 1/2)

if π′
2 is one–dimensional. Note that we do not consider the possible iterated pole

at B5(r, 3/2) when π′
2 is one–dimensional. By Theorem 2.4.1, if the Ramanujan

conjecture holds for cuspidal automorphic representations of GL2(A), then B5 is
not a pole. Although in principle one could describe the hypothetical contribution
at B5 in the same way as for the poles at C4 or C6 in Section 3.3, we skip that here
since it would not bring any new insight. Having that in mind, L2

B decomposes into

L2
B
∼= L2

B1
⊕ L2

B2
⊕ L2

B3
⊕ L2

B4
.

The cases of B1 and B3, as well as B2 and B4, are in fact the same. For a pair
of points the results and the proofs can be obtained from each other just by inter-
changing the roles of π′

1 and π′
2, s1 and s2, etc. Therefore, we state and prove only

the decomposition of L2
B1

and L2
B2

.
Before giving the decomposition of L2

B1
, consider the induced representation

IndGL′
2(kv)

GL′
1(kv)×GL′

1(kv)((1v ◦ det′v)ν3/2 ⊗ π′
2,vν1/2)

∼= IndGL′
2(kv)

GL′
1(kv)×GL′

1(kv)((1v ◦ det′v)ν1/2 ⊗ π′
2,vν−1/2),

where 1v is the trivial character of k×
v and π′

2,v is a unitary, generic at split places,
irreducible representation with the trivial central character. It is irreducible as a
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Figure 3.2. Case B singular hyperplanes for π′
2 one–dimensional

consequence of [3], [2], and [24]. Hence, the normalized intertwining operator

N(1, (1v ◦ det′v) ⊗ π′
2,v, w1),

where 1 = 1α̃ = (1/2,−1/2), acts as Id or −Id. We denote the sign by ηv. Its
inverse, required in the decomposition of LB3 , acts by the same scalar.

Theorem 3.2.1. The subspace L2
B1

of the residual spectrum of H ′
2(A) decomposes

into
L2

B1
=

⊕
π′

B1(π′),

where the sum is over all cuspidal automorphic representations π′ ∼= (1 ◦ det′)⊗ π′
2

of M ′
0(A) such that 1 is the trivial character of A

×/k×, π′
2 is not one–dimensional,

the central character ωπ′
2

of π′
2 is trivial, L(1/2, π2) �= 0 and the parity condition

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

∏
v

ηv �= −1

holds, where π2 is the global lift of π′
2.

B1(π′) is the irreducible space of automorphic forms spanned by the iterated
residue at s = (3/2, 1/2) of the Eisenstein series attached to π′. The constant
term map gives rise to an isomorphism of B1(π′) and the image of the normalized
intertwining operator N((3/2, 1/2), π′, w2w1w2).

Proof. Let π′ ∼= (χ1 ◦ det′) ⊗ π′
2 be a Case B cuspidal automorphic representation

of M ′
0(A). The iterated pole at B1(3/2, 1/2) of the Eisenstein series attached to

π′ is first calculated along the singular hyperplane 2s2 = 1 as shown in Figure
3.1. The pole along 2s2 = 1 occurs if only if the central character ωπ′

2
is trivial

and L(1/2, π2) �= 0. In the new variable z = s1 the residues are up to a non-zero
constant given in Table 3.1, where 1 is the trivial character of A×/k×. Observe
that π2 is selfcontragredient since ωπ2 is trivial.
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Table 3.1. Residues along 2s2 = 1 of Case B normalizing factors
for π′

1 = χ1 ◦ det′

w Res2s2=1r(s, π
′, w)

w2 1

w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2 )

L(z,χ1π2)
L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)

w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z−1/2,χ1)ε(z+1/2,χ1)

L(2z,χ2
1)

L(1+2z,χ2
1)ε(2z,χ2

1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v )

w1w2w1w2
L(z,χ1π2)

L(z+2,χ1π2)ε(z,χ1π2)ε(z+1,χ1π2)
L(z−1,χ1π2)

L(z+1,χ1π2)ε(z−1,χ1π2)ε(z,χ1π2 )

L(z−1/2,χ1)
L(z+3/2,χ1)ε(z−1/2,χ1)ε(z+1/2,χ1)

L(2z,χ2
1)

L(1+2z,χ2
1)ε(2z,χ2

1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v )

The terms in Table 3.1 have the pole at B1(3/2, 1/2), i.e. z = 3/2, if and only
if χ1 is trivial. Up to a non-zero constant the residue of the term corresponding to
w2w1w2 equals

N((3/2, 1/2), π′, w2w1w2),
while after applying the global functional equation for the L–functions, the residue
of the term corresponding to w1w2w1w2 equals

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

N((3/2, 1/2), π′, w1w2w1w2).

The residue acting at a decomposable vector of the induced representation gives

N((3/2, 1/2), π′, w2w1w2)
[
Id +

L(1/2, π2)L(−1/2, π2)
L(5/2, π2)L(3/2, π2)

N((3/2, 1/2), π′, w1)
]

.

Now, the non–vanishing condition for the square–bracket gives the parity condition
of the theorem. The Langlands square–integrability criterion of Lemma 3.1.1 is
satisfied. As in Case B of [8], the irreducibility of the image of the normalized
operator N((3/2, 1/2), π′, w2w1w2) is proved. �

Before giving the decomposition of L2
B2

we consider the induced representation

IndGL′
2(kv)

GL′
1(kv)×GL′

1(kv)

(
(χ1,v ◦ det′v) ⊗ π′

2,v

)
,

where π′
2,v is a unitary, generic at split places, irreducible representation with the

trivial central character and χ1,v a quadratic character of k×
v . It is irreducible at

all places by [3], [2], and [33]. Hence, the normalized intertwining operator

N(0, (χ1,v ◦ det′v) ⊗ π′
2,v, w1)

acts as Id or −Id. We denote the sign by ηv. Its inverse required in the decompo-
sition of L2

B4
acts by the same scalar.

Furthermore, consider the image of the normalized intertwining operator

N((1/2, 1/2), π′
v, w1w2w1w2),

where π′
v
∼= (χ1,v ◦ det′v) ⊗ π′

2,v and χ1 and π′
2,v are as above. At non–split places

the image is irreducible by the Langlands classification since π′
v is supercuspidal.

At split places, the image is described in terms of the Langlands classification
as in Section 2.3 of [8]. However, due to more complicated reducibilities for the
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symplectic group, the image is irreducible if and only if χ1,v is trivial. If χ1,v is a
non–trivial quadratic character, it is a sum of two irreducible constituents. In both
cases, we denote the constituents by Π±

v and make a convention that Π−
v is trivial

if χ1,v is trivial. In terms of the Langlands classification, if π2,v is tempered, then
Π±

v is the quotient of the standard module

IndSp8(kv)
GL1(kv)×GL2(kv)×SL2(kv)

(
χ1,v| · | ⊗ π2,vν1/2 ⊗ τ±

v

)
,

while if π2,v is a complementary series attached to a unitary character µv of k×
v

and an exponent 0 < r < 1/2, then it is the quotient of the standard module

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(
χ1,v| · | ⊗ µvν1/2+r ⊗ µvν1/2−r ⊗ τ±

v

)
.

Here τ±
v are irreducible tempered representations of SL2(kv) defined by

IndSL2(kv)
GL1(kv)χ1,v

∼= τ+
v ⊕ τ−

v ,

where τ−
v is trivial if χ1,v is trivial.

Theorem 3.2.2. The subspace L2
B2

of the residual spectrum of H ′
2(A) decomposes

into

L2
B2

=
⊕
π′

B2(π′),

where the sum is over all cuspidal automorphic representations π′ ∼= (χ1 ◦det′)⊗π′
2

of M ′
0(A) such that χ1 is a non-trivial quadratic character, χ1,v is non-trivial for

all v ∈ SD, π′
2 is not one–dimensional, the central character ωπ′

2
of π′

2 is trivial,
L(1/2, π2) �= 0 and L(1/2, χ1π2) �= 0, where π2 is the global lift of π′

2, and the parity
condition

∏
v ηv = 1 holds.

B2(π′) is the space of automorphic forms spanned by the iterated residue at s =
(1/2, 1/2) of the Eisenstein series attached to π′. The constant term map gives rise
to an isomorphism of B2(π′) and the sum of the irreducible representations of the
form ⊗vΠ′

v, where Π′
v is one of at most two irreducible components of the image of

N((1/2, 1/2), π′
v, w1w2w1w2) and at almost all split places it is Π+

v .

Proof. The proof goes along the same lines as the proof of the previous theorem.
The residues along 2s2 = 1 are already given in Table 3.1. Now, the pole at z = 1/2
of the terms in Table 3.1 is obtained if and only if χ1 is a quadratic character such
that χ1,v is non-trivial at all v ∈ SD and L(1/2, χ1π2) �= 0. The local condition
comes from the local Hecke L–function in the denominator of the global normalizing
factors which would otherwise cancel the pole. Again, using the global functional
equation and decomposing, the iterated residue at B2(1/2, 1/2) equals

N((1/2, 1/2), π′, w2w1w2) [Id + N((1/2, 1/2), π′, w1)] .

The non–vanishing of the square–bracket gives the parity condition. The square–
integrability criterion of Lemma 3.1.1 is satisfied. Since N((1/2, 1/2), π′, w1) is an
isomorphism, the image of N((1/2, 1/2), π′, w2w1w2) is isomorphic to the image of
N((1/2, 1/2), π′, w1w2w1w2), which was decomposed at every place just before the
statement of the theorem. Since an automorphic representation is unramified at
almost all places, Π′

v = Π+
v at almost all split places. �
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Figure 3.3. Case C singular hyperplanes

3.3. Case C. In this case π′ ∼= π′
1 ⊗ π′

2 is a cuspidal automorphic representation
of M ′

0(A) such that π′
i = χi ◦ det′, for i = 1, 2, where χi is a unitary character

of A×/k×. The global normalizing factors of the standard intertwining operators
in the sum (3.3) are the products of the maximal proper parabolic subgroup cases
given in Corollary 2.4.4. By the analytic properties of the L–functions of Lemma
3.1.2, the possible singular hyperplanes of the terms in the sum (3.3) are given in
Figure 3.3. There are eight possible iterated poles denoted as in Figure 3.3 by

C1(7/2, 3/2), C2(5/2, 1/2), C3(2, 0), C4(3/2,−1/2),

C5(3/2, 3/2), C6(1/2, 3/2), C7(3/2, 1/2), C8(1/2, 1/2).

Hence, L2
C decomposes accordingly into

L2
C
∼= L2

C1
⊕ L2

C2
⊕ L2

C3
⊕ L2

C4
⊕ L2

C5
⊕ L2

C6
⊕ L2

C7
⊕ L2

C8
.

Theorem 3.3.1. The subspace L2
C1

of the residual spectrum of H ′
2(A) is the irre-

ducible space of automorphic forms consisting only of constant functions on H ′
2(A).

Proof. Let π′ ∼= (χ1 ◦det′)⊗ (χ2 ◦det′) be a Case C cuspidal automorphic represen-
tation of M ′

0(A). As shown in Figure 3.3, for the contribution of π′ to the residual
spectrum at C1(7/2, 3/2) the iterated pole of the sum (3.3) is first considered along
s1 − s2 = 2. It occurs if and only if χ1 = χ2. Let χ = χ1 = χ2. The residues,
written in a new variable z on s1 − s2 = 2 given by

s1 = z + 1 and s2 = z − 1

up to a non-zero constant, are given in Table 3.2.
Point C1 corresponds to z = 5/2. The pole of the terms in Table 3.2 at z = 5/2

may occur only if χ is trivial. Then, only the term corresponding to the Weyl group
element w1w2w1w2 has a pole. It is simple. Hence, up to a non-zero constant, the
iterated residue at C1 of the sum (3.3) equals

N((7/2, 3/2), (1 ◦ det′) ⊗ (1 ◦ det′), w1w2w1w2).
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Table 3.2. Residues along s1 − s2 = 2 of Case C normalizing factors

w Ress1−s2=2r(s, (χ ◦ det′) ⊗ (χ ◦ det′), w)
w1 1

w2w1
L(z+1/2,χ)

L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

· L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)

w1w2w1
L(z+1/2,χ)

L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

· L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)
L(2z−1,χ2)L(2z,χ2)

L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2) ·∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )

L(z+1/2,χ)
L(z+5/2,χ)ε(z+3/2,χ)ε(z+1/2,χ)

∏
v∈SD

L(z+3/2,χv)

L(−1/2−z,χ−1
v )

L(2z+2,χ2)
L(2z+3,χ2)ε(2z+2,χ2)

w1w2w1w2
L(2z−1,χ2)L(2z,χ2)

L(2z+1,χ2)L(2z+2,χ2)ε(2z−1,χ2)ε(2z,χ2)2ε(2z+1,χ2) ·∏
v∈SD

L(2z,χ2
v)L(2z+1,χ2

v)

L(−2z,χ−2
v )L(1−2z,χ−2

v )
L(z−3/2,χ)

L(z+1/2,χ)ε(z−1/2,χ)ε(z−3/2,χ)

∏
v∈SD

L(z−1/2,χv)

L(3/2−z,χ−1
v )

· L(2z−2,χ2)
L(2z−1,χ2)ε(2z−2,χ2)

The square–integrability criterion of Lemma 3.1.1 is satisfied, and the image of that
operator is the trivial representation of Sp8(kv) at every place. Hence, L2

C1
consists

only of the constant functions on H ′
2(A). �

Before giving the decomposition of L2
C2

consider the image of local normalized
operator

N((5/2, 1/2), (χv ◦ det′v) ⊗ (χv ◦ det′v), w1w2w1w2),

where χv is a quadratic character of k×
v . It is irreducible at non–split places by

the Langlands classification. At split places its image can be described as in the
case of B2 in Section 3.2. It is the sum of two irreducible representations if χv is
non-trivial, and it is irreducible if χv is trivial. As before, we denote the irreducible
components by Π+

v and Π−
v , where Π−

v is trivial if χv is trivial, and at unramified
places Π+

v is the unramified component.

Theorem 3.3.2. The subspace L2
C2

of the residual spectrum of H ′
2(A) is isomorphic

to
L2

C2
=

⊕
π′

C2(π′),

where the sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ◦det′)⊗ (χ◦det′) of M ′

0(A) such that χ is a non-trivial quadratic character
and χv is non-trivial for all v ∈ SD.

C2(π′) is the space of automorphic forms spanned by the iterated residue at s =
(5/2, 1/2) of the Eisenstein series attached to π′. The constant term map gives rise
to an isomorphism of C2(π′) and the sum of the irreducible representations of the
form

⊗
v Π′

v, where Π′
v is one of at most two irreducible components of the image

of N((5/2, 1/2), π′
v, w1w2w1w2) and where it is Π+

v at almost all split places.
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Proof. We skip the proof since it is the same as the proof of Theorem 3.3.1. The
local condition of non–triviality of the local component χv at all places v ∈ SD

comes from the local L–functions in the global normalizing factors. �

Before decomposing L2
C3

consider the induced representation

IndH′
1(kv)

GL′
1(kv)

(
χv ◦ det′v

)
,

where χv is a quadratic character of k×
v . It is irreducible by [29], [30], [27], and

[28]. Hence, the H ′
1(kv) normalized intertwining operator

N(0, χv ◦ det′v, w2)

acts as Id or −Id, and we denote the sign by ηv.

Theorem 3.3.3. The subspace L2
C3

of the residual spectrum of H ′
2(A) decomposes

into
L2

C3
=

⊕
π′

C3(π′),

where the sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ ◦ det′) ⊗ (χ ◦ det′) of M ′

0(A) such that χ is a quadratic character and the
parity condition

∏
v ηv = −ε(1/2, χ) holds.

C3(π′) is the irreducible space of automorphic forms spanned by the iterated
residue at s = (2, 0) of the Eisenstein series attached to π′. The constant term
map gives rise to an isomorphism of C3(π′) and the image of the normalized in-
tertwining operator N((2, 0), π′, w1w2w1). At non–split places it is the Langlands
quotient of the induced representation

IndH′
2(kv)

GL′
1(kv)×H′

1(kv)

(
(χv ◦ det′v) ⊗ τv

)
,

where τv
∼= IndH′

1(kv)

GL′
1(kv)

(
χv ◦ det′v

)
is irreducible and tempered. At split places it is

the Langlands quotient of the induced representation

IndSp8(kv)
T (kv)

(
χv| · |5/2 ⊗ χv| · |3/2 ⊗ χv| · |1/2 ⊗ χv| · |1/2

)
,

where T ∼= GL1 × GL1 × GL1 × GL1 is the maximal split torus of Sp8.

Proof. Calculating the residue at z = 1 (which corresponds to C3) of the terms in
Table 3.2, using Lemma 3.1.2, Lemma 3.1.3 and the global functional equation for
L–functions shows that the pole occurs if and only if χ = χ1 = χ2 is a quadratic
character. The residue is non–zero only for terms corresponding to w1w2w1 and
w1w2w1w2. Their sum acting on the decomposable vector gives

N((2, 0), π′, w1w2w1) [Id − ε(1/2, χ)N((2, 0), π′, w2)] .

The parity condition comes from the non–vanishing of the square bracket. The
square–integrability criterion of Lemma 3.1.1 is satisfied. The description in terms
of the Langlands classification of the image of the normalized intertwining operator
N((2, 0), π′, w1w2w1w2), which is isomorphic to the image of N((2, 0), π′, w1w2w1),
comes at a non–split place from the fact that τ ′

v
∼= IndH′

2(kv)

GL′
1(kv)

(
χv ◦ det′v

)
is irre-

ducible and tempered. At a split place one observes that the induced representation
IndSL2(kv)

GL1(kv)

(
χv| · |−1/2

)
is irreducible. �
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As in the decomposition of the corresponding space in Section 2.4 of [8], before
decomposing L2

C4
we describe the images of certain local normalized intertwin-

ing operators. We study the behavior of the normalized intertwining operator
N(s, χv ◦ det′v, w2) at s = −1/2, where χv is a unitary character of k×

v . If χv is
quadratic, let Xv be the image of

N(1/2, χv ◦ det′v, w2).

It is a subrepresentation of the induced representation

Iv = IndH′
1(kv)

GL′
1(kv)

(
(χv ◦ det′v)ν

−1/2
)

.

As a simple consequence of the Langlands classification, Xv is irreducible unless
v is split and χv is a non-trivial quadratic character. If reducible, it is a direct
sum of two non–isomorphic irreducible representations. Let Yv

∼= Iv/Xv denote the
quotient.

Lemma 3.3.4. If χv is not quadratic, then the normalized intertwining operator

N(s, χv ◦ det′v, w2)

is holomorphic and non–vanishing at s = −1/2. Moreover, it is an isomorphism.
If χv is quadratic, then it has a pole at s = −1/2. The operator

Ñ(−1/2, χv ◦ det′v, w2) = lim
s→−1/2

(s + 1/2)N(s, χv ◦ det′v, w2)

is holomorphic and non–vanishing. In the notation as above, its kernel is Xv and
its image is isomorphic to Yv. Thus, N(s, χv ◦ det′v, w2) at s = −1/2 restricted to
Xv is holomorphic and non–vanishing.

Proof. The same as the proof of the corresponding Lemma in Section 2.4 of [8]. �

Corollary 3.3.5. Let π′
v
∼= (χv◦det′v)⊗(χv◦det′v). If χv is not quadratic, the image

of the normalized intertwining operator N((3/2,−1/2), π′
v, w1w2w1w2), denoted by

Wv, is non-trivial and isomorphic to the image of N((3/2, 1/2), π′
v, w1w2w1).

The image of N((3/2, 1/2), π′
v, w1w2w1)Ñ(−1/2, χv ◦ det′v, w2), denoted by W ′

v,
is non-trivial if χv is quadratic. Furthermore, if χv is quadratic, then the image of
N((3/2, 1/2), π′

v, w1w2w1), again denoted by Wv, is non-trivial and contains W ′
v as

a subrepresentation.

Proof. Although we have not specified the irreducible constituents of Yv in terms of
the Langlands classification, the exponents are certainly at most 1, and the proof
goes along the same lines as the proof of the corresponding Corollary in Section 2.4
of [8]. �

For a unitary character µ of k×\A×, let S1(µ) denote the set of places of k such
that µv is trivial. For a unitary character χ of k×\A×, let

m(χ) = |S1(χ2) ∩ SD| − |S1(χ) ∩ SD|.
Note that m(χ) ≥ 0 since S1(χ) ⊂ S1(χ2).

Theorem 3.3.6. The subspace L2
C4

of the residual spectrum of H ′
2(A) decomposes

into

L2
C4

=

(⊕
π′

C(1)
4 (π′)

)
⊕

(⊕
π′

C(2)
4 (π′)

)
.
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The former sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ◦det′)⊗(χ◦det′) of M ′

0(A) such that χ is quadratic. The latter sum is over
all one–dimensional cuspidal automorphic representations π′ ∼= (χ◦det′)⊗(χ◦det′)
of M ′

0(A) such that χ is not quadratic but there is either at least one non–split place
v ∈ SD where χv is trivial or at least one split place v �∈ SD where χ2

v is trivial.
The spaces C(1)

4 (π′) and C(2)
4 (π′) are the spaces of automorphic forms spanned by

the residues
lim

z→1/2
(z − 1/2)nRess1−s2=2E(s, g; fs, π

′),

where n is the order of the pole at z = 1/2. Here z is the new variable on s1−s2 = 2
given by s1 = z + 1 and s2 = z − 1.

If χ is a non-trivial quadratic character, the constant term map gives rise to an
isomorphism between C(1)

4 (π′) and

⊕
V

⎡⎣(⊗
v∈V

W ′
v

)
⊗

⎛⎝⊗
v �∈V

Wv

⎞⎠⎤⎦ ,

where the sum is over all finite sets of places V such that |V | = m(χ) and Wv, W ′
v

are defined in Corollary 3.3.5. If χ is trivial, then the constant term map implies
that C(1)

4 (π′) contains a space isomorphic to
⊕

w[W ′
w ⊗(

⊗
v �=w Wv)], where the sum

is over all places.
If χ is not quadratic, the constant term map gives rise to an isomorphism between

C(2)
4 (π′) and ⊕

V

⎡⎣(⊗
v∈V

W ′
v

)
⊗

⎛⎝⊗
v �∈V

Wv

⎞⎠⎤⎦ ,

where the sum is over all finite sets of places V ⊂ S1(χ2) such that |V | = m(χ) + 1
and Wv, W ′

v are defined in Corollary 3.3.5.

Proof. Along the same lines as the proof of the corresponding Theorem in Section
2.4 of [8]. The more complicated description is only due to the more complicated
normalizing factors. �

Before passing to L2
C5

consider the normalized intertwining operator

N(0, (1v ◦ det′v) ⊗ (1v ◦ det′v), w1)

acting on the induced representation

IndGL′
2(kv)

GL′
1(kv)×GL′

1(kv)

(
(1v ◦ det′v) ⊗ (1v ◦ det′v)

)
,

where 1v is the trivial character of k×
v . Since the induced representation is irre-

ducible by [34], [2], and [33], the normalized intertwining operator acts as Id or
−Id. We denote the sign by ηv.

The irreducibility of the spaces of automorphic forms appearing in the decom-
position of L2

C5
follows from the following lemma. Using Lemma 3.1.4, it is a

consequence of the Langlands classification.

Lemma 3.3.7. Let π′
v
∼= (1v ◦ det′v) ⊗ (1v ◦ det′v) be the trivial representation of

M ′
0(kv), where 1v is the trivial character of k×

v . Then, the images of the normalized
intertwining operators

N((3/2, 3/2), π′
v, w2w1w2) and N((3/2, 3/2), π′

v, w1w2w1w2)
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are isomorphic and irreducible. At non–split places it is isomorphic to the Langlands
quotient of the induced representation

IndH′
2(kv)

GL1(kv)′×GL′
1(kv)

(
(1v ◦ det′v)ν3/2 ⊗ (1v ◦ det′v)ν3/2

)
,

while at non–split places it is isomorphic to the Langlands quotient of the induced
representation

IndSp8(kv)
T (kv)

(
| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1

)
,

where T ∼= GL1 × GL1 × GL1 × GL1 is the maximal split torus of Sp8.

Proof. The images are isomorphic because the GL4(kv) normalized operator
N(0, π′

v, w1) is an isomorphism. At non–split places the image is irreducible by
the Langlands classification since π′

v is supercuspidal and w1w2w1w2 is the longest
Weyl group element. Let v be a split place and, in the notation of Lemma 3.1.4,
w = w1w2w1w2 and s = (3/2, 3/2). Furthermore, L is the maximal split torus
T ∼= GL1 × GL1 × GL1 × GL1,

s + s′ = (1, 2, 1, 2) and τv
∼= 1v ⊗ 1v ⊗ 1v ⊗ 1v.

For w′ we take the Weyl group element corresponding to the permutation

w′ = (1, 4, 3)(2),

where (i1, i2, . . . , il) denotes the cycle mapping i1 
→ i2 
→ . . . 
→ il 
→ i1. The per-
mutation p of m letters acts on s=(s1, . . . , sm)∈Cm by p(s)=(sp−1(1), . . . , sp−1(m))
and on a representation σ ∼= σ1 ⊗ . . . ⊗ σm of GLn1(kv) × . . . × GLnm

(kv) by
p(σ) = σp−1(1) ⊗ . . . ⊗ σp−1(m). Then

w′−1(s + s′) = (2, 2, 1, 1),

and the normalized intertwining operator N(w′−1(s+s′), w′−1(τv), w′) is surjective
onto I(s, πv) since it can be decomposed into

IndSp8(kv)
T (kv)

(
| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1

)
→ IndSp8(kv)

GL1(kv)×GL2(kv)×GL1(kv)

(
| · |2 ⊗ (1v ◦ detv)ν3/2 ⊗ | · |1

)
→ IndSp8(kv)

GL2(kv)×GL1(kv)×GL1(kv)

(
(1v ◦ detv)ν3/2 ⊗ | · |2 ⊗ | · |1

)
→ IndSp8(kv)

GL2(kv)×GL2(kv)

(
(1v ◦ detv)ν3/2 ⊗ (1v ◦ detv)ν3/2

)
,

where the first and the third arrows are surjective by the Langlands classification,
while the second one is an isomorphism by the results of [2] at non–archimedean
places and Lemma I.7 of [24] at archimedean places. Thus condition (1) of
Lemma 3.1.4 is satisfied.

In the notation of Lemma 3.1.4 we take the Weyl group element w′′ = (1, 2, 3)(4).
Then w′′ww′ is the longest Weyl group element with respect to T . Now, we
verify condition (2) of Lemma 3.1.4. The normalized intertwining operator
N(w(s + s′), w(τv), w′′) acts on the induced representation

IndSp8(kv)
T (kv)

(
| · |−2 ⊗ | · |−1 ⊗ | · |−2 ⊗ | · |−1

)
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containing I(w(s), w(πv)) as a subrepresentation. If its restriction to I(w(s), w(πv))
were not injective, then its kernel would have non-trivial intersection with
I(w(s), w(πv)). Decomposing the normalized intertwining operator
N(w(s + s′), w(τv), w′′) according to w′′ = (1, 2)(3)(4) ◦ (1)(2, 3)(4) into

IndSp8(kv)
T (kv)

(
| · |−2 ⊗ | · |−1 ⊗ | · |−2 ⊗ | · |−1

)
→ IndSp8(kv)

T (kv)

(
| · |−2 ⊗ | · |−2 ⊗ | · |−1 ⊗ | · |−1

)
→ IndSp8(kv)

T (kv)

(
| · |−2 ⊗ | · |−2 ⊗ | · |−1 ⊗ | · |−1

)
,

where the second arrow is an isomorphism, we obtain that its kernel is isomorphic
to the kernel of the first arrow, which is

IndSp8(kv)
GL1(kv)×GL2(kv)×GL1(kv)

(
| · |−2 ⊗ St1v

ν−3/2 ⊗ | · |−1
)

,

where, abusing the non–archimedean notation, St1v
at archimedean places denotes

the unique irreducible subrepresentation of the induced representation
IndGL2(kv)

GL1(kv)×GL1(kv)

(
| · |1/2 ⊗ | · |−1/2

)
. Since by the Langlands classification this

kernel contains the Langlands quotient as the unique irreducible subrepresentation,
if the intersection with I(w(s), w(πv)) were non-trivial, it would contain this Lang-
lands quotient as a subrepresentation. However, such a subrepresentation would be
the irreducible quotient of I(s, πv), which is the quotient of

IndSp8(kv)
T (kv)

(
| · |2 ⊗ | · |2 ⊗ | · |1 ⊗ | · |1

)
by the first part of the proof. But the last induced representation has its own
unique irreducible Langlands quotient, which is not isomorphic to the one in the
kernel. This proves condition (2) of Lemma 3.1.4.

Applying Lemma 3.1.4 shows that the image of the normalized intertwining
operator N(s, πv, w) is isomorphic to the image of

N((2, 2, 1, 1),1v ⊗ 1v ⊗ 1v ⊗ 1v, w′′ww′).

Since w′′ww′ is the longest Weyl group element and (2, 2, 1, 1) ∈ a∗T,C satisfies the
conditions of the Langlands classification, the image is irreducible as claimed. �

Theorem 3.3.8. The subspace L2
C5

of the residual spectrum of H ′
2(A) is

L2
C5

=
{

{0}, if
∏

v ηv = 1,
C5

(
(1 ◦ det′) ⊗ (1 ◦ det′)

)
, if

∏
v ηv = −1.

Here C5

(
(1 ◦ det′) ⊗ (1 ◦ det′)

)
is the irreducible space of automorphic forms

spanned by the iterated residue at s = (3/2, 3/2) of the Eisenstein series attached
to the trivial representation π′ ∼= (1 ◦ det′) ⊗ (1 ◦ det′) of M ′

0(A). The constant
term map gives rise to an isomorphism of C5

(
(1 ◦ det′) ⊗ (1 ◦ det′)

)
and the im-

age of the normalized operator N((3/2, 3/2), π′, w2w1w2) described in the previous
Lemma 3.3.7.

Proof. In order to find the contribution to the residual spectrum at C5(3/2, 3/2)
we study the iterated pole of the Eisenstein series attached to a Case C cuspidal
automorphic representation π′ ∼= (χ1 ◦ det′) ⊗ (χ2 ◦ det′). As shown in Figure 3.3,
we first look at the pole of the normalizing factors along 2s2 = 3. It occurs if and
only if χ2 is trivial. The residues, up to a non–zero constant, are given in Table
3.3, where z = s1.
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Table 3.3. Residues along 2s2 = 3 of Case C normalizing factors

w Res2s2=3r(s, (χ1 ◦ det′) ⊗ (1 ◦ det′), w)
w2 1

w1w2
L(z+3/2,χ1)L(z+1/2,χ1)

L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1) ·∏
v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)

w2w1w2
L(z+3/2,χ1)L(z+1/2,χ1)

L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1) ·∏
v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z+3/2,χ1)L(z+1/2,χ1)
L(z+7/2,χ1)L(z+5/2,χ1)ε(z+5/2,χ1)ε(z+3/2,χ1)2ε(z+1/2,χ1) ·∏

v∈SD

L(z+3/2,χ1,v)L(z+5/2,χ1,v)

L(−z−3/2,χ−1
1,v)L(−z−1/2,χ−1

1,v)

w1w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)
L(z−5/2,χ1)L(z−3/2,χ1)

L(z+1/2,χ1)L(z−1/2,χ1)ε(z−1/2,χ1)ε(z−3/2,χ1)2ε(z−5/2,χ1)
·∏

v∈SD

L(z−3/2,χ1,v)L(z−1/2,χ1,v)

L(3/2−z,χ−1
1,v)L(5/2−z,χ−1

1,v)

Point C5 corresponds to z = 3/2. By Lemma 3.1.2, the pole of terms in Table
3.3 at z = 3/2 occurs if and only if χ1 is trivial. Only the terms corresponding to
the Weyl group elements w2w1w2 and w1w2w1w2 have the pole, and it is simple.
Up to a non–zero constant, using the global functional equation and Lemma 3.1.3,
the sum of its residues acting on a decomposable vector gives

N((3/2, 3/2), π′, w2w1w2) [Id − N((3/2, 3/2), π′, w1)] .

The parity condition is obtained from the non–vanishing of the square brackets.
The square–integrability criterion of Lemma 3.1.1 is satisfied, and the irreducibility
of the image of the normalized intertwining operator

N((3/2, 3/2), (1 ◦ det′) ⊗ (1 ◦ det′), w2w1w2)

follows from the previous Lemma 3.3.7. �

Decomposing L2
C6

is quite similar to L2
C4

. We use the same notation to emphasize
the analogy. For a split place v consider the behavior of the normalized intertwining
operator N((s, 3/2), πv, w1) at s = 1/2, where πv

∼= (χ1,v ⊗ detv) ⊗ (1v ⊗ detv).
Here 1v is the trivial and χ1,v is a unitary character of k×

v . If χ1,v is trivial, let Xv

denote the image of N((3/2, 1/2), πv, w1). By the Langlands classification it is an
irreducible subrepresentation of

Iv = IndGL4(kv)
GL2(kv)×GL2(kv)

(
(χ1,v ⊗ detv)ν1/2 ⊗ (1v ⊗ detv)ν3/2

)
.

Let Yv
∼= Iv/Xv denote the quotient. The proofs of the following lemma and its

corollary are the same as the corresponding proofs in Section 2.4 of [8] and the
corresponding proofs in the decomposition of L2

C4
above.
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Lemma 3.3.9. If either v ∈ SD or χ1,v is non-trivial, then N((s, 3/2), πv, w1) at
s = 1/2 is an isomorphism. Thus, it is holomorphic and non–vanishing.

If v �∈ SD and χ1,v is trivial, then N((s, 3/2), πv, w1) has a pole at s = 1/2. The
operator

Ñ((1/2, 3/2), πv, w1) = lim
s→1/2

(s − 1/2)N((s, 3/2), πv, w1)

is holomorphic, its image is isomorphic to Yv, and its kernel is Xv. Thus, the re-
striction of N((s, 3/2), πv, w1) at s = 1/2 to Xv is holomorphic and non–vanishing.

Corollary 3.3.10. Let π′
v
∼= (χ1,v ◦ det′v) ⊗ (1v ◦ det′v). If v ∈ SD or χ1,v is

non-trivial, then the image of N((1/2, 3/2), π′
v, w1w2w1w2), denoted by Wv, is non-

trivial and isomorphic to the image of N((3/2, 1/2), π′
v, w2w1w2).

If v �∈ SD and χ1,v is trivial, then the image of

N((3/2, 1/2), π′
v, w2w1w2)Ñ((1/2, 3/2), π′

v, w1),

denoted by W ′
v, is non-trivial. Furthermore, in this case the image of

N((1/2, 3/2), π′
v, w2w1w2),

again denoted by Wv, is non-trivial and contains W ′
v as a subrepresentation.

As before, let S1(µ) denote the set of places where a local component µv of a
unitary character µ of k×\A× is trivial. Let ηv be the sign of N((1/2, 3/2), π′

v, w1)
acting on Xv. For χ1 a non-trivial quadratic character of k×\A× such that χ1,v is
non-trivial for all v ∈ SD, let

C =
L(−2, χ1)L(−1, χ1)

L(1, χ1)L(0, χ1)ε(0, χ1)ε(−1, χ1)2ε(−2, χ1)

∏
v∈SD

L(−1, χ1,v)L(0, χ1,v)
L(1, χ1,v)L(2, χ1,v)

be the non–zero constant appearing in the parity conditions of the theorem below.

Theorem 3.3.11. The subspace L2
C6

of the residual spectrum of H ′
2(A) decomposes

into

L2
C6

=

(⊕
π′

C(1)
6 (π′)

)
⊕

(⊕
π′

C(2)
6 (π′)

)
.

The former sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ1◦det′)⊗(1◦det′) of M ′

0(A) such that χ1 is a non-trivial quadratic character
and either χ1,v is non-trivial for all v ∈ SD and the parity condition C ·

∏
v ηv �= −1

holds, or there is a non–split place v ∈ SD where χ1,v is trivial. The latter sum is
over all one–dimensional cuspidal automorphic representations π′ ∼= (χ1 ◦ det′) ⊗
(1 ◦ det′) of M ′

0(A) such that there is a split place v �∈ SD where χ1,v is trivial, and
if χ1 is a nontrivial quadratic character, then the parity condition C ·

∏
v ηv = −1

holds.
The spaces C(1)

6 (π′) and C(2)
6 (π′) are the spaces of automorphic forms spanned by

the residues
lim

s1→1/2
(s1 − 1/2)nRes2s2=3E(s, g; fs, π

′),

where n is the order of the pole at s1 = 1/2.
In the notation of Corollary 3.3.10, the constant term map gives rise to an

isomorphism between C(1)
6 (π′) and

⊗
v Wv. Unless χ1 is trivial, the constant term
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map gives rise to an isomorphism between C(2)
6 (π′) and

⊕
w∈S1(χ1)\SD

⎡⎣W ′
w ⊗

⎛⎝⊗
v �=w

Wv

⎞⎠⎤⎦ .

Finally, if χ1 is trivial the constant term map implies that C(2)
6 (π′) contains a space

isomorphic to
⊕

w �∈SD
[W ′

w ⊗ (
⊗

v �=w Wv)].

Proof. The proof is quite similar to the proof of Theorem 3.3.6 and the corre-
sponding Theorem in Section 2.4 of [8]. The parity condition comes from the fact
that there is a case in which the pole occurs for the normalizing factors of opera-
tors attached to both w2w1w2 and w1w2w1w2. An argument similar to the proof
of Theorem 3.3.13 shows that the cancellation of the pole is precisely the parity
condition of the theorem. �

For the description of the irreducible constituents of L2
C7

we need the following
lemma.

Lemma 3.3.12. Let π′
v
∼= (1v ◦det′v)⊗ (χ2,v ◦det′v) be a representation of M ′

0(kv),
where χ2,v is a quadratic character of k×

v . Then the images of the normalized
intertwining operators

N((3/2, 1/2), π′
v, w2w1w2) and N((3/2, 1/2), π′

v, w1w2w1w2)

are isomorphic. At non–split places the image is irreducible and isomorphic to the
Langlands quotient of the induced representation

IndH′
2(kv)

GL′
1(kv)×GL′

1(kv)

(
(1v ◦ det′v)ν3/2 ⊗ (χ2,v ◦ det′v)ν1/2

)
.

At the split places where χ2,v = 1v is trivial it is irreducible and isomorphic to the
Langlands quotient of the induced representation

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(
| · |2 ⊗ | · |1 ⊗ | · |1 ⊗ τ1,v

)
,

where τ1,v
∼= IndSL2(kv)

GL1(kv)1v is irreducible and tempered. At the split places where χ2,v

is non-trivial, it is the direct sum of two irreducible representations isomorphic to
the Langlands quotients of the induced representations

IndSp8(kv)
GL1(kv)×GL1(kv)×GL1(kv)×SL2(kv)

(
| · |2 ⊗ | · |1 ⊗ χ2,v| · |1 ⊗ τi,v

)
,

for i = 1, 2, where τ1,v⊕τ2,v
∼= IndSL2(kv)

GL1(kv)χ2,v and τi,v are irreducible and tempered.

Proof. Another application of Lemma 3.1.4, similar to Lemma 3.3.7. Thus we omit
the proof. �

By the lemma the normalized intertwining operator

N((−1/2,−3/2), (χ2,v ◦ det′v) ⊗ (1v ◦ det′v), w1)

restricted to the image of N((3/2, 1/2), π′
v, w2w1w2) is an isomorphism of the two

images described in the lemma. Since those images are at all places completely
reducible, let Π′±

v denote the ±1–eigenspaces. It is possible that one of the spaces
is trivial, and the unramified component is always Π′+

v .
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Table 3.4. Residues along 2s2 = 1 of Case C normalizing factors

w Res2s2=1r(s, π′, w)
w2 1

w1w2
L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)

L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)

L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)
L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)

w2w1w2

∏
v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)

L(z−1/2,χ1χ2)L(z+1/2,χ1χ2)
L(z+3/2,χ1χ2)L(z+5/2,χ1χ2)ε(z−1/2,χ1χ2)ε(z+1/2,χ1χ2)2ε(z+3/2,χ1χ2)∏

v∈SD

L(z+1/2,χ1,vχ2,v)L(z+3/2,χ1,vχ2,v)

L(−z−1/2,χ−1
1,vχ2,v)L(1/2−z,χ−1

1,vχ2,v)

w1w2w1w2
L(z−1/2,χ1)

L(z+3/2,χ1)ε(z+1/2,χ1)ε(z−1/2,χ1)

∏
v∈SD

L(z+1/2,χ1,v)

L(1/2−z,χ−1
1,v)

· L(2z,χ2
1)

L(2z+1,χ2
1)ε(2z,χ2

1)
L(z−3/2,χ1χ2)L(z−1/2,χ1χ2)

L(z+1/2,χ1χ2)L(z+3/2,χ1χ2)ε(z−3/2,χ1χ2)ε(z−1/2,χ1χ2)2ε(z+1/2,χ1χ2)∏
v∈SD

L(z−1/2,χ1,vχ2,v)L(z+1/2,χ1,vχ2,v)

L(−z+1/2,χ−1
1,vχ2,v)L(3/2−z,χ−1

1,vχ2,v)

Theorem 3.3.13. The subspace L2
C7

of the residual spectrum of H ′
2(A) decomposes

into
L2

C7
=

⊕
π′

C7(π′),

where the sum is over all cuspidal automorphic representations of the form π′ ∼=
(1⊗ det′) ⊗ (χ2 ⊗ det′) of M ′

0(A) such that χ2 is a non-trivial quadratic character
and χ2,v is non-trivial for all v ∈ SD.

C7(π′) is the space of automorphic forms spanned by the iterated residue at s =
(3/2, 1/2) of the Eisenstein series attached to π′. The constant term map gives rise
to an isomorphism of C7(π′) and the direct sum of the spaces of the form

⊗
v Πηv

v ,
where ηv ∈ {+,−}, ηv = + for almost all v, and the parity condition∏

v

ηv · L(0, χ2)L(1, χ2)
L(2, χ2)L(3, χ2)ε(0, χ2)ε(1, χ2)2ε(2, χ2)

∏
v∈SD

L(1, χ2,v)L(2, χ2,v)
L(−1, χ2,v)L(0, χ2,v)

�= −1

holds.

Proof. At C7 the iterated residue of the constant term (3.3) of the Eisenstein series
attached to a Case C cuspidal automorphic representation π′ ∼= (χ1 ◦ det′) ⊗ (χ2 ◦
det′) of M ′

0(A) is first calculated along 2s2 = 1 as shown in Figure 3.3. By the
analytic properties of the L–functions in Lemma 3.1.2, the pole of the normalizing
factors occurs if and only if χ2 is a non-trivial quadratic character such that χ2,v is
non-trivial at all places v ∈ SD. Then, the terms corresponding to the Weyl group
elements w2, w1w2, w2w1w2 and w1w2w1w2 have poles, and they are simple. The
residues, up to a non-zero constant are given in Table 3.4, where z = s1.

Point C7 corresponds to z = 3/2. There are two possibilities for obtaining
the pole of the terms in Table 3.4. First, the pole occurs if χ1χ2 is trivial, i.e.
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χ1 = χ2 is a non-trivial quadratic character such that χ1,v = χ2,v is non-trivial at all
v ∈ SD. Then, the terms corresponding to the Weyl group elements w1w2, w2w1w2

and w1w2w1w2 have poles at z = 3/2, and they are all simple. However, since
w1w2(3/2, 1/2) = (−1/2, 3/2) does not satisfy the square–integrability criterion of
Lemma 3.1.1, the contribution of the iterated pole can be square–integrable only
for automorphic forms f such that

N((3/2, 1/2), π′, w1w2)f = 0.

But then, the remaining two residues also vanish on f by the decomposition prop-
erty of the intertwining operators, and there is no contribution to L2

C7
in this case.

The other possibility for the pole of the terms in Table 3.4 at z = 3/2 is for χ1

trivial. Then χ1χ2 = χ2. Hence, by the analytic properties of the L–functions of
Lemma 3.1.2, the terms corresponding to the Weyl group elements w2w1w2 and
w1w2w1w2 have poles, and they are simple. Up to a non-zero constant, the sum of
the residues acing on a decomposable vector gives

[Id + C · N((−1/2,−3/2), w2w1w2(π′), w1)]N((3/2, 1/2), π′, w2w1w2),

where the constant C is given by
L(0, χ2)L(1, χ2)

L(2, χ2)L(3, χ2)ε(0, χ2)ε(1, χ2)2ε(2, χ2)

∏
v∈SD

L(1, χ2,v)L(2, χ2,v)
L(−1, χ2,v)L(0, χ2,v)

.

The parity condition is just the non–vanishing condition for the square–bracket
acting on the image of N((3/2, 1/2), π′, w2w1w2). The square–integrability cri-
terion of Lemma 3.1.1 is satisfied, and the contribution of the iterated residue
is isomorphic to the part of the image of the normalized intertwining operator
N((3/2, 1/2), π′, w2w1w2) satisfying the parity condition. �

Before decomposing L2
C8

consider the normalized intertwining operator

N(0, χ1,v ◦ det′ ⊗ χ′
2,v ◦ det′, w1)

acting on the induced representation

IndGL′
2(kv)

GL′
1(kv)×GL′

1(kv)

(
(χ1,v ◦ det′v) ⊗ (χ2,v ◦ det′v)

)
.

The induced representation is irreducible by [34], [2], and[33]. Hence, the normal-
ized operator acts as Id or −Id, and we denote the sign by ηv. For the description
of the irreducible components of L2

C8
we need the following lemma.

Lemma 3.3.14. Let π′
v
∼= (χ1,v ◦det′v)⊗(χ2,v ◦det′v) be a representation of M ′

0(A),
where χi,v are quadratic characters of k×

v . Then the images of the normalized
intertwining operators

N((1/2, 1/2), π′
v, w2w1w2) and N((1/2, 1/2), π′

v, w1w2w1w2)

are isomorphic. At non–split places the image is irreducible as the Langlands quo-
tient of the induced representation

IndH′
2(kv)

GL′
1(kv)×GL′

1(kv)

(
(χ1,v ◦ det′v)ν1/2 ⊗ (χ2,v ◦ det′v)ν1/2

)
.

At split places, it is either irreducible or the direct sum of two or four irreducible
constituents, where the irreducible constituents are isomorphic to the Langlands
quotients of the induced representations of the form

IndSp8(kv)
GL1(kv)×GL1(kv)×Sp4(kv)

(
χ2,v| · |1 ⊗ χ1,v| · |1 ⊗ σv

)
,
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where σv is one of the irreducible tempered constituents of the induced representation

IndSp4(kv)
GL1(kv)×GL1(kv) (χ1,v ⊗ χ2,v) ,

whose decomposition is given in [30] at non–archimedean places and [27] and [28]
at archimedean places.

Proof. Again Lemma 3.1.4 applies similarly as in 3.3.7. Hence, we omit the proof.
�

Theorem 3.3.15. The subspace L2
C8

of the residual spectrum of H ′
2(A) decomposes

into

L2
C8

=

(⊕
π′

C(1)
8 (π′)

)
⊕

(⊕
π′

C(2)
8 (π′)

)
.

The former sum is over all one–dimensional cuspidal automorphic representations
π′ ∼= (χ◦det′)⊗(χ◦det′) of M ′

0(A) such that χ is a non-trivial quadratic character,
χv is non-trivial for all v ∈ SD, the cardinality |SD| = 2 and the parity condition∏

v ηv = −1 holds. The latter sum is over all one–dimensional cuspidal automorphic
representations π′ ∼= (χ1◦det′)⊗(χ2◦det′) of M ′

0(A) such that χ1 �= χ2 are both non-
trivial quadratic characters, χ1,v and χ2,v are non-trivial for all v ∈ SD, χ1,v �= χ2,v

for all v ∈ SD and the parity condition
∏

v ηv = 1 holds.
Both C(1)

8 (π′) and C(2)
8 (π′) are the spaces of automorphic forms spanned by

the iterated residues at s = (1/2, 1/2) of the Eisenstein series attached to π′.
The constant term map gives rise to isomorphisms of both spaces and the sum
of the irreducible representations of the form

⊗
v Π′

v, where Π′
v is one of the irre-

ducible constituents of the image of the normalized intertwining operator
N((1/2, 1/2), π′, w2w1w2) described in the previous lemma, Lemma 3.3.14, and it
is the unramified one at almost all places.

Proof. The first step in calculating the iterated pole at C8(1/2, 1/2) is along 2s2 = 1,
as in the proof of the previous theorem. Thus, the residues are given in Table 3.4,
and the pole appears if and only if χ2 is a non-trivial quadratic character with χ2,v

non-trivial at all places v ∈ SD. Point C8 corresponds to z = 1/2. By the analytic
properties of the L–functions of Lemma 3.1.2, the pole at z = 1/2 of the terms
in Table 3.4 does not occur unless χ1 is a quadratic character. Indeed, if χ1 were
not quadratic, then both χ1 and χ1χ2 would be non-trivial. Therefore, let χ1 be a
quadratic character. Now, we distinguish two cases.

First, assume χ1 = χ2, i.e. χ1χ2 is trivial. Due to the local L–functions in the
denominator, the term corresponding to w1w2 has a zero of order |SD| − 2 � 0.
Recall that |SD| is always even. The terms corresponding to w2w1w2 and w1w2w1w2

have a simple pole only if |SD| = 2. Otherwise, the order of the pole in the
denominator is |SD| � 4 and cancels the pole in the numerator, which is of order 3.
Moreover, up to a constant which is non–zero due to the sum of the residues acting
on a decomposable vector gives

N((1/2, 1/2), π′, w2w1w2) [Id − N((1/2, 1/2), π′, w1)] .

The non–vanishing of the square bracket implies the parity condition. The square–
integrability criterion of Lemma 3.1.1 is satisfied, and the contribution to the resid-
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ual spectrum is isomorphic to the image of the normalized intertwining operator

N((1/2, 1/2), π′, w2w1w2),

which is described in the previous Lemma 3.3.14.
Now, assume χ1 �= χ2, i.e. χ1χ2 is non-trivial. If χ1 is trivial, then the double

pole in the numerator is cancelled by the pole of the local L–functions in the de-
nominator. If χ1 is non-trivial, then the numerator has only a simple pole, but it
is not cancelled if χ1,v is non-trivial and χ1,v �= χ2,v for all v ∈ SD. Therefore, the
pole occurs in this case if and only if χ1 is a non-trivial quadratic character, χ1,v

is non-trivial and χ1,v �= χ2,v for all v ∈ SD. Then, the terms corresponding to the
Weyl group elements w2w1w2 and w1w2w1w2 have simple poles. Up to a non-zero
constant the sum of the residues acting on a decomposable vector is of the form

N((1/2, 1/2), π′, w2w1w2) [Id + N((1/2, 1/2), π′, w1w2w1w2)] .

The non–vanishing of the square bracket is the parity condition in this case. The
square–integrability criterion of Lemma 3.1.1 is satisfied, and the contribution of
this case to the residual spectrum is isomorphic to the image of the normalized
intertwining operator

N((1/2, 1/2), π′, w2w1w2),
which is described in the previous Lemma 3.3.14. �
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Representations of GL(n), Ann. Sci. École Norm. Sup. 13 (1980), 165–210 MR584084
(83g:22012)

[38] Y. Zhang, The Holomorphy and Nonvanishing of Normalized Local Intertwining Operators,
Pacific J. Math. 180 (1997), 385–398 MR1487571 (98k:22076)
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