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THE RESIDUAL EISENSTEIN COHOMOLOGY OF Sp4
OVER A TOTALLY REAL NUMBER FIELD

NEVEN GRBAC AND HARALD GROBNER

Abstract. Let G = Sp4/k be the k-split symplectic group of k-rank 2, where
k is a totally real number field. In this paper we compute the Eisenstein co-
homology of G with respect to any finite–dimensional, irreducible, k-rational
representation E of G∞ = Rk/QG(R), where Rk/Q denotes the restriction of
scalars from k to Q. This approach is based on the work of Schwermer regard-
ing the Eisenstein cohomology for Sp4/Q, Kim’s description of the residual
spectrum of Sp4, and the Franke filtration of the space of automorphic forms.
In fact, taking the representation theoretic point of view, we write, for the
group G, the Franke filtration with respect to the cuspidal support, and give
a precise description of the filtration quotients in terms of induced representa-
tions. This is then used as a prerequisite for the explicit computation of the
Eisenstein cohomology. The special focus is on the residual Eisenstein coho-
mology. Under a certain compatibility condition for the coefficient system E
and the cuspidal support, we prove the existence of non–trivial residual Eisen-
stein cohomology classes, which are not square–integrable, that is, represented
by a non–square–integrable residue of an Eisenstein series.

Introduction

General background. The cohomology of an arithmetic congruence subgroup
Γ of a connected, reductive algebraic k-group G, where k is a number field, is
isomorphic to a subspace of the cohomology of the space of automorphic forms.
This identification was conjectured by Borel and Harder and first established in a
conceptual way by Harder in the case of groups of rank one in [Har73], [Har75] and
[Har87]. In all these works he relates the cohomology of Γ and the cohomology of the
space of automorphic forms using the fact that the cohomology of Γ is isomorphic to
the cohomology of a certain compact space Γ\X, which is an orbifold with orbifold
boundary ∂(Γ\X).

More precisely, let G∞ = Rk/QG(R) be the Lie group of real points of the
algebraic Q-group Rk/QG obtained from G by the restriction of scalars from k to
Q. LetK∞ be a maximal compact subgroup ofG∞, and AG,∞ = Rk/QAG(R) be the
real points of the restriction of scalars from k to Q of a maximal k-split central torus
AG of G. Then X = G∞/K∞A◦

G,∞ is the Riemannian symmetric space associated

to the Lie group G∞ = Rk/QG(R) and K∞A◦
G,∞. The aforementioned space Γ\X

is then the Borel–Serre compactification of the quotient Γ\X (locally symmetric if
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Γ is torsionfree). Let E be a finite–dimensional, complex, k-rational representation
of G∞. For simplicity, assume that AG acts trivially on E. It naturally defines

a sheaf Ẽ on Γ\X and let H∗(Γ\X, Ẽ) (respectively H(∂(Γ\X), Ẽ)) denote the
corresponding sheaf cohomology spaces.

With this framework in place, Harder showed in the case of groups of rank one
(cf. [Har73]) that one can construct the “cohomology at infinity”, i.e., a subspace

of H∗(Γ\X, Ẽ) isomorphic to the image of the natural restriction map

H∗(Γ\X, Ẽ) → H∗(∂(Γ\X), Ẽ),

by means of Eisenstein series, hence by a special type of automorphic forms.

The “cohomology at infinity” forms a natural complement within H∗(Γ\X, Ẽ)
to the kernel of the above restriction map, which is itself the cohomology of a
space of square–integrable automorphic forms. Therefore, all cohomology classes

in H∗(Γ\X, Ẽ) are representable by automorphic forms.
In the early 90s, J. Franke finally proved in [Fra98] that such an identification of

H∗(Γ\X, Ẽ) with a subspace of the cohomology of the space of automorphic forms
can also be given for an arbitrary connected, reductive algebraic group G. In order
to use automorphic forms most effectively, it turns out that it is useful to translate
the above picture into the setting of representation theory over groups of adèlic
points of G. To this end, let A be the ring of adèles of k, Af the finite adèles, and
g∞ the Lie algebra of G∞. Let A be the space of automorphic forms on G(A);
that is, the space of smooth functions of moderate growth on G(A) that are left
invariant for G(k) and AG(R)

◦, finite for the action of a fixed maximal compact
subgroup of G(A), and annihilated by an ideal of finite codimension in the center
of the universal enveloping algebra of the complexification of g∞ (cf. [BJ]). It is a
(g∞,K∞, G(Af ))-module, and its relative Lie algebra cohomology with respect to
E is a G(Af )-module

Hq(G,E) := Hq(g∞,K∞,A⊗ E)

called the automorphic cohomology of G/k with respect to E.
As shown in [Fra98], every automorphic form on G can be obtained as the sum

of principal values of derivatives of the Eisenstein series attached to a cuspidal or
residual representation of a Levi factor of a parabolic k-subgroup of G. Since every
residual automorphic representation of a Levi factor is obtained as a residue of a
cuspidal Eisenstein series attached to a cuspidal automorphic representation π of a
Levi factor L of another parabolic k-subgroup P of G, we may consider the cuspidal
support of an automorphic form. Here we allow the case P = G which gives the
cuspidal automorphic forms. Having fixed an ideal J of finite codimension inside
the center of the universal enveloping algebra of g∞,C = g∞ ⊗R C, let AJ be the
space of those automorphic forms annihilated by some power of J . The discussion
above gives rise to a direct sum decomposition of AJ into

AJ =
⊕
{P}

AJ (P ) =
⊕
{P}

⊕
ϕ

AJ (P, ϕ)

along the associate classes of parabolic k-subgroups {P} and the various cuspidal
supports ϕ. For a precise definition of the spaces AJ (P, ϕ) see [FS], Section 1. The
main tool used to establish this important result is a certain kind of filtration of
AJ , introduced by Franke in [Fra98]. If Am

J (P ) denotes the m-th filtration step of

the summand AJ (P ), he showed that each consecutive quotient Am
J (P )/Am+1

J (P )

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EISENSTEIN COHOMOLOGY OF Sp4 5201

can be described in terms of induced representations from the discrete spectrum of
the Levi subgroups containing the one of the given P . More precisely, Franke in
fact proved in [Fra98] that each consecutive quotient as above is spanned by main
values of the derivatives of cuspidal and residual Eisenstein series.

If we choose J to be the ideal annihilating the dual representation of E, this
moreover induces a decomposition of automorphic cohomology

Hq(G,E) =
⊕
{P}

⊕
ϕ

Hq(g∞,K∞,AJ (P, ϕ)⊗ E).

As AJ (G) is the space of cuspidal automorphic forms in AJ , one calls Hq(g∞,K∞,
AJ (G)⊗E) the space of cuspidal cohomology. Its natural complement in the above
decomposition,

Hq
Eis(G,E) :=

⊕
{P}�={G}

⊕
ϕ

Hq(g∞,K∞,AJ (P, ϕ)⊗ E),

is called Eisenstein cohomology. Finally, it is a consequence of Franke’s aforemen-
tioned theorem that taking an appropriate open compact subgroup Cf of G(Af ),

the cohomology of Γ\X appears as a direct summand in the Cf -invariant points of
Hq(G,E). This phenomenon can be rephrased by saying that regarding Hq(G,E),
one considers the cohomology of all congruence subgroups at the same time. More-
over, this proves that the cohomology of an arithmetic congruence subgroup Γ
of a connected, reductive algebraic k-group G is isomorphic to a subspace of the
cohomology of the space of automorphic forms.

The contents of this article. In this paper we study the Eisenstein cohomology
of the k-split symplectic group G = Sp4/k of k-rank 2, where k is a totally real
number field. We rely on:

(a) the treatment of the case Sp4 over Q done by Schwermer in [Sch86] and
[Sch95]; in particular, the points of evaluation of the Eisenstein series that
may possibly give non–trivial cohomology classes are given in that work,

(b) the description of the residual spectrum of Sp4 over an arbitrary number
field given by Kim in [Kim],

(c) the filtration of the spaces AJ (P ) used by Franke in the proof of his result
in [Fra98].

In the first part of this article we summarize the notation and conventions used in
the paper and we give the necessary theoretical background concerning automorphic
forms, Eisenstein series and the above-mentioned decomposition along the cuspidal
support for the case Sp4/k. Following Harder’s idea for GL2/k (see [Har87], Sect.
2.8), we also prove that there is no Eisenstein cohomology supported in the Borel
subgroup unless the highest weight of the algebraic E has repeating coordinates in
the various field embeddings σ : k ↪→ C (cf. Proposition 2.1), whence we take this
as a standing assumption.

We then recall the Franke filtration and make it concrete for the case of Sp4/k.
As already mentioned, the evaluation points we must consider are the same as those
in [Sch86] and [Sch95], where the case Sp4 over Q is treated. The residual spectrum
of Sp4 over k, described in [Kim], is the starting point of the filtration. This finally
leads to an explicit description from the representation theoretic point of view of
the consecutive quotients Am

J (P, ϕ)/Am+1
J (P, ϕ) and the length of the filtration in

dependence of the parabolic P and the cuspidal support ϕ in question, which is the
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content of our Theorems 3.3 and 3.6. As a next step, we calculate the cohomology
of all the consecutive quotients of the filtration Am

J (P, ϕ)/Am+1
J (P, ϕ) with respect

to an arbitrary coefficient system E (cf. Propositions 4.2– 4.6). In particular, we
explicitly describe the G(Af )-module structure of these cohomology spaces. This
completes the preparatory work we need.

The second part of this article contains the main results of this paper. By ana-
lyzing the long exact sequences in cohomology defined by the short exact sequences
coming from forming the filtration quotients Am

J (P, ϕ)/Am+1
J (P, ϕ), we can almost

fully determine the summands Hq(g∞,K∞,AJ (P, ϕ)⊗E) in the Eisenstein coho-
mology of G indexed by a proper standard parabolic k-subgroup P and a cuspidal
support ϕ. The main theorems are Theorem 5.1 (dealing with the maximal par-
abolic case) and Theorem 5.4 (describing the minimal parabolic case). Necessary
and sufficient conditions for the existence of Eisenstein cohomology classes repre-
sentable by residues of Eisenstein series are given in our Corollaries 5.2 and 5.6 for
the case of a maximal and minimal parabolic subgroup, respectively. In particu-
lar, we would like to draw the reader’s attention to Corollary 5.6, which says that,
under a compatibility condition on the highest weight of the coefficient module
E and the cuspidal support, there exist non–trivial Eisenstein cohomology classes
which can be represented by non–square integrable residues of Eisenstein series at-
tached to the minimal parabolic subgroup. The compatibility condition says that
a certain filtration step in the Franke filtration is non-trivial. These residues are
themselves obtained from poles of order one, i.e., of non–maximal order, of some
Eisenstein series whose cuspidal support is a character of the minimal parabolic
subgroup of a certain special form depending on E. As Harder pointed out to the
second-named author, he constructed classes of this internal nature for GLn. For
symplectic groups, however, according to our knowledge, classes of this type have
not yet been found whence we think of this result as one of the interesting new
features compared to existing literature on this subject (cf. [Sch95] for Sp4 over
k = Q or [Har93]).

Finally, we analyze the case of the trivial representation more closely. As we do
so, we obtain an improvement of Borel’s result on the injectivity and bijectivity
of the Borel map Jq in the case Sp4/k (cf. Section 6), where k is a totally real
number field of degree n over Q. His general theorem implies for our case that Jq

is injective for all degrees q ≤ n−1 and an isomorphism for q = 0, 1. Our Corollary
6.1 improves these bounds. Namely, Jq is injective (at least) up to degree 3n, and
it is an isomorphism up to degree 2n − 1. However, as the referee pointed out,
this result also follows from the results regarding the Borel map obtained in the
diploma thesis [KR] of Kewenig and Rieband. In their thesis they study the Borel
map following the approach of Franke in [Fra08] and describe explicitly the kernel
of J∗ in the case of the symplectic group of arbitrary rank over any number field.
Their result in our case implies that the image of the Borel map is non–trivial in
higher degrees than in our Corollary 6.1. Since we were not aware of this thesis
while writing this paper, and as it is still unpublished, we follow a suggestion of the
referee to include a summary of their result made explicit in our case.

1. Notation

1.1. Number field. Let k be a totally real number field with n archimedean places,
kv its completion at the place v, and A = Ak its ring of adèles. Let S∞ be the set
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of archimedean (i.e., real) places and Sf the set of non–archimedean places of k.
Let Af be the finite adèles.

1.2. Symplectic group of rank two and parabolic data. Let G = Sp4/k be
the simple k-split algebraic k-group of k-rank two and Cartan type C2. Let P0 be a
fixed Borel subgroup of G/k. It is a minimal parabolic k-subgroup of G with Levi
subgroup L0 and unipotent radical N0. We assume that L0 is realized as the group
of diagonal matrices diag(a1, a2, a

−1
1 , a−1

2 ).
Now, define for t = diag(a1, a2, a

−1
1 , a−1

2 ) as usual ei(t) = ai. We may assume
that Δk = {α1 = e1 − e2, α2 = 2e2} is the set of simple k-roots of G with respect
to L0 corresponding to our choice of P0, and Ψ+

k = {α1, α2, α3 = e1+ e2, α4 = 2e1}
is the set of positive k-roots.

Let Pi = LiNi, i = 1, 2, be the (maximal) parabolic k-subgroup corresponding
to the root αi, meaning that αi is the only simple k-root of G vanishing identically
on the maximal central k-split torus Ai of Li, i = 1, 2. Hence, L1

∼= GL2 and
L2

∼= GL1 ×SL2 and Ai, i = 1, 2, is isomorphic to GL1/k, realized in the following
way: A1 consists of diagonal matrices diag(a, a, a−1, a−1), while A2 consists of
diagonal matrices diag(a, 1, a−1, 1). For sake of uniformness of notation, we will
also write A0 for a maximal k-split central torus in L0.

For a k-algebraic group, let X∗(H) (resp. X∗(H)) denote the group of k-rational
characters (resp. co-characters) of H. We set ǎPi

= X∗(Li) ⊗Z R and aPi
=

X∗(Li) ⊗Z R. For i = 1, 2, the inclusion Ai ↪→ A0 defines inclusions aPi
↪→ aP0

and ǎPi
↪→ ǎP0

and therefore decompositions aP0
= aPi

⊕ a
Pi
0 and ǎP0

= ǎPi
⊕ ǎ

Pi
0 .

We will also use a
Pj

Pi
to denote the intersection of aPi

and a
Pj

0 in aP0
and use the

analogous notation ǎ
Pj

Pi
.

Having fixed positivity on the set of roots defines open positive chambers ǎ
+
Pi

with closures denoted by ǎ
+
Pi
. The cone dual to the positive Weyl chamber ǎ

+
Pi

is

denoted by +ǎPi
and its closure +ǎPi

.
We write Δ(Pi, Ai) for the set of weights with respect to Ai of the adjoint action

of Pi on Ni. As usual, we denote ρPi
as the half sum of these weights. In particular,

the half sum of positive roots ρ is then ρ = ρ0 = ρP0
.

1.3. Weyl group. Let w1 be the simple reflection with respect to α1 and w2 with
respect to α2. Then the k-Weyl group of G with respect to T is

W = Wk = {id, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2}.
The absolute Weyl group WC of G(k ⊗ C) is then the direct product of n copies
of W . We will also need the set of Kostant representatives for Pi: If i = 1, 2 it is
defined as WPi = {w ∈ W |w−1(αi) > 0}, and for i = 0 we simply have WP0 = W .
Note that WP1 = {id, w2, w2w1, w2w1w2} and WP2 = {id, w1, w1w2, w1w2w1}.

1.4. Lie subgroups and Lie algebras. Fix a maximal compact subgroup K =∏
v Kv = K∞Kf of G(A) in good position with respect to P0. Denote by Rk/Q(.)

the restriction of scalars from k to Q. As usual, we write H∞ = Rk/Q(H)(R) for
the product

∏
v∈S∞

H(R) of the groups of real points of an algebraic k-group H.
Then G∞ ∼= Sp4(R)

n and K∞ is a maximal compact subgroup of the semi–simple
Lie group G∞. It is isomorphic to the product of n copies of U(2). If Q is any
Lie subgroup of G∞, we write the same but fractional letter (i.e., q) for its real Lie
algebra and qC = q⊗RC for its complexification. In particular, in this notation, aPi

,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



5204 NEVEN GRBAC AND HARALD GROBNER

i = 0, 1, 2, is isomorphic to the Lie algebra of Ai(R) = Ai(kv) for every archimedean
place v ∈ S∞ and aPi,C is its complexification. We will sometimes also write aPi,σ

to stress at which place v ∈ S∞, identified with the corresponding field embedding
σ : k ↪→ C, we look at. Furthermore, ǎPi

is in a natural way isomorphic to the dual
space of aPi

. As Ai(R)
◦ can be diagonally embedded into Li,∞ and G∞, we can also

view aPi
(resp. ǎPi

) as being diagonally embedded into the Lie algebras li,∞ and
g∞ (resp. their dual spaces). In this setup, if we write Mi,∞ =

⋂
χ∈X∗(Li)

ker(|χ|),
then we can decompose the Levi factors Li,∞ = Mi,∞Ai(R)

◦, i = 0, 1, 2. Back to
the case of a general Lie subgroup Q of G∞, we write Z(q) for the center of the
universal enveloping algebra U(qC) and KQ for the intersection K∞ ∩Q.

1.5. Coefficient system. Throughout the paper E = EΛ denotes an irreducible,
finite–dimensional representation of G∞ on a complex vector space determined by
its highest weight Λ. We can write Λ = ((Λ1)σ, (Λ2)σ)σ, where σ runs through the
set of field embeddings k ↪→ R and (Λj)σ denotes the coordinate with respect to
the functional ej viewed on the copy of aP0,C corresponding to σ. We abbreviate
Λσ = ((Λ1)σ, (Λ2)σ) (so that Λ = (Λσ)σ). The highest weight, being algebraically
integral and dominant, implies that (Λ1)σ, (Λ2)σ ∈ Z and (Λ1)σ ≥ (Λ2)σ ≥ 0. We
will always assume that E is the complexification of an algebraic representation
of G/k. Furthermore, we will assume that the coordinates of Λ are repeating in
the field embeddings, i.e., Λσ = Λτ for all field embeddings σ, τ . This will turn
out to be no restriction (cf. Proposition 2.1), since for all coefficient systems E
with a highest weight having non-repeating coordinates, the space of Eisenstein
cohomology supported in the Borel subgroup necessarily vanishes.

2. Automorphic forms and Eisenstein cohomology

This section recalls the decomposition of the space of automorphic forms along
the cuspidal support, and the corresponding decomposition in cohomology. Al-
though this is well known, it is included here in order to fix the notation. We will
also prove that Eisenstein cohomology supported in the Borel subgroup is trivial,
unless the coordinates of Λ are repeating in the field embeddings σ : k ↪→ C.

2.1. Automorphic forms. Let A be the space of automorphic forms on G(A).
Recall that a smooth complex function on G(A) is an automorphic form if it is left
G(k)-invariant, K-finite, annihilated by an ideal of finite codimension in Z(g∞),
and of moderate growth; cf. [BJ]. Thus, automorphic forms in A may be viewed as
functions on G(k)\G(A).

As we are only interested in automorphic forms which have non–trivial (g∞,K∞)-
cohomology with respect to the coefficient system E, we take J to be the ideal of
finite codimension in Z(g∞) annihilating the dual representation Ě. Then, we de-
fine AJ to be the subspace of A consisting of automorphic forms annihilated by
some power of J . It is a (g∞,K∞;G(Af ))-module. Only such automorphic forms
may represent a non–trivial cohomology class with respect to E; cf. [FS, Rem. 3.4].

2.2. Induced representations. Let Π be an automorphic representation of the
Levi factor Li(A) of a standard proper parabolic k-subgroup Pi, where i = 0, 1, 2,
such that the vector space of Π is the space of smooth K-finite functions in an
irreducible constituent of the discrete spectrum of Li(A). Observe that here we use
a standard convention: we say that Π is an automorphic representation of Li(A),
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although it is not a representation of Li(A) at all, but only an (li,∞,KLi,∞ ;Li(Af ))-
module.

Let λ ∈ ǎPi,C. Then λ gives rise to a character of Li(A) by

l 
→ exp〈λ,HPi
(l)〉,

where HPi
: G(A) → aPi

is the standard height function on G(A) (cf., e.g., [Fra98,
p. 185]). Then we define

Ii(λ,Π) = Ind
G(A)
Pi(A)

(Π⊗ exp〈λ,HPi
(·)〉) ,

where the induction is normalized in such a way that it preserves unitarizability.
Let WΠ denote the space of smooth K-finite functions on Li(k)Ni(A)\G(A) such

that for any g ∈ G(A) the function fg(l) = f(lg) of l ∈ Li(A) belongs to the space
of Π. Note that every irreducible constituent of the discrete spectrum of Li(A)
appears with multiplicity one (see [JL] for i = 1 and [Ram] for i = 2). Then, the
space of the induced representation Ii(λ,Π) may be identified with the space of
functions of the form

g 
→ fλ(g) = f(g) exp〈λ+ ρPi
, HPi

(g)〉,
where f ranges over all functions in WΠ.

The tensor product WΠ ⊗ S(aPi,C) of WΠ with the symmetric algebra of ǎPi,C

can be endowed with the structure of a (g∞,K∞;G(Af ))-module as in [Fra98,
p. 218 and p. 234] and [LS, p. 155]. Since we are just working with the normalized
parabolic induction instead of WΠ, this gives rise to a (g∞,K∞;G(Af ))-module
structure on

Ii(λ,Π)⊗ S(aPi,C)

for a given λ.
Finally, since Ii(λ,Π) decomposes into a restricted tensor product of local in-

duced representations, we have

Ii(λ,Π) ∼= Ii(λ,Π∞)⊗ Ii(λ,Πf ),

where Π∞ and Πf are the infinite and finite part of Π, respectively,

Ii(λ,Π∞) = Ind
(g∞,K∞)
(li,∞,KLi,∞ ) (Π∞ ⊗ exp∞〈λ,HPi

(·)〉) ,

Ii(λ,Πf) = Ind
G(Af )

Pi(Af )

(
Πf ⊗ expf 〈λ,HPi

(·)〉
)
,

and the induction is normalized.

2.3. Eisenstein series. Let Π be a discrete spectrum representation of Li(A) as
above. Let f be a function in WΠ and, for any λ ∈ ǎPi,C let fλ be the function in
the space of Ii(λ,Π) attached to f as above. Then we define the Eisenstein series,
at least formally, as

E(g, fλ) =
∑

γ∈Pi(k)\G(k)

fλ(γg) =
∑

γ∈Pi(k)\G(k)

f(γg) exp〈λ+ ρPi
, HPi

(γg)〉.

The series converges absolutely and locally uniformly in g for λ sufficiently regular
(i.e. deep enough in the positive Weyl chamber defined by P ). It can be analytically
continued to a meromorphic function on all of ǎPi,C. Away from its poles it defines
an automorphic form on G(A). For a proof of these facts, see Lemma 4.1 and
Lemma 6.1 in [Lan] or Section II.1.5, Section IV.1.8, Section IV.3 and Section IV.4
in [MW].
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2.4. Decomposition along the cuspidal support. There is a decomposition
of the space of automorphic forms along their cuspidal support which induces a
decomposition of AJ ; cf. [FS, Sect. 1], [MW, Thm. III.2.6]. We denote by {P} the
associate class of parabolic k-subgroups of G represented by a parabolic k-subgroup
P of G. In our case, there are four such classes represented by P0, P1, P2, G. As a
first step, one has a (g∞,K∞;G(Af ))-module decomposition

AJ = AJ (P0)⊕AJ (P1)⊕AJ (P2)⊕AJ (G),

where for an associate class of parabolic k-subgroups represented by P the space
AJ (P ) consists of automorphic forms in AJ which are negligible along all parabolic
k-subgroups not belonging to {P}. Here negligible along a parabolic k-subgroup Q
means that the constant term along Q is orthogonal to the space of cuspidal auto-
morphic forms on the Levi factor of Q. Observe that AJ (G) is the space of cuspidal
automorphic forms in AJ , and since we are interested in the Eisenstein cohomology
(see Section 5), we concentrate on the remaining three subspaces corresponding to
classes of proper parabolic k-subgroups.

For the second step in the decomposition, let ϕ = (ϕP )P∈{Pi} be the associate
class of unitary cuspidal automorphic representations of the Levi factors LP (A) of
parabolic k-subgroups P ∈ {Pi}, trivial on the diagonally embedded group AP (R)

◦,
and satisfying conditions listed in [FS, Sect. 1.2]. The set of all such ϕ for a class
{Pi} is denoted by Φi. Then there is a (g∞,K∞;G(Af ))-module decomposition

AJ (Pi) =
⊕
ϕ∈Φi

AJ (Pi, ϕ),

where AJ (Pi, ϕ) is defined as follows. The conditions listed in [FS, Sect. 1.2] ensure
that the associate class ϕ ∈ Φi is obtained by conjugating a single unitary cuspidal
automorphic representation π of Li(A) and that the infinitesimal character of its
archimedean component is related in a certain way to the infinitesimal character of
Ě. Then the space AJ (Pi, ϕ) may be defined in two equivalent ways; cf. [FS, Sect.
1]. Roughly speaking, it is spanned by all residues and main values of the derivatives
of the Eisenstein series attached to π at certain values of its complex parameter.
The condition on the infinitesimal character of the archimedean component of π
ensures that the automorphic forms so obtained are indeed annihilated by a power
of J .

2.5. Eisenstein cohomology. The cohomology of a congruence subgroup of G∞,
with respect to a finite–dimensional representation E, may be interpreted in terms
of its automorphic spectrum. Passing to the inductive limit over all congruence
subgroups, its study is reduced to the study of automorphic cohomology H∗(G,E)
of G with respect to E. It is defined as the relative Lie algebra cohomology of the
space of smooth left G(k)–invariant functions on G(A) with values in E. However,
Borel proved in [Bor83] that it suffices to consider the subspace consisting of K∞-
finite functions of uniform moderate growth. Finally, using his filtration, Franke
proved that in fact even

H∗(G,E) ∼= H∗(g∞,K∞,AJ ⊗ E).
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The decomposition of the space AJ of automorphic forms along their cuspidal
support gives rise to the decomposition

H∗(G,E) =
⊕

{P}∈C
H∗(g∞,K∞,AJ (P )⊗ E)

in the cohomology, where the sum ranges over the associate classes {P} of parabolic
k-subgroups of G. The cohomology space corresponding to the associate class
{G} is called the cuspidal cohomology, since AJ (G) is the subspace of cuspidal
automorphic forms in AJ . The remaining part in the decomposition is called the
Eisenstein cohomology. Thus,

H∗
Eis(G,E) =

2⊕
i=0

⊕
ϕ∈Φi

H∗(g∞,K∞,AJ (Pi, ϕ)⊗ E).

In this paper we describe H∗
Eis(G,E) by determining the summands in this decom-

position.

2.6. Repeating coordinates. We will now justify why we assume that the high-
est weight Λ of E has repeating coordinates in the field embeddings σ : k ↪→ C.
Otherwise, H∗(g∞,K∞;AJ (P0)⊗E) vanishes. With this assumption, the infinites-
imal character of a π ∈ ϕP has repeating coordinates, too. Hence, slightly abusing
notation we will consider this infinitesimal character as an element in ǎ

Pi
0 which is

diagonally embedded in g∞, although strictly speaking it is a sum of n copies of
such an element.

Proposition 2.1. Let E be an irreducible, finite-dimensional complex representa-
tion of G∞ of highest weight Λ = (Λσ)σ = ((Λ1)σ, (Λ2)σ)σ, where σ ranges over
all field embeddings k ↪→ C. Assume that E is the complexification of a k-rational
representation of G/k. If Λ does not have repeating coordinates, i.e. Λσ = Λτ for
all field embeddings σ, τ : k ↪→ C, then H∗(g∞,K∞,AJ (P0)⊗ E) = 0.

Proof. We start off more generally. Assume only H∗
Eis(G,E) 
= 0. By the last

section there is hence a proper standard parabolic k-subgroup P = Pi, i ∈ {0, 1, 2},
of G and cuspidal support ϕ ∈ Φi such that

H∗(g∞,K∞,AJ (P, ϕ)⊗ E) 
= 0.

Hence, there is a unitary cuspidal automorphic representation π ∈ ϕP of LP (A)
and a point λ ∈ ǎP,C such that H∗(g∞,K∞, IP (λ, π)⊗S(aP,C)⊗E) 
= 0. Applying
Frobenius reciprocity and [BW, III Thm. 3.3] shows that for all σ : k ↪→ C there
exists a wσ ∈ WP such that π∞⊗Cλ+ρP

has non-trivial (lP,∞,KLP,∞)-cohomology
with respect to S(aP,C)⊗

⊗
σ Fwσ

. Here, Cλ+ρP
denotes the one-dimensional com-

plex representation of aP ↪→ lP,∞ on which a ∈ aP acts by multiplication by
(λ+ ρP )(a) and Fwσ

is the irreducible finite–dimensional representation of LP (R)
of highest weight wσ(Λσ+ρ)−ρ. Recall that this makes sense since ρ has repeating
coordinates. Hence the Künneth rule implies that necessarily

(2.6.1) H∗(aP,∞, π|A◦
P,∞

⊗
⊗
σ

Cwσ(Λσ+ρ)−ρ|aP,σ
⊗ Cλ+ρP

⊗ S(aP,C)) 
= 0.
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Observe that, AP being abelian and π a cuspidal representation, π|A◦
P,∞

=

χ̃|A◦
P,∞

for a unitary character χ̃ : AP (k)AP (R)
◦\AP (A) → C. Hence, the non-

vanishing of (2.6.1) implies that

χ̃−1|A◦
P,∞

=
⊗
σ

Cwσ(Λσ+ρ)−ρ|aP,σ
− 1

n (
∑

σ wσ(Λσ+ρ)−ρ|aP,σ
)

and

λ = − 1

n

∑
σ

wσ(Λσ + ρ)|aP,σ
= −prh∞→aP

((wσ(Λσ + ρ))σ).

Observe furthermore that since E is the complexification of a k-rational repre-
sentation of G/k, H∗(nP,∞, E) =

⊕
w=(wσ)σ∈(WP )n

⊗
σ Fwσ

is the complexification

of a k-rational representation of LP /k. In particular,
⊗

σ Cwσ(Λσ+ρ)−ρ|aP,σ
is the

complexification of a rational character of AP /k. This shows that there is a k-
rational, (possibly non-unitary) continuous character χ : AP (k)\AP (A) → C which
equals χ̃ modulo AP (R)

◦ and which satisfies that the differential of its restriction
to the diagonally embedded group AP (R)

◦ is λ+ ρP . Let E0(AP ) be the group of
units in AP (k), i.e. of those elements which are in the maximal compact subgroup
at all places. Then the same arguments as in [Har87, Sect. 2.5.5] show that χ,
being k-rational and continuous, must be trivial on the connected component of
the Zariski closure of E0(AP ). Indeed, every such character has to vanish on some
suitable open compact subgroup Cf ⊂ AP (Af ), whence it is trivial on

E+(Cf ) := AP (k) ∩ AP (R)
◦ ∩ Cf .

Here, we think of AP (k) as being diagonally embedded in all of AP (A). By its
k-rationality, χ also vanishes on the Zariski closure of E+(Cf ). Further, E+(Cf )
is a subgroup of E0(AP ) of finite index. Since every such subgroup is necessarily a
congruence subgroup, see [Che, Thm. 1], χ must even be trivial on the connected

component of the Zariski closure E0(AP ) of E0(AP ), as claimed. However, as k is

totally real, E0(AP ) fits into the following exact sequence:

1 → E0(AP ) → Rk/Q(AP ) → AP /Q → 1

(see [Har87, Sect.2.8] and [Ser89, Chp. II 3.1-3.3]), implying that χ−1
σ = χ−1

τ for
all field embeddings σ, τ . In particular, wσ(Λσ + ρ)|aP,σ

= wτ (Λτ + ρ)aP,τ
for all σ

and τ . Now, if P = P0, this is only possible if wσ = wτ and hence only if Λσ = Λτ ,
i.e., if the highest weight of E has repeating coordinates. �

3. The Franke filtration

We briefly recall the filtration of the space of adèlic automorphic forms obtained
by Franke in [Fra98, Sect. 6], and its refinement along the cuspidal support by
Franke and Schwermer [FS, Sect. 1]. The filtration is valid for any reductive
group defined over k, but we write it for G = Sp4/k. In that case we give a
precise description of the quotients of consecutive filtration steps in terms of induced
representations.

3.1. Filtration along the cuspidal support. In [Fra98, Sect. 6], Franke defines
a finite descending filtration of the spaces AJ (Pi) such that the consecutive quo-
tients of the filtration are described as certain induced representations from the
discrete spectrum on the Levi factors of parabolic k-subgroups containing Pi. His
filtration depends on a choice of a function T defined on a finite subset of ǎ0 with
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values in Z. Thus, the filtration steps are indexed by integers, although there are
only finitely many non–trivial quotients of consecutive filtration steps.

Let Am
J (Pi) denote the filtration step corresponding to m ∈ Z. Then, as in

[FS, Sect. 5.2], where the case of a maximal proper parabolic subgroup of GLn

was considered, one can define the filtration of each summand AJ (Pi, ϕ) in the
decomposition of AJ (Pi) by

Am
i (ϕ) := Am

J (Pi) ∩ AJ (Pi, ϕ).

Then, Am
i (ϕ) consists of those automorphic forms in the filtration step Am

J (Pi),
which are obtained as residues and main values of derivatives of Eisenstein series
attached to π ∈ ϕPi

.
In the rest of this section we explain, following [Fra98, Sect. 5.2 and Sect. 6],

how to describe the quotients of the filtration of AJ (Pi, ϕ). The description in
our case given below does not hold in general. Here we substantially use the fact
that J annihilates a finite–dimensional representation and that we have fixed the
cuspidal support ϕ, and thus obtain a bit simpler description than the general case
in [Fra98].

Since the dual representation Ě of E has highest weight −wlong,G(Λ) = Λ, where
wlong,G = w1w2w1w2 is the longest Weyl group element, its infinitesimal character

is given by Λ + ρ0. Hence, the annihilator J in Z(g∞) of Ě annihilates precisely
the Weyl group orbit of Λ + ρ0 = (Λ1 + 2,Λ2 + 1), where the coordinates are with
respect to the basis {e1, e2} of ǎ0.

3.2. Case of minimal parabolic subgroup. We consider first the associate class
{P0} of the fixed minimal parabolic k-subgroup P0. Let ϕ = (ϕP )P∈{P0} be an
associate class of cuspidal automorphic representations of the Levi factors of the
parabolic k-subgroups in {P0}. Let μ1 ⊗μ2 ∈ ϕP0

be a unitary character of L0(A),
trivial on L0(k), where μ1 and μ2 are unitary characters of k×\A×.

We begin with the following lemma which singles out the possible infinitesimal
characters of a discrete spectrum representation of the Levi factor and evaluation
points for the corresponding Eisenstein series occurring in the description of the
filtration of AJ (P0). Since Λ has repeating coordinates as well as the evaluation
point, it follows that the possible infinitesimal characters have repeating coordinates
as well. As mentioned earlier, we consider them as elements of ǎPi

0 .

Lemma 3.1. Let Λ = (Λ1,Λ2) be the highest weight of E and J be the ideal
annihilating the dual of E. All possible infinitesimal characters ν ∈ ǎR0 of the
infinite component of the discrete spectrum automorphic representation of the Levi
factor LR(A) of a standard parabolic k-subgroup R supported in μ1 ⊗ μ2 ∈ ϕP0

,
and the evaluation points λ ∈ ǎR for the corresponding Eisenstein series, such that
ν + λ is annihilated by J , are given as follows.

For P0 we have ν = 0, and λ is any element of the Weyl group orbit of Λ + ρ0.
For P1 we have either

λ = ±
(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
and ν =

(
1 + Λ1 − Λ2

2
,−1 + Λ1 − Λ2

2

)
or

λ = ±
(
1 + Λ1 − Λ2

2
,
1 + Λ1 − Λ2

2

)
and ν =

(
3 + Λ1 + Λ2

2
,−3 + Λ1 + Λ2

2

)
.
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For P2 we have either

λ = ± (2 + Λ1, 0) and ν = (0, 1 + Λ2)

or

λ = ± (1 + Λ2, 0) and ν = (0, 2 + Λ1) .

For G we have λ = 0, and ν is the Weyl group orbit of Λ + ρ0.

Proof. This is a direct calculation already contained in [Sch86]. It exploits the
fact that J annihilates the Weyl group orbit of Λ + ρ0, and thus χ and ξ are just
projections of an element in that orbit to ǎ

Pi
0 and ǎPi

, respectively. �

Since the quotients of the filtration are described using (residual) Eisenstein

series evaluated at λ ∈ ǎ
+
R, we need the following result regarding the analytic

behavior of the Eisenstein series for Sp4(A). Kim in [Kim, Sect. 5] studied these
Eisenstein series. We state here only the part of his results which we require in the
sequel.

Proposition 3.2 (Kim, [Kim]). The space AJ (P0, ϕ) contains no irreducible con-
stituent of the discrete spectrum of G(A) unless Λ = 0 and the trivial character of
L0(A) belongs to ϕP0

. If Λ = 0 and the trivial character of L0(A) belongs to ϕP0
,

then the only constituent of the discrete series of G(A) belonging to AJ (P0, ϕ) is
one dimensional and isomorphic to the trivial representation of G(A), i.e. consists
of constant functions on G(A).

The following theorem gives the Franke filtration in the case we consider. How-
ever, it depends on the choice of an integer–valued function T defined on a finite
subset SJ of ǎ0 with the property

T (λ1) < T (λ2) if λ1 
= λ2 and λ2 ∈ λ1 − +ǎ0

for all λ1, λ2 ∈ ǎ0. If λ1 and λ2 satisfy the above condition either for T (λ1) < T (λ2)
or T (λ2) < T (λ1), we say that they are comparable; otherwise we say that they are
incomparable. The subset SJ consists of natural embeddings of those λ obtained

in Lemma 3.1 which satisfy λ ∈ ǎ
+
Pi
. However, if a particular cuspidal support is

fixed, not all elements of SJ play a role. Hence, in order to obtain the filtration of
AJ (P0, ϕ), we fix a choice of T depending on ϕ in the course of the proof.

Theorem 3.3. Let {P0} be the associate class of a minimal parabolic k-subgroup,
and let ϕ ∈ Φ0 be the associate class of the character μ1 ⊗ μ2 of L0(A), where μ1

and μ2 are unitary characters of k×\A×. The filtration of AJ (P0, ϕ), with respect
to the function T appropriately chosen during the course of the proof, has at most
three non–trivial filtration steps

AJ (P0, ϕ) = A0
0(ϕ) ⊃ A1

0(ϕ) ⊃ A2
0(ϕ),

where A2
0(ϕ) is non–trivial if and only if Λ1 = Λ2 = 0 and μ1 = μ2 = 1, where 1 is

the trivial character of A×, while A1
0(ϕ) is non–trivial if and only if

• Λ1 = Λ2 and μ1 = μ2

• or Λ2 = 0 and μ2 = 1.

If A2
0(ϕ) is non-trivial, it is one dimensional and isomorphic as a (g∞,K∞;G(Af ))-

module to

A2
0(ϕ)

∼= 1G(A),
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where 1G(A) is the trivial character of G(A), i.e A2
0(ϕ) consists of constant functions

on G(A). If A1
0(ϕ) is non–trivial, then the quotient A1

0(ϕ)/A2
0(ϕ) is isomorphic to

A1
0(ϕ)/A2

0(ϕ)
∼=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I1(
3
2 + Λ, μ ◦ det)⊗ S(aP1,C),
if Λ = Λ1 = Λ2 and μ = μ1 = μ2, but Λ 
= 0 or μ 
= 1,

I2(2 + Λ1, μ⊗ 1SL2(A))⊗ S(aP2,C),
if Λ2 = 0 and μ2 = 1, but Λ1 
= 0 or μ1 
= 1,

I1(
3
2 , μ ◦ det)⊗ S(aP1,C)

⊕
I2(2, μ⊗ 1SL2(A))⊗ S(aP2,C),

if Λ1 = Λ2 = 0 and μ1 = μ2 = 1

as a (g∞,K∞;G(Af ))-module, where in the first case Λ denotes the integer Λ1 =
Λ2, μ denotes the character μ1 = μ2, and 1SL2(A) is the trivial character of SL2(A).

Finally, the quotient A0
0(ϕ)/A1

0(ϕ) is isomorphic to

A0
0(ϕ)/A1

0(ϕ)
∼= I0(Λ + ρ0, μ1 ⊗ μ2)⊗ S(aP0,C)

as a (g∞,K∞;G(Af ))-module for any Λ and μ1 ⊗ μ2.

Proof. We closely follow [Fra98, Sect. 6], adjusted to the considered situation. As in
[Fra98, p. 233], taking into account the cuspidal support, consider the set M(P0, ϕ)
of quadruples (R,Π, ν, λ), such that:

• R = LRNR is a standard parabolic k-subgroup of G containing an element
of the associate class {P0}.

• Π is a discrete spectrum representation of LR(A) with cuspidal support
μ1⊗μ2 obtained as the iterated residue at the value ν ∈ ǎR0 of the Eisenstein
series on LR(A) attached to μ1 ⊗ μ2.

• λ ∈ ǎ
+
R is such that λ+ ν is annihilated by J .

Observe that the possible pairs (λ, ν) are given in Lemma 3.1, where one should

take into account only the cases with λ ∈ ǎ
+
R.

For m ∈ Z let Mm(P0, ϕ) be the subset of M(P0, ϕ) consisting of those quadru-
ples for which T (λ) = m, where λ is viewed as an element in ǎ0 via the natural
embedding. Then, by [Fra98, Thm. 14], the quotient

(3.2.1) Am
0 (ϕ)/Am+1

0 (ϕ) ∼=
⊕

(R,Π,ν,λ)∈Mm(P0,ϕ)

I(λ,Π)⊗ S(aR,C).

Observe at this point that the direct sum on the right hand side is obtained due to
the fact that J annihilates a finite–dimensional representation, and thus it annihi-
lates a Weyl group orbit not intersecting the boundary of the Weyl chambers in ǎ0

(see [Fra98, Thm. 19]). We also introduce the notation MR(P0, ϕ) and Mm
R (P0, ϕ)

for the set of all quadruples inM(P0, ϕ) andMm(P0, ϕ), respectively, with a certain
parabolic subgroup R as the first entry.

First consider the case R = G. Then always λ = 0, and thus Mm
G (P0, ϕ) is trivial

except possibly for m = T (0). The residual representation Π of G(A) is obtained
as a residue of the Eisenstein series attached to μ1 ⊗ μ2 at ν ∈ ǎ0 such that ν is
annihilated by J . By Proposition 3.2, the only possibility is that μ1 = μ2 = 1
and Λ = 0. In that case ν = (2, 1) and Π ∼= 1G(A). Thus we have determined the
quadruples in MG(P0, ϕ). Namely,

Mm
G (P0, ϕ)=

{
{G,1G(A), (2, 1), 0}, if m = T (0) and Λ1=Λ2=0 and μ1=μ2=1,
∅, otherwise.
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Let R = P1. Since Π is a residual representation of LR(A) ∼= GL2(A), it is

isomorphic to Π ∼= μ ◦ det. Hence, necessarily μ1 = μ2 and ν = (1/2,−1/2) ∈ ǎ
P1
0 .

By Lemma 3.1, such ν can be obtained only if Λ1 = Λ2 and λ = (3/2+Λ, 3/2+Λ),
where we denote Λ = Λ1 = Λ2. Thus, we have

Mm
P1

(P0, ϕ)=

⎧⎪⎨
⎪⎩

{(
P1, μ ◦ det,

(
1
2
,− 1

2

)
,
(
3
2
+Λ, 3

2
+Λ

))}
,

if T ( 3
2
+Λ, 3

2
+Λ) = m and

Λ1=Λ2=Λ and μ1=μ2=μ,

∅, otherwise.

Similarly, for R = P2, we have that Π is a residual representation of LR(A) ∼=
GL1(A) × SL2(A). However, the only residual representation of SL2(A) is the
trivial character 1SL2(A) of SL2(A). Thus, necessarily μ2 is the trivial character
and ν = (0, 1). By Lemma 3.1, such ν is obtained only if Λ2 = 0, and then
λ = (2 + Λ1, 0) is the corresponding λ. So in this case we have

Mm
P2
(P0, ϕ)=

⎧⎪⎨⎪⎩
{(

P2, μ1 ⊗ 1SL2(A), (0, 1) , (2 + Λ1, 0)
)}

,
if T (2 + Λ1, 0) = m and
Λ2 = 0 and μ2 = 1,

∅, otherwise.

Finally, if R = P0, then Π = μ1 ⊗ μ2. Hence, ν = 0 and λ = (2 + Λ1, 1 + Λ2).
Thus

Mm
P0
(P0, ϕ) =

{
{(P0, μ1 ⊗ μ2, 0, (2 + Λ1, 1 + Λ2))} , if T (2 + Λ1, 1 + Λ2) = m,

∅, otherwise.

The description of M(P0, ϕ) reveals that for a given Λ the values of a function
T are required only at a certain subset of SJ . More precisely, MP1

(P0, ϕ) and
MP2

(P0, ϕ) may possibly be non–empty only for Λ1 = Λ2 = 0. Therefore, only in
that case does T (λ) for λ coming from both cases matter. Note that in this case
the two λ are incomparable. We define T (0) = 2 and T (2 + Λ1, 1 + Λ2) = 0, and
also

T

(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
= T (2 + Λ1, 0) = 1.

Although there exist Λ1,Λ2 such that the last two points are comparable, as already
explained, both points matter only for Λ1 = Λ2 = 0, and in that case they are
incomparable. Therefore, we may define T in this way.

Now the theorem follows. Namely, A2
0(ϕ) is non–trivial if and only if MG(P0, ϕ)

is non–trivial, which is if and only if the conditions given in the theorem are sat-
isfied. In that case the only summand in the decomposition (3.2.1) is the trivial
representation of G(A).

The space A1
0(ϕ) is non–trivial if and only if at least one of MP1

(P0, ϕ) and
MP2

(P0, ϕ) is non–empty. Note that if MG(P0, ϕ) is non–empty, then both
MPi

(P0, ϕ), for i = 1, 2, are non–empty. Hence, this filtration step is non–trivial
exactly if at least one of the two conditions given in the theorem is satisfied. Then
the decomposition of the quotient follows directly from (3.2.1).

Finally, A0
0(ϕ) is always non–trivial, and the decomposition of the quotient of

this filtration step is obtained from (3.2.1). �

3.3. Case of maximal parabolic subgroups. Let Pi = LiNi, for i = 1, 2, be one
of the maximal proper standard parabolic k-subgroups. Let ϕ = (ϕP )P∈{Pi} ∈ Φi

be an associate class of cuspidal automorphic representations. Let π ∈ ϕPi
, and let
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χ ∈ ǎ
Pi
0 be the infinitesimal character of its archimedean component, where ǎ

Pi
0 is

diagonally embedded into ǎ0,∞.
The filtration of AJ (Pi, ϕ), for i = 1, 2, depends on the analytic behavior of the

Eisenstein series attached to π ∈ ϕPi
. This was studied by Kim in [Kim, Sect. 3

and 4], and we recall the result for convenience of the reader.

Proposition 3.4 (Kim, [Kim]). (1) In the case of the parabolic subgroup P1,
the Eisenstein series E(g, fs), attached to a cuspidal automorphic repre-

sentation π of L1(A) ∼= GL2(A), has a pole at s = ν ∈ ǎ
+
P1

if and only
if ν = (1/2, 1/2), the central character of π, is trivial and the principal L-
function L(1/2, π) 
= 0. The space spanned by the residues Ress=1/2E(g, fs)
is isomorphic to the unique irreducible quotient J1(1/2, π) of I1(1/2, π).

(2) In the case of the parabolic subgroup P2, the Eisenstein series E(g, fs),
attached to a cuspidal automorphic representation π ∼= μ ⊗ σ of L2(A) ∼=
GL1(A)×SL2(A), has a pole at s = ν ∈ ǎ

+
P2

if and only if ν = (1, 0), and the
Rankin–Selberg L-function L(s, μ×σ) has a pole at s = 1 (see [Kim, p. 137]
for a more explicit formulation of this condition). The space spanned by
the residues Ress=1E(g, fs) is isomorphic to the unique irreducible quotient
J2(1, π) of the induced representation I2(1, π).

Before proceeding we need the following technical lemma.

Lemma 3.5. Let Λ = (Λ1,Λ2) be the highest weight of E and J be the ideal anni-

hilating the dual of E. Then the infinitesimal character χ ∈ ǎ
Pi
0 of the archimedean

component of π ∈ ϕPi
, where ϕ = (ϕP )P∈{Pi} ∈ Φi, and the corresponding ξ ∈ ǎPi

such that ξ + χ is annihilated by J are given as follows. For P1 we have either

ξ = ±
(
3 + Λ1 + Λ2

2
,
3 + Λ1 + Λ2

2

)
and χ =

(
1 + Λ1 − Λ2

2
,−1 + Λ1 − Λ2

2

)
or

ξ = ±
(
1 + Λ1 − Λ2

2
,
1 + Λ1 − Λ2

2

)
and χ =

(
3 + Λ1 + Λ2

2
,−3 + Λ1 + Λ2

2

)
.

For P2 we have either

ξ = ± (2 + Λ1, 0) and χ = (0, 1 + Λ2)

or

ξ = ± (1 + Λ2, 0) and χ = (0, 2 + Λ1) .

Observe that for each Pi and a fixed cuspidal support ϕ, at most one of the two
possibilities may occur.

Proof. As in Lemma 3.1, this is a direct calculation already contained in [Sch86]. �

Theorem 3.6. Let the notation be as above. Let ξ ∈ ǎ
+
Pi

be such that ξ + χ ∈ ǎ0

is annihilated by J . The filtration of AJ (Pi, ϕ) has at most two non–trivial steps

AJ (Pi, ϕ) = A1
i (ϕ) ⊃ A2

i (ϕ),

where the quotient is isomorphic to

A1
i (ϕ)/A2

i (ϕ)
∼= Ii(ξ, π)⊗ S(aPi,C)
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as a (g∞,K∞;G(Af ))-module, and A2
i (ϕ) is non–trivial if and only if

• in the case of P1 we have Λ1 = Λ2 = Λ, the infinitesimal character
χ = ( 32 + Λ,− 3

2 − Λ), ξ = ( 12 ,
1
2 ), and there is a section fs of the in-

duced representation I1(s, π) such that the Eisenstein series E(g, fs) has a
pole at s = ξ = ( 12 ,

1
2 ),

• in the case of P2 we have Λ2 = 0, the infinitesimal character χ = (0, 2+Λ1),
ξ = (1, 0), and there is a section fs of the induced representation I2(s, π)
such that the Eisenstein series E(g, fs) has a pole at s = ξ = (1, 0).

If non–trivial, it is isomorphic to

A2
i (ϕ)

∼= Ji(ξ, π)

as a (g∞,K∞;G(Af ))-module.

Proof. This follows from [Fra98, Sect. 6], but we explain for the convenience of the
reader in some detail our case, although it is quite similar to the proof of Theorem
3.3. Similarly as in [Fra98, p. 233], but taking into account that we have fixed the
cuspidal support, consider the set M(Pi, ϕ) of quadruples (R,Π, ν, λ), such that:

• R = LRNR is a standard parabolic k-subgroup of G containing an element
of the associate class {Pi}, i.e. either R = Pi or R = G.

• Π is a discrete spectrum representation of LR(A) with cuspidal support π
obtained as the iterated residue at the value ν ∈ ǎRPi

of the Eisenstein series
on LR(A) attached to π. If R = Pi, then Π = π and ν = 0. If R = G, then

Π is the residual representation of G(A) with support π and ν ∈ ǎ
+
Pi

is the
pole of the Eisenstein series attached to π.

• λ ∈ ǎ
+
R is such that λ + ν + χ is annihilated by J . If R = G, then λ = 0,

and thus ν + χ is annihilated by J . If R = Pi, then λ + χ is annihilated
by J .

Observe that by the third condition ξ = λ+ν and χ form one of the pairs computed
in Lemma 3.5.

For m ∈ Z let Mm(Pi, ϕ) be the subset of M(Pi, ϕ) consisting of those quadru-
ples for which T (λ) = m, where λ is viewed as an element in ǎ0 via the natural
embedding. Then, by [Fra98, Thm. 14], the quotient

(3.3.1) Am
i (ϕ)/Am+1

i (ϕ) ∼=
⊕

(R,Π,ν,λ)∈Mm(Pi,ϕ)

I(λ,Π)⊗ S(aR,C).

As in Theorem 3.3, the direct sum on the right hand side is obtained due to the fact
that J annihilates a finite–dimensional representation (see [Fra98, Thm. 19]). We
also introduce the notation MR(Pi, ϕ) and Mm

R (Pi, ϕ) for the set of all quadruples
in M(Pi, ϕ) and Mm(Pi, ϕ), respectively, with a parabolic subgroup R as the first
entry.

For R = G, we always have λ = 0. Hence, Mm
G (Pi, ϕ) is empty except for m =

T (0). Moreover, Π in a quadruple with R = G should be a residual representation
of G(A) supported in π. By Proposition 3.4, if π satisfies certain conditions, then
the Eisenstein series attached to π has a pole for P1 only at ν = (1/2, 1/2) with the
residue Π ∼= J1(ν, π), and for P2 at ν = (1, 0) with the residue Π ∼= J2(ν, π). Since
λ = 0, we have ξ = ν, and thus Lemma 3.5 shows that these ξ can be achieved only
if Λ1 = Λ2 for P1 and Λ2 = 0 for P2. In both cases, Lemma 3.5 also gives a unique
infinitesimal character χ such that ν + χ is annihilated by J . More precisely, for
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P = P1 it is χ =
(
Λ + 3

2 ,−Λ− 3
2

)
, where Λ = Λ1 = Λ2, and for P = P2 it is

χ = (0, 2 + Λ1). Thus we have found all quadruples in MG(Pi, ϕ). Namely,

Mm
G (P1, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
{(

G, J1(1/2, π),
(
1
2 ,

1
2

)
, 0
)}

,
if m = T (0) and Λ1 = Λ2 = Λ
and χ =

(
Λ + 3

2 ,−Λ− 3
2

)
and π is as in Prop. 3.4 (1),

∅, otherwise,

while

Mm
G (P2, ϕ) =

⎧⎪⎪⎨⎪⎪⎩
{(G, J2(1, π), (1, 0) , 0)} ,

if m = T (0) and Λ2 = 0
and χ = (0,Λ1 + 2)
and π is as in Prop. 3.4 (2),

∅, otherwise.

On the other hand, for R = Pi, we have Π = π and hence ν = 0. Thus, in this
case ξ = λ and χ form one of the pairs given in Lemma 3.5 with the positive sign
taken for ξ. Thus λ 
= 0, and for a given π and its infinitesimal character χ there
is a unique λ forming the quadruple (Pi, π, 0, λ) ∈ MPi

(Pi, ϕ). Therefore, having
fixed the cuspidal support (and of course the highest weight Λ), we may choose a
function T such that T (λ) is the same integer satisfying T (λ) < T (0) for all λ 
= 0
appearing among the quadruples. Finally, the sets Mm

Pi
(Pi, ϕ) are given as

Mm
Pi
(Pi, ϕ)=

⎧⎪⎨⎪⎩{(Pi, π, 0, λ)} ,
if m=T (λ) and λ and the infinitesimal character
χ form one of the pairs given in Lemma 3.5,

∅, otherwise.

It has no effect on the filtration if we assume that T (0) = 2 and T (λ) = 1 for
λ 
= 0. Then the only non–empty sets Mm(Pi, ϕ) are

M1(Pi, ϕ) = M1
Pi
(Pi, ϕ),

and possibly

M2(Pi, ϕ) = M2
G(Pi, ϕ).

The second set is non–trivial if and only if the conditions for non–triviality of
A2

i (ϕ) given in the theorem are satisfied. Therefore, the Franke description of the
quotients (3.3.1) shows that

A1
i (ϕ)/A2

i (ϕ)
∼= Ii(ξ, π)⊗ S(aPi,C),

where (Pi, π, 0, λ) is the only element of M1(Pi, ϕ), and ξ = λ, as claimed, and if
A2

i (ϕ) is non–trivial,

A2
i (ϕ)

∼= Ji(ξ,Π),

since the induction is from G(A) to itself, and ǎG is trivial. �

4. The cohomology of filtration quotients

4.1. We shall now determine the cohomology of the various quotients

Am
i (ϕ)/Am+1

i (ϕ)

of the filtration of AJ (Pi, ϕ), with m ∈ Z and i = 0, 1, 2, using their description
given in Theorems 3.3 and 3.6. Therefore, observe that for each archimedean place
v of k we may write Li(kv) = Li(R) as a direct product Li(R) = Ai(R)

◦ × Li(R)
ss
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of the connected component of the group of real points of a maximal central k-split
torus Ai(R)

◦ and the semi–simple part Li(R)
ss, where

Li(R)
ss =

⎧⎨⎩
{±1} × {±1} = F2 × F2, if i = 0,
{±1}� SL2(R) = SL±

2 (R), if i = 1,
{±1} × SL2(R) = F2 × SL2(R), if i = 2.

Recall that SL±
2 (R) = {g ∈ GL2(R)| det(g) = ±1}, and F2 is the multiplica-

tive group of two elements. An irreducible representation of Li(R) may hence
be decomposed into a character of Ai(R)

◦ and an irreducible representation of
Li(R)

ss. In particular, a finite-dimensional, irreducible representation of Li(R) is
the product of a character of Ai(R)

◦ and a finite-dimensional representation of
Li(R)

ss. The latter one is either F 0(a, b) := sgnaF2
⊗ sgnbF2

if i = 0 or in the case

of i = 1, 2, the representation F i

 (a), i.e., the unique irreducible representation of

Li(R)
ss of dimension � tensored by sgna. Recall that the (−1)-element in Li(R)

ss

is represented by

(
−1 0
0 1

)
if i = 1 and by (−1, id) if i = 2. In the special

case where � = 1, we will also use the usual notation F 1
1 (a) = sgna

SL±
2 (R)

, resp.

F 2
1 (a) = sgnaF2

= sgnaF2
⊗1SL2(R).

In what follows we need to know the cohomological, irreducible unitary represen-
tations of Li(R)

ss which is determined in the following lemma. Therefore recall that
for every integer r ≥ 2, SL±

2 (R) has one discrete series representation Dr indexed
by its lowest O(2)-type r, while SL2(R) has two discrete series representations D+

r

(resp. D−
r ) indexed by the lowest (resp. highest) SO(2)-type r (resp. −r).

Lemma 4.1. Let F 0(a, b) and F i

 (a), i = 1, 2, be the finite–dimensional irreducible

representations of L0(R)
ss and Li(R)

ss, respectively, as defined above. Let τ be any
irreducible unitary representations of Li(R)

ss, i = 0, 1, 2.

(i = 0)

Hq(lss0 ,KL0(R)ss , τ ⊗ F 0(a, b)) =

{
C, if q = 0 and τ ∼= F 0(a, b),
0, otherwise.

(i = 1) If � = 1, then

Hq(lss1 ,KL1(R)ss , τ ⊗ sgna
SL±

2 (R)
) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

⎧⎪⎨⎪⎩
if q = 0 and τ ∼= sgna

SL±
2 (R)

,

if q = 1 and τ ∼= D2,
if q = 2 and τ ∼= sgna+1

SL±
2 (R)

0, otherwise.

If � > 1, then

Hq(lss1 ,KL1(R)ss , τ ⊗ F 1

 (a)) =

{
C, if q = 1 and τ ∼= D
+1,
0, otherwise.

(i = 2) If � = 1, then

Hq(lss2 ,KL2(R)ss , τ ⊗ sgnaF2
) =

⎧⎨⎩ C,

{
if q = 0, 2 and τ ∼= sgnaF2

,
if q = 1 and τ ∼= sgnaF2

⊗D±
2 ,

0, otherwise.

If � > 1, then

Hq(lss2 ,KL2(R)ss , τ ⊗ F 2

 (a)) =

{
C, if q = 1 and τ ∼= sgnaF2

⊗D±

+1,

0, otherwise.
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Proof. This follows from the Künneth rule and the well–known properties of the
cohomological unitary dual of SL±

2 (R) and SL2(R); cf. [Sch83, pp. 118–122]. �

4.2. The first maximal parabolic subgroup. Let ϕ = (ϕP )P∈{P1} ∈ Φ1 be
an associate class of unitary cuspidal automorphic representations and π ∈ ϕP1

be a representative. Let χ ∈ ǎ
P1
0 be the infinitesimal character of its archimedean

component, where ǎ
P1
0 is diagonally embedded into ǎ0,∞, and take ξ ∈ ǎ

+
P1

such
that ξ + χ ∈ ǎ0 is annihilated by J . Which pairs of vectors ξ and χ satisfy this
latter condition is listed in Lemma 3.5, but for the reader’s convenience we recall
that we must have

ξ =
3 + Λ1 + Λ2

2
and χ =

1 + Λ1 − Λ2

2

or

ξ =
1 + Λ1 − Λ2

2
and χ =

3 + Λ1 + Λ2

2
.

In this section we determine the cohomology of the quotients

A1
1(ϕ)/A2

1(ϕ) and A2
1(ϕ),

using their explicit description in our Theorem 3.6. We obtain

Proposition 4.2. Let E be an irreducible representation of G∞ as in Section 1.5,
so that its highest weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field
embeddings σ : k ↪→ C, and may hence be written as Λ = (Λ1,Λ2). Then we obtain
as a G(Af )-module

Hq(g∞,K∞,A1
1(ϕ)/A2

1(ϕ)⊗E)∼=
{
I1(ξ, πf )

m1(π,q) if πv|L1(R)ss =D2χ+1 ∀v∈S∞,
0 otherwise,

where

m1(π, q) =

(
n− 1

q − 3n

)
if χ =

3 + Λ1 + Λ2

2

and

m1(π, q) =

(
n− 1

q − 4n

)
if χ =

1 + Λ1 − Λ2

2
.

In particular, this space vanishes outside the degrees 3n ≤ q ≤ 4n − 1 in the first
case, and outside the degrees 4n ≤ q ≤ 5n− 1 in the second case.

If A2
1(ϕ) is non–trivial, i.e., if Λ1 = Λ2 = Λ, ξ = 1

2 , χ = 3
2 + Λ and π satisfies

that its central character is trivial and L( 12 , π) 
= 0, then

Hq(g∞,K∞,A2
1(ϕ)⊗ E) ∼=

{
J1(ξ, πf)

m1(q) if πv = D2Λ+4 ∀v ∈ S∞,
0 otherwise,

where

m1(q) = #{(r1, . . . , rn) | rj ∈ {2, 4} and
n∑

j=1

rj = q} =

{ ( n
2n− q

2

)
, if q is even,

0, otherwise.

In particular, this cohomology vanishes if q is either odd or not in the range 2n ≤
q ≤ 4n.
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Proof. We begin by calculating the (g∞,K∞)-cohomology of A1
1(ϕ)/A2

1(ϕ). By
Theorem 3.6 we get

Hq(g∞,K∞,A1
1(ϕ)/A2

1(ϕ)⊗E) ∼= Hq(g∞,K∞, I1(ξ, π)⊗ S(aP1,C)⊗ E)

∼= Hq(g∞,K∞, I1(ξ, π∞)⊗S(aP1,C)⊗E)⊗I1(ξ, πf),

where the fist space carries the trivial G(Af )-module structure. Therefore we only
need to show that

Hq(g∞,K∞, I1(ξ, π∞)⊗ S(aP1,C)⊗ E)

is of dimension m1(π, q) if πv|L1(R)ss = D2χ+1 for all archimedean places v and
vanishes otherwise. Now [BW, III Thm. 3.3], together with our Proposition 2.1,
shows that there is a unique w ∈ WP1 for all σ : k ↪→ C such that the repre-
sentation π∞ ⊗ Cξ+ρP1

has non-trivial (l1,∞,KL1,∞)-cohomology with respect to

S(aP1,C) ⊗
⊗

σ Fw. Here, Cξ+ρP1
denotes the one-dimensional complex represen-

tation of aP1
↪→ l1,∞ on which a ∈ aP1

acts by multiplication by (ξ + ρP1
)(a) and

Fw is the irreducible finite-dimensional representation of L1(R) of highest weight
w(Λ + ρ)− ρ. Again by [BW, III Thm. 3.3] it is clear that either

(4.2.1) w = w2w1 if χ =
3 + Λ1 + Λ2

2

or

(4.2.2) w = w2w1w2 if χ =
1 + Λ1 − Λ2

2
.

So the length of w is l(w) = 2 in case (4.2.1) and l(w) = 3 in case (4.2.2), whereas
Fw = Cw(Λ+ρ)−ρ|aP1

⊗ F 1
2χ(a) for some a ∈ {0, 1} in both cases. Furthermore, in

any case,

Hq(g∞,K∞, I1(ξ, π∞)⊗ S(aP1,C)⊗ E)

∼= Hq−l(w)n(l1,∞,KL1,∞, π∞ ⊗ S(aP1,C)⊗ Cξ+ρP1
⊗
⊗

σ Fw)

∼= Hq−l(w)n(m1,∞,KM1,∞, π∞ ⊗
⊗

σ Fw).

The first line is [BW, III Thm. 3.3], while the second line follows directly as in
[Fra98, p. 256] if we apply the Künneth rule to the decomposition l1,∞ = m1,∞⊕aP1

.
Now observe that KL1,∞ ∩ A◦

1,∞ = {1}. Hence, [BW, II Prop. 3.1] implies
together with the Künneth rule that

(4.2.3) Hq−l(w)n(m1,∞,KM1,∞, π∞ ⊗
⊗
σ

Fw)

∼=
⊕

r+s=q−l(w)n

⎡⎢⎢⎣∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss1 ,KL1(R)ss , πv|L1(R)ss ⊗ F 1
2χ(a))

⎤⎥⎥⎦ .
Since a cuspidal automorphic representation π ∈ ϕP1

cannot have a one–dimensional
archimedean component, we conclude by Lemma 4.1 that we must have

πv|L1(R)ss
∼= D2χ+1 ∀v ∈ S∞

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EISENSTEIN COHOMOLOGY OF Sp4 5219

in order to get non–vanishing cohomology. Moreover, Lemma 4.1 says that in this
case ⊗

v∈S∞

Hsv (lss1 ,KL1(R)ss , πv|L1(R)ss ⊗ F 1
2χ(a)) =

{
C, if sv = 1 ∀v ∈ S∞,
0, otherwise.

Hence, s = n, and so the dimension of the vector space (4.2.3) is

dimC

⎛⎜⎜⎝ ⊕
r+s=q−l(w)n

∧r
Cn−1⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss1 ,KL1(R)ss , πv|L1(R)ss⊗F 1
2χ(a))

⎞⎟⎟⎠
=

(
n− 1

q − (l(w) + 1)n

)
.

But as l(w) = 2 in case (4.2.1) and l(w) = 3 in case (4.2.2), this shows the claim.
Next we calculate the cohomology of A2

1(ϕ) if it is non–trivial. So according to
Theorem 3.6 and Proposition 3.4 we assume that Λ1 = Λ2 = Λ, ξ = 1

2 , χ = 3
2 + Λ,

π satisfies that its central character is trivial and L( 12 , π) 
= 0. By Theorem 3.6 we
obtain furthermore that

Hq(g∞,K∞,A2
1(ϕ)⊗ E) ∼= Hq(g∞,K∞, J1(ξ, π)⊗ E)

∼= Hq(g∞,K∞, J1(ξ, π∞)⊗ E)⊗ J1(ξ, πf ).

The (sp4(R), U(2))–cohomology of the Langlands quotient J1(ξ, πv) with respect to
E = E(Λ,Λ) is computed in [BW, VI Thm. 1.7], and together with [BW, VI Lem.
1.5] we obtain

Hq(sp4(R), U(2), J1(ξ, πv)⊗ E) ∼=
{

C, if q = 2, 4 and πv = D2Λ+4,
0, otherwise.

By now applying the Künneth rule, the last assertion of the proposition is given. �

4.3. The second maximal parabolic subgroup. This section is in complete
analogy to the previous one. So, let ϕ = (ϕP )P∈{P2} ∈ Φ2 be an associate class

of unitary cuspidal automorphic representations and π ∈ ϕP2
. Let χ ∈ ǎ

P2
0 be

the infinitesimal character of its archimedean component, where ǎ
P2
0 is diagonally

embedded into ǎ0,∞, and take ξ ∈ ǎ
+
P2

such that ξ + χ ∈ ǎ0 is annihilated by J .
We recall from Lemma 3.5 that we must have

ξ = 2 + Λ1 and χ = 1 + Λ2

or

ξ = 1 + Λ2 and χ = 2 + Λ1.

The cohomology of the quotients

A1
2(ϕ)/A2

2(ϕ) and A2
2(ϕ)

is obtained in the following proposition.

Proposition 4.3. Let E be an irreducible representation of G∞ as in Section 1.5,
so that its highest weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the field
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embeddings σ : k ↪→ C, and may hence be written as Λ = (Λ1,Λ2). Then we obtain
as a G(Af )-module

Hq(g∞,K∞,A1
2(ϕ)/A2

2(ϕ)⊗ E)

∼=
{

I2(ξ, πf)
m2(π,q), if πv|L2(R)ss = sgnξF2

⊗D±
χ+1 ∀v ∈ S∞,

0, otherwise,

where

m2(π, q) =

(
n− 1

q − 3n

)
if χ = Λ1 + 2

and

m2(π, q) =

(
n− 1

q − 4n

)
if χ = Λ2 + 1.

In particular, this space vanishes outside the degrees 3n ≤ q ≤ 4n − 1 in the first
case and outside the degrees 4n ≤ q ≤ 5n− 1 in the second case.

If A2
2(ϕ) is non–trivial, i.e., if Λ2 = 0, ξ = 1, χ = 2+Λ1 and π = μ⊗σ satisfies

the fact that L(s, μ× σ) has a pole at s = 1, then

Hq(g∞,K∞,A2
2(ϕ)⊗ E) ∼=

{
J2(ξ, πf )

m2(q), if σv = D±
Λ1+3 ∀v ∈ S∞,

0, otherwise,

where

m2(q) = #{(r1, . . . , rn) | rj ∈ {2, 4} and

n∑
j=1

rj = q} =

{ ( n
2n− q

2

)
, if q is even,

0, otherwise.

In particular, this cohomology vanishes if q is either odd or not in the range 2n ≤
q ≤ 4n.

Proof. As in the case of P1, in order to show the assertions on the (g∞,K∞)-
cohomology of A1

2(ϕ)/A2
2(ϕ), it is enough to prove that

Hq(g∞,K∞, I2(ξ, π∞)⊗ S(aP2,C)⊗ E)

is of dimension m2(π, q) if πv|L2(R)ss = sgnξF2
⊗D±

χ+1 for all archimedean places and

that it vanishes otherwise. Again, [BW, III Thm. 3.3] together with our Propo-
sition 2.1 shows that there is a unique w ∈ WP2 for all σ : k ↪→ C such that the
representation π∞ ⊗Cξ+ρP2

has non-trivial (l2,∞,KL2,∞)-cohomology with respect

to S(aP2,C)⊗
⊗

σ Fw. Here, Cξ+ρP2
denotes the one-dimensional complex represen-

tation of aP2
↪→ l2,∞ on which a ∈ aP2

acts by multiplication by (ξ + ρP2
)(a) and

Fw is the irreducible finite-dimensional representation of L2(R) of highest weight
w(Λ + ρ)− ρ. Explicitly we get

(4.3.1) w = w1w2 if χ = Λ1 + 2

and

(4.3.2) w = w1w2w1 if χ = Λ2 + 1.

In any of these two cases, Fw = Cw(Λ+ρ)−ρ|aP2
⊗ F 2

χ(ξ). Furthermore, as in the

case of P1,
(4.3.3)

Hq(g∞,K∞, I2(ξ, π∞)⊗ S(aP2,C)⊗ E) ∼= Hq−l(w)n(m2,∞,KM2,∞, π∞ ⊗
⊗
σ

Fw).
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Again KL2,∞ ∩A◦
2,∞ = {1}, whence the latter cohomology space is isomorphic to

⊕
r+s=q−l(w)n

⎡⎢⎢⎣∧r
Cn−1 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ))

⎤⎥⎥⎦ .
Since a cuspidal automorphic representation π ∈ ϕP2

cannot have a one–dimensional
archimedean component, we conclude by Lemma 4.1 that we must have

πv|L2(R)ss
∼= sgnξF2

⊗D±
χ+1

for all v ∈ S∞ in order to get non–vanishing cohomology. Moreover, it follows from
Lemma 4.1 that in this case⊗

v∈S∞

Hsv(lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ)) =

{
C, if sv = 1 ∀v ∈ S∞,
0, otherwise.

Therefore, s = n, and so the vector space (4.3.3) has dimension

dimC

⎛⎜⎜⎝ ⊕
r+s=q−l(w)n

∧r
Cn−1⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss2 ,KL2(R)ss , πv|L2(R)ss ⊗ F 2
χ(ξ))

⎞⎟⎟⎠
=

(
n− 1

q − (l(w) + 1)n

)
.

But as l(w) = 2 in case (4.3.1) and l(w) = 3 in case (4.3.2), this shows the claim.
It remains to calculate the cohomology of A2

2(ϕ) if it is non–trivial. So, according
to Theorem 3.6 and Proposition 3.4 we assume that Λ2 = 0, ξ = 1, χ = 2+Λ1 and
π ∼= μ⊗σ satisfies the fact that L(s, μ×σ) has a pole at s = 1. Then, by Theorem
3.6 we obtain

Hq(g∞,K∞,A2
2(ϕ)⊗ E) ∼= Hq(g∞,K∞, J2(ξ, π)⊗ E)

∼= Hq(g∞,K∞, J2(ξ, π∞)⊗ E)⊗ J2(ξ, πf ).

The (sp4(R), U(2))–cohomology of the Langlands quotients J2(ξ, πv) with respect
to E = E(Λ,Λ) is computed in [BW, VI Thm. 1.7] together with [BW, VI Lem.
1.5], which yields

Hq(sp4(R), U(2), J2(ξ, πv)⊗ E) ∼=
{

C, if q = 2, 4 and σv = D±
Λ1+3,

0, otherwise.

Now the proposition follows. �

4.4. The minimal parabolic subgroup. We still have to determine the coho-
mology of the various filtration quotients coming from the minimal parabolic k-
subgroup P0. As in the notational Section 1.5, a coefficient module E is given
represented by its highest weight Λ = (Λ1,Λ2). Let μ = μ1 ⊗ μ2 be a unitary
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character of L0(A) = GL1(A) × GL1(A) representing a cuspidal support ϕ ∈ Φ0.
We obtain

Proposition 4.4. There is an isomorphism of G(Af )-modules

Hq(g∞,K∞,A0
0(ϕ)/A1

0(ϕ)⊗ E)

∼=
{

I0(Λ + ρ0, μf )
m0(q), if μv|L0(R)ss = sgnΛ1

F2
⊗ sgnΛ2

F2
∀v ∈ S∞,

0, otherwise,

where

m0(q) =

(
2n− 2

q − 4n

)
.

In particular, this cohomology space vanishes if q is outside the range 4n ≤ q ≤
6n− 2.

Proof. Using Theorem 3.3 we see that

Hq(g∞,K∞,A0
0(ϕ)/A1

0(ϕ)⊗ E)

∼= Hq(g∞,K∞, I0(Λ + ρ0, μ)⊗ S(aP0,C)⊗ E)

∼= Hq(g∞,K∞, I0(Λ + ρ0, μ∞)⊗ S(aP0,C)⊗ E)⊗ I0(Λ + ρ0, μf ),

whence it suffices to prove that the space

Hq(g∞,K∞, I0(Λ + ρ0, μ∞)⊗ S(aP0,C)⊗ E)

is of dimension m0(q) if μv|L0(R)ss = sgnΛ1

F2
⊗ sgnΛ2

F2
for all v ∈ S∞ and vanishes

otherwise. Similar to the case of the maximal parabolic subgroups, this can be
accomplished harking back to [BW, III Thm. 3.3] and [BW, II Prop. 3.1]. First,
we observe that w = w2w1w2w1 is the only element of WP0 = W which may
give rise to an L0(R)-module Fw such that

⊗
σ Fw has non–trivial (l0,∞,KL0,∞)-

cohomology with respect to μ∞⊗S(aP0,C)⊗CΛ+2ρ0
. The module Fw is isomorphic

to Fw = Cw(Λ+ρ)−ρ⊗F 0(Λ1,Λ2). Second, we derive as in the proofs of Propositions
4.2 and 4.3 that
(4.4.1)

Hq(g∞,K∞, I0(Λ+ ρ0, μ∞)⊗S(aP0,C)⊗E) ∼= Hq−4n(m0,∞,KM0,∞, μ∞⊗
⊗
σ

Fw).

Third, applying [BW, II Prop. 3.1] and the Künneth rule to the last cohomology
space reveals that it is isomorphic to

⊕
r+s=q−4n

⎡⎢⎢⎣∧r
C2n−2 ⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss0 ,KL0(R)ss , μv|L0(R)ss ⊗ F 0(Λ1,Λ2))

⎤⎥⎥⎦ .
Here, observe that KM0,∞ has trivial intersection with A◦

0,∞ and that m0,∞ is of
dimension 2n − 2. Fourth, checking Lemma 4.1 gives that in order to get non-
vanishing cohomology, it is necessary that μv|L0(R)ss = F 0(Λ1,Λ2) = sgnΛ1

F2
⊗ sgnΛ2

F2

and sv = 0 for all v ∈ S∞, and then⊗
v∈S∞

Hsv (lss0 ,KL0(R)ss , μv|L0(R)ss ⊗ F 0(Λ1,Λ2)) = C.
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Hence, s = 0, too, and we obtain that the dimension of the vector space (4.4.1) is

dimC

⎛⎜⎜⎝ ⊕
r+s=q−4n

∧r
C2n−2⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss0 ,KL0(R)ss , μv|L0(R)ss⊗F 0(Λ1,Λ2))

⎞⎟⎟⎠
=

(
2n− 2

q − 4n

)
.

This shows the assertion. �

We now deal with the case of the quotient A1
0(ϕ)/A2

0(ϕ) if it is non-trivial, i.e.,
if μ and Λ satisfy one of the singularity conditions given in Theorem 3.3. That is,
if either

(4.4.2) Λ1 = Λ2 and μ1 = μ2

or

(4.4.3) Λ2 = 0 and μ2 = 1

or both, i.e.,

(4.4.4) Λ1 = Λ2 = 0 and μ1 = μ2 = 1.

There is the following proposition.

Proposition 4.5. In each of the three cases (4.4.2), (4.4.3) and (4.4.4), there is
an isomorphism of G(Af )-modules:

(1) In case (4.4.2),

Hq(g∞,K∞,A1
0(ϕ)/A2

0(ϕ)⊗ E) ∼= I1

(
Λ1 +

3

2
, μf ◦ det

)n1(μ,q)

,

where

n1(μ, q) =

(
n− 1

q − 3n− 2l(μ)

)
with

l(μ) = #{v ∈ S∞|μv|L1(R)ss = sgnΛ1

SL±
2 (R)

}.

In particular, this cohomology space vanishes if q is outside the range 3n ≤
q ≤ 6n− 1.

(2) In case (4.4.3),

Hq(g∞,K∞,A1
0(ϕ)/A2

0(ϕ)⊗ E)

∼=
{

I2(Λ1 + 2, μf ⊗ 1SL2(Af ))
n2(q) if μv|F2

= sgnΛ1

F2
∀v ∈ S∞,

0 otherwise,

where

n2(q) =

� q−3n
2 	∑

j=0

(
n− 1

q − 3n− 2j

)(
n

j

)
.

In particular, this cohomology space vanishes if q is outside the range 3n ≤
q ≤ 6n− 1.
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(3) Finally, in case (4.4.4),

Hq(g∞,K∞,A1
0(ϕ)/A2

0(ϕ)⊗ E)

is isomorphic as a G(Af )-module to the direct sum

I1

(
3

2
,1L1(Af )

)( n−1
q−5n)⊕

I2(2,1L2(Af ))
n2(q),

where n2(q) is as in case (2). So, this space vanishes again if q is outside
the range 3n ≤ q ≤ 6n− 1.

Proof. By the very form of the quotient A1
0(ϕ)/A2

0(ϕ), described in Theorem 3.3,
we should determine the G(Af )-module structure of the cohomology spaces

Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, μ ◦ det

)
⊗ S(aP1,C)⊗ E

)
∼= Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, μ∞ ◦ det

)
⊗ S(aP1,C)⊗ E

)
⊗ I1

(
Λ1 +

3

2
, μf ◦ det

)
and

Hq(g∞,K∞, I2(Λ1 + 2, μ⊗ 1SL2(A))⊗ S(aP2,C)⊗ E)

∼= Hq(g∞,K∞, I2(Λ1 + 2, μ∞ ⊗ 1SL2,∞)⊗ S(aP2,C)⊗ E)

⊗I2(Λ1 + 2, μf ⊗ 1SL2(Af )).

According to Theorem 3.3, the first one is needed to treat (4.4.2), the second one
to treat (4.4.3) and their direct sum to treat (4.4.4).

We will start by determining the first one, i.e., by what we just said, we may
assume that Λ1 = Λ2 and μ1 = μ2. A short moment of thought shows that in order
to calculate the first cohomology space, one may proceed literally as in the proof
of Proposition 4.2 with w = w2w1w2 to obtain

Hq

(
g∞,K∞, I1

(
Λ1 +

3

2
, μ∞ ◦ det

)
⊗ S(aP1,C)⊗ E

)
∼= Hq−3n(l1,∞,KL1,∞, μ∞ ⊗ S(aP1,C)⊗ CΛ1+2ρP1

⊗
⊗
σ

Fw)

∼= Hq−3n(m1,∞,KM1,∞, μ∞ ⊗
⊗
σ

Fw)

∼=
⊕

r+s=q−3n

⎡⎢⎢⎣∧r
Cn−1⊗

⊕
(sv)v∈S∞ ,∑

v sv=s

⊗
v∈S∞

Hsv (lss1 ,KL1(R)ss , μv|L1(R)ss⊗F 1
1 (Λ1 + 1))

⎤⎥⎥⎦.
Recall that F 1

1 (Λ1 + 1) = sgnΛ1+1

SL±
2 (R)

is one-dimensional. As μ is one-dimensional,

too, we must have μv|L1(R)ss = sgnav

SL±
2 (R)

for some av, v ∈ S∞. Depending on the

parity of av, we obtain by our Lemma 4.1 that

Hsv(lss1 ,KL1(R)ss , μv|L1(R)ss ⊗ F 1
1 (Λ1 + 1))

∼=

⎧⎨⎩
C, if av ≡ Λ1 + 1 mod 2 and sv = 0,
C, if av ≡ Λ1 mod 2 and sv = 2,
0, otherwise.
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Hence, if we let

l(μ) = #{v ∈ S∞|av ≡ Λ1 mod 2} = #{v ∈ S∞|μv|L1(R)ss = sgnΛ1

SL±
2 (R)

},

then s = 2l(μ), and so

dimC(H
q(g∞,K∞, I1(Λ1 +

3

2
, μ∞ ◦ det)⊗ S(aP1,C)⊗ E)) =

(
n− 1

q − 3n− 2l(μ)

)
.

This proves the assertion in case (4.4.2).
We now turn to the case of (4.4.3), i.e., we may assume that Λ2 = 0 and

μ2 = 1. As above, we may again proceed precisely as in the corresponding maximal
parabolic case, namely as in the proof of Proposition 4.3 with w = w1w2w1 in order
to analyze

Hq(g∞,K∞, I2(Λ1 + 2, μ⊗ 1SL2(A))⊗ S(aP2,C)⊗ E).

We obtain

Hq(g∞,K∞, I2(Λ1 + 2, μ∞ ⊗ 1SL2,∞)⊗ S(aP2,C)⊗ E)

∼=
⊕

r+s=q−3n

∧r
Cn−1

⊗
⊕

(sv)v∈S∞ ,∑
v sv=s

⊗
v∈S∞

Hsv (lss2 ,KL2(R)ss , (μv ⊗ 1SL2(R))|L2(R)ss ⊗ F 2
1 (Λ1)).

As F 2
1 (Λ1) = sgnΛ1

F2
⊗1SL2(R), Lemma 4.1 forces μv|F2

= sgnΛ1

F2
and gives

Hsv(lss2 ,KL2(R)ss , (μv ⊗ 1SL2(R))|L2(R)ss ⊗ F 2
1 (Λ1)) ∼=

{
C if sv = 0, 2,
0 otherwise.

Hence, the dimension of Hq(g∞,K∞, I2(Λ1+2, μ∞⊗1SL2,∞)⊗S(aP2,C)⊗E) is the
number of ways to write q−3n as a sum q−3n = r+

∑
v∈S∞

sv where 0 ≤ r ≤ n−1
and for each v ∈ S∞, sv is either 0 or 2. It is an easy exercise in combinatorics to
show that this number is actually n2(q) as predicted by our proposition. Now the
proof is complete. �

We conclude this section by determining the cohomology of the last remaining
filtration step A2

0(ϕ). According to Theorem 3.3 it is non–trivial if and only if
μ = 1L0(A) and Λ = (0, 0) and is then isomorphic to

A2
0(ϕ) = 1G(A).

We show

Proposition 4.6. Let μ = 1L0(A) and Λ = (0, 0). Then the cohomology of A2
0(ϕ)

is isomorphic as a G(Af )-module to

Hq(g∞,K∞,A2
0(ϕ)⊗ E) ∼= Hq(g∞,K∞,1G(A))

∼= 1
n0(q)
G(Af )

,

where

n0(q) = #{q =
n∑

j=1

rj |rj ∈ {0, 2, 4, 6}}.
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It therefore vanishes if q is odd and if q is even,

n0(q) =

� q
8 	∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
.

Proof. It is well known that

Hq(sp4(R), U(2),1G(R)) ∼= C

if q = 0, 2, 4, 6 and vanishes otherwise. For instance, see [OS], the table on p. 489.
Therefore, it only remains to show that for even degrees q there is the equality

n0(q) := #{q =

n∑
j=1

rj |rj ∈ {0, 2, 4, 6}} =

� q
8 	∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
.

By definition, n0(q) is the coefficient of xq in (x0+x2+x4+x6)n. If we put y = x2,
this is the coefficient of y

q
2 in

(1 + y + y2 + y3)n =
(1− y4)n

(1− y)n

=
∑
j

(−1)j
(
n

j

)
y4j
∑
u

(
n+ u− 1

n− 1

)
yu.

Since we want 4j + u = q
2 , it follows that this coefficient is

� q
8 	∑

j=0

(−1)j
(
n

j

)(
n+ q

2 − 4j − 1

n− 1

)
,

which shows the claim. �

5. The main results

5.1. We are now ready to state and prove the main results of this paper on the
Eisenstein cohomology of the group G = Sp4/k. Recall that it can be decomposed
along the proper parabolic k-subgroups and the various cuspidal supports as a
direct sum

H∗
Eis(G,E) =

2⊕
i=0

⊕
ϕ∈Φi

H∗(g∞,K∞,AJ (Pi, ϕ)⊗ E).

We proceed by distinguishing the three standard parabolic k-subgroups Pi and the
various cuspidal supports ϕ ∈ Φi, i = 0, 1, 2, in question. In order to keep notation
at a minimum, we shall abbreviate in this section

Hq(Am
i (ϕ)/Am+1

i (ϕ)⊗ E) := Hq(g∞,K∞,Am
i (ϕ)/Am+1

i (ϕ)⊗ E)

and similarly

Hq(Am
i (ϕ)⊗ E) := Hq(g∞,K∞,Am

i (ϕ)⊗ E)

for the G(Af )-module of (g∞,K∞)-cohomology with respect to E of the quotients
of the filtration of AJ (Pi, ϕ). Furthermore, if M is any G(Af )-module and S any
G(Af )-submodule of M , we will express this by writing S = Sb(M).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EISENSTEIN COHOMOLOGY OF Sp4 5227

5.2. Maximal parabolic subgroups. The case of the maximal parabolic k-sub-
groups Pi, i = 1, 2, can be treated simultaneously. Let ϕ = (ϕP )P∈{Pi} ∈ Φi be
an associate class of unitary cuspidal automorphic representations and π ∈ ϕPi

a
representative, i.e., a unitary cuspidal automorphic representation of Li(A) which is

trivial on the diagonally embedded group Ai(R)
◦. Let χ ∈ ǎ

Pi
0 be the infinitesimal

character of π∞, where ǎ
Pi
0 is diagonally embedded in ǎ0,∞, and ξ ∈ ǎ

+
Pi

such that
ξ + χ ∈ ǎ0 is annihilated by J , a condition which is explained in Proposition 3.5
and repeated at the beginning of Sections 4.2 and 4.3. Recall from Theorem 3.6
that, if A2

i (ϕ) is non–trivial, then it is isomorphic to the residual representation
A2

i (ϕ)
∼= Ji(ξ, π). We therefore have a natural morphism of G(Af )-modules

Jq
i (ϕ) : H

q(g∞,K∞,A2
i (ϕ)⊗ E) → Hq(g∞,K∞,AJ (Pi, ϕ)⊗ E)

induced by the inclusion Ji(ξ, π) ↪→ AJ (Pi, ϕ) ↪→ AJ . With this notation at hand
we obtain the following theorem describing the G(Af )-module structure of the
summand Hq(g∞,K∞,AJ (Pi, ϕ)⊗E) in the Eisenstein cohomology Hq

Eis(G,E) of
G.

Theorem 5.1. Let G = Sp4/k be the split algebraic group of type C2 over a to-
tally real number field k. Let E be an irreducible, finite-dimensional representation
of G∞ so that its highest weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in
the field embeddings σ : k ↪→ C and may hence be written as Λ = (Λ1,Λ2), and
assume that E is the complexification of an algebraic representation of G/k. Let
ϕ = (ϕP )P∈{Pi} ∈ Φi, i = 1, 2, and π ∈ ϕPi

be a unitary cuspidal automorphic
representation of Li(A).

(1) If A2
i (ϕ) is non–trivial, i.e., if

(i = 1) Λ1 = Λ2 = Λ, ξ = 1
2 , χ = 3

2 +Λ and π satisfies the fact that its central

character is trivial and L( 12 , π) 
= 0,
(i = 2) Λ2 = 0, ξ = 1, χ = 2 + Λ1 and π = μ ⊗ σ satisfies the fact that

L(s, μ× σ) has a pole at s = 1,
then there is the following isomorphism of G(Af )-modules:

Hq(g∞,K∞,AJ (Pi, ϕ)⊗ E)

∼=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hq(A2
i (ϕ)⊗ E), 2n ≤ q ≤ 3n− 1,

Hq(A1
i (ϕ)/A2

i (ϕ)⊗ E) mod Jq
i (ϕ)(H

q(A2
i (ϕ)⊗ E)), 3n ≤ q ≤ 4n− 1,

q even,
Sb(Hq(A1

i (ϕ)/A2
i (ϕ)⊗ E)), 3n ≤ q ≤ 4n− 1,

q odd,
Jq
i (ϕ)(H

q(A2
i (ϕ)⊗ E)), q = 4n,

0, otherwise.

Moreover, J3n
i (ϕ)(H3n(A2

i (ϕ)⊗ E)) ∼= H3n(A2
i (ϕ)⊗ E).

(2) If, however, A2
i (ϕ) is trivial, then there is the following isomorphism of

G(Af )-modules in all degrees q:

Hq(g∞,K∞,AJ (Pi, ϕ)⊗ E) ∼= Hq(A1
i (ϕ)/A2

i (ϕ)⊗ E) ∼= Hq(A1
i (ϕ)⊗ E).

Before we prove this theorem, we list a couple of remarks and consequences.

Corollary 5.2. (1) As a consequence of the theorem, if A2
i (ϕ) 
= 0, then there

exist non–trivial Eisenstein cohomology classes in Hq(g∞,K∞,AJ (Pi, ϕ)⊗
E) representable by (derivatives of) residues of Eisenstein series at least in
all even degrees q, satisfying 2n ≤ q ≤ 3n.
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(2) Furthermore, again if A2
i (ϕ) 
= 0, there exist non–trivial Eisenstein coho-

mology classes in Hq(g∞,K∞,AJ (Pi, ϕ)⊗E) representable by derivatives
of holomorphic main values of Eisenstein series at least in all even degrees
q in the range 3n ≤ q ≤ 4n− 1. If A2

i (ϕ) = 0, then there exist non–trivial
Eisenstein cohomology classes in Hq(g∞,K∞,AJ (Pi, ϕ)⊗E) representable
by derivatives of holomorphic main values of Eisenstein series in degrees
3n ≤ q ≤ 4n−1, respectively 4n ≤ q ≤ 5n−1, depending on the infinitesimal
character χ of π ∈ ϕPi

; cf. Propositions 4.2 and 4.3.

Remark 5.3. (1) We recall that the spacesHq(A2
i (ϕ)⊗E) andHq(A1

i (ϕ)/A2
i (ϕ)

⊗E) used in the statement of the theorem are described explicitly in Propo-
sitions 4.2 and 4.3.

(2) We cannot exclude that Jq
i (ϕ)(H

q(A2
i (ϕ) ⊗ E)) 
= 0 in even degrees 3n ≤

q ≤ 4n, so holomorphic and residual Eisenstein cohomology classes might
not be separated by their degrees.

Proof of Theorem 5.1 and its Corollary 5.2. By the very construction of the filtra-
tion, we have AJ (Pi, ϕ) ∼= A1

i (ϕ). Hence, it suffices to prove the above theorem for
Hq(A1

i (ϕ)⊗ E). In order to do that, we use the long exact sequence in (g∞,K∞)-
cohomology obtained from the short exact sequence

0 → A2
i (ϕ) → A1

i (ϕ) → A1
i (ϕ)/A2

i (ϕ) → 0.

But having this strategy in mind, the theorem is an easy consequence of the van-
ishing properties of

Hq(A1
i (ϕ)/A2

i (ϕ)⊗ E) and Hq(A2
i (ϕ)⊗ E)

obtained in Propositions 4.2 and 4.3. The corollary now follows from the theorem
and the observation that A2

i (ϕ) is a residual automorphic representation and that
A1

i (ϕ)/A2
i (ϕ) is spanned by derivatives of holomorphic main values of Eisenstein

series. �

5.3. The minimal parabolic subgroup. We are now considering the case of
the minimal parabolic k-subgroup P0. Therefore, let μ = μ1 ⊗ μ2 ∈ ϕ ∈ Φ0

be a unitary character of L0(A) which is trivial on the diagonally embedded group
A0(R)

◦. Recall from Theorem 3.3 that A2
0(ϕ) is non–trivial if and only if μ = 1L0(A)

and Λ = (0, 0) and is then isomorphic to the residual representation

A2
0(ϕ)

∼= 1G(A).

Hence, we can again consider the morphism

Jq : Hq(g∞,K∞,1G(A)) → Hq
Eis(G,C)

induced by the inclusion 1G(A) ↪→ AJ (P0, ϕ) ↪→ AJ . We shall now prove a the-
orem dealing with the summands Hq(g∞,K∞,AJ (P0, ϕ) ⊗ E) in the Eisenstein
cohomology Hq

Eis(G,E) of G.

Theorem 5.4. Let G = Sp4/k be the split algebraic group of type C2 over a totally
real number field k. Let E be an irreducible, finite-dimensional representation of
G∞ so that its highest weight Λ = (Λ1,σ,Λ2,σ)σ has repeating coordinates in the
field embeddings σ : k ↪→ C and may hence be written as Λ = (Λ1,Λ2), and assume
that E is the complexification of an algebraic representation of G/k. Let ϕ =
(ϕP )P∈{P0} ∈ Φ0, and μ ∈ ϕP0

be a unitary character of L0(A).
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(1) If A2
0(ϕ) is non–trivial, i.e., if μ = 1L0(A) and Λ = (0, 0), then there is the

following isomorphism of G(Af )-modules:

Hq(g∞,K∞,AJ (P0, ϕ))

∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hq(1G(A)), 0 ≤ q ≤ 3n− 1,
Hq(A1

0(ϕ)/A2
0(ϕ)) mod Jq(Hq(1G(A))), 3n ≤ q ≤ 4n− 1,

q even,
Sb(Hq(A1

0(ϕ)/A2
0(ϕ))), 3n ≤ q ≤ 4n− 1,

q odd.

The module Sb(Hq(A1
0(ϕ)/A2

0(ϕ))) is non–trivial for all odd q, 3n ≤ q ≤
4n− 1. Furthermore, J3n(H3n(1G(A))) ∼= H3n(1G(A)).

(2) If A2
0(ϕ) is trivial but A1

0(ϕ) is non–trivial, i.e., if precisely one of the
conditions

• Λ1 = Λ2 and μ1 = μ2 or
• Λ2 = 0 and μ2 = 1

is satisfied, then there is the following isomorphism of G(Af )-modules:

Hq(g∞,K∞,AJ (P0, ϕ)⊗ E)

∼=
{

0, 0 ≤ q ≤ 3n− 1,
Hq(A1

0(ϕ)/A2
0(ϕ)⊗ E) ∼= Hq(A1

0(ϕ)⊗ E), 3n ≤ q ≤ 4n− 1.

(3) If, however, even A1
0(ϕ) is trivial, then there is the following isomorphism

of G(Af )-modules in all degrees q:

Hq(g∞,K∞,AJ (P0, ϕ)⊗ E) ∼= Hq(A0
0(ϕ)/A1

0(ϕ)⊗ E) ∼= Hq(A0
0(ϕ)⊗ E).

Remark 5.5. (1) We recall that the spaces Hq(A2
0(ϕ)), H

q(A1
0(ϕ)/A2

0(ϕ)⊗E)
and Hq(A0

0(ϕ)/A1
0(ϕ)⊗E) are described explicitly in Propositions 4.6, 4.5

and 4.4, respectively.
(2) Unfortunately, in the case when A1

0(ϕ) 
= 0 our approach does not give a
good description of Hq(g∞,K∞,AJ (P0, ϕ)⊗E) in the remaining possibly
non–trivial degrees 4n ≤ q ≤ 6n− 2.

Proof of Theorem 5.4. Observe that by construction of the filtration, we have
AJ (P0, ϕ) ∼= A0

0(ϕ). Hence, it is enough to prove the above theorem forHq(A0
0(ϕ)⊗

E). In order to do so, we use as in the case of the maximal parabolic subgroups the
long exact sequences in (g∞,K∞)-cohomology

(5.3.1) ... → Hq(A2
0(ϕ)⊗ E) → Hq(A1

0(ϕ)⊗ E) → Hq(A1
0(ϕ)/A2

0(ϕ)⊗ E) → ...

and

(5.3.2) ... → Hq(A1
0(ϕ)⊗ E) → Hq(A0

0(ϕ)⊗ E) → Hq(A0
0(ϕ)/A1

0(ϕ)⊗ E) → ...

obtained from the short exact sequences

0 → A2
0(ϕ) → A1

0(ϕ) → A1
0(ϕ)/A2

0(ϕ) → 0

and

0 → A1
0(ϕ) → A0

0(ϕ) → A0
0(ϕ)/A1

0(ϕ) → 0.

By Proposition 4.5, Hq(A1
0(ϕ)/A2

0(ϕ) ⊗ E) = 0 for 0 ≤ q ≤ 3n − 1. Therefore
the long exact sequence (5.3.1) yields

Hq(A1
0(ϕ)⊗ E) ∼= Hq(A2

0(ϕ)⊗ E) for 0 ≤ q ≤ 3n− 1
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and J3n(H3n(1G(A)))∼=H3n(1G(A)). Moreover, by Proposition 4.4,Hq(A0
0(ϕ)/A1

0(ϕ)
⊗E) = 0 for 0 ≤ q ≤ 4n− 1. Hence, the long exact sequence (5.3.2) implies

Hq(A0
0(ϕ)⊗ E) ∼= Hq(A1

0(ϕ)⊗ E) for 0 ≤ q ≤ 4n− 1.

Keeping this in mind, the vanishing of Hq(A2
0(ϕ) ⊗ E) = 0 in odd degrees also

implies that

Hq(A1
0(ϕ)⊗ E)

∼=

⎧⎪⎪⎨⎪⎪⎩
Hq(A1

0(ϕ)/A2
0(ϕ)⊗ E) mod Jq(Hq(A2

0(ϕ)⊗ E)), 3n ≤ q ≤ 4n− 1,
q even,

Sb(Hq(A1
0(ϕ)/A2

0(ϕ)⊗ E)), 3n ≤ q ≤ 4n− 1,
q odd.

If A2
0(ϕ) is trivial, this simplifies to

Hq(A1
0(ϕ)⊗ E) ∼=

{
0, 0 ≤ q ≤ 3n− 1,
Hq(A1

0(ϕ)/A2
0(ϕ)⊗ E), 3n ≤ q ≤ 4n− 1.

Putting the pieces together we obtain

Hq(g∞,K∞,AJ (P0, ϕ))

∼=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hq(1G(A)), 0 ≤ q ≤ 3n− 1,
Hq(A1

0(ϕ)/A2
0(ϕ)) mod Jq(Hq(1G(A))), 3n ≤ q ≤ 4n− 1,

q even,
Sb(Hq(A1

0(ϕ)/A2
0(ϕ))), 3n ≤ q ≤ 4n− 1,

q odd.

if A2
0(ϕ) 
= 0 and

Hq(g∞,K∞,AJ (P0, ϕ)⊗ E)

∼=
{

0, 0 ≤ q ≤ 3n− 1,
Hq(A1

0(ϕ)/A2
0(ϕ)⊗ E) ∼= Hq(A1

0(ϕ)⊗ E), 3n ≤ q ≤ 4n− 1

if A1
0(ϕ) 
= 0 but A2

0(ϕ) = 0. If even A1
0(ϕ) = 0, then A0

0(ϕ) = A0
0(ϕ)/A1

0(ϕ) and
the result follows in this case. Hence, it remains to show that Sb(Hq(A1

0(ϕ)/A2
0(ϕ)))

is non–trivial for all odd q, 3n ≤ q ≤ 4n − 1. This can be seen as follows. If
3n ≤ q ≤ 4n − 1 is odd, then the integer n2(q) from Proposition 4.5 is non–zero.
Therefore, again by Proposition 4.5,

Hq(A1
0(ϕ)/A2

0(ϕ)) ⊇ I2(2,1L2(A)),

and therefore Hq(A1
0(ϕ)/A2

0(ϕ)) is not finite–dimensional. However, this implies
that Sb(Hq(A1

0(ϕ)/A2
0(ϕ))) being the kernel of the map Hq(A1

0(ϕ)/A2
0(ϕ)) →

Hq+1(1G(A)) must be non–trivial, as Hq+1(1G(A)) is finite–dimensional. �

Corollary 5.6. If the highest weight Λ and a unitary character μ ∈ ϕP0
are such

that A1
0(ϕ) 
= 0, then there are non–trivial Eisenstein cohomology classes in all

degrees 3n ≤ q ≤ 4n − 1 which are representable by the main values of derivatives
of residual Eisenstein series obtained from a simple pole of a cuspidal Eisenstein
series attached to μ. Thus, their main values are residues of Eisenstein series which
are not square–integrable (and do not come from a pole of the highest possible order
2).
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Proof. If the highest weight Λ and a unitary character μ ∈ ϕP0
are such that

A1
0(ϕ) 
= 0, then Theorem 5.4 shows that there are non–trivial Eisenstein cohomol-

ogy classes in all degrees 3n ≤ q ≤ 4n − 1 which are elements of the cohomology
spaces Hq(A1

0(ϕ)/A2
0(ϕ) ⊗ E). As the quotient A1

0(ϕ)/A2
0(ϕ) is spanned by main

values of derivatives of residual Eisenstein series which are obtained from a simple
pole of a cuspidal Eisenstein series attached to μ, the assertion follows. �

6. On the contribution of the trivial representation

to automorphic cohomology

We would like to finish with a more detailed discussion of the actual contribution
of the trivial representation 1G(A) to Eisenstein cohomology of G = Sp4/k over a
totally real number field k. More precisely, we consider the G(Af )-morphism

Jq : Hq(1G(A)) → Hq
Eis(G,C)

induced by the inclusion 1G(A) ↪→ AJ (P0,1L0(A)) ↪→ AJ , usually called the Borel
map.

The approach taken in this paper, more precisely the results of Section 5, only
provides an incomplete description of the image of the Borel map, which we sum-
marize in Corollary 6.1 below. As pointed out by the referee, the true approach
to resolve this problem is the one of Kewenig and Rieband in their Diplomarbeit
[KR], following Franke [Fra08]. As we were not aware of their work [KR], which
is still unpublished and quite difficult to find (we found a copy in the library of
the Mathematisches Institut der Universität Bonn), following a suggestion by the
referee, we decided to include in Section 6.2 a complete summary of the results
obtained by Kewenig and Rieband in [KR], made explicit in the specific case Sp4
over a totally real number field.

6.1. We begin with a corollary that is a consequence of our computations in Section
5. It describes the Borel map up to degree q = 3n, but fails in higher possible
degrees. However, this is already an improvement of a general result of Borel (cf.
[Bor74, Thm. 7.5]) in the case G = Sp4. For a complete description of the image
of the Borel map see Section 6.2, where a summary of [KR] in the case G = Sp4
over a totally real number field is given.

Corollary 6.1. The full space of Eisenstein cohomology Hq
Eis(G,C), with respect

to the trivial coefficient system E = C, is entirely spanned by the cohomology of the
trivial representation 1G(A) in degrees 0 ≤ q ≤ 2n− 1, so

Hq
Eis(G,C) ∼= Hq(1G(A)) ∼= 1

n0(q)
G(Af )

, for 0 ≤ q ≤ 2n− 1

in the notation of Proposition 4.6. Moreover, the morphism Jq determining the
contribution of Hq(1G(A)) to Eisenstein cohomology is injective (at least) up to
degree q = 3n.

Proof. This is a direct consequence of Theorems 5.4 and 5.1. �

Remark 6.2. As mentioned above, the corollary – although a partial result – is
already an improvement of Borel’s result on the contribution of the trivial repre-
sentation to the cohomology of arithmetic groups (cf. [Bor74, Thm. 7.5]) in the
case G = Sp4/k.
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Indeed, denote by c(Rk/Q(G)) the maximum of all degrees q such that ρ0 − ν >

0 for all weights ν of A0 in
∧q

n0,∞, and by m(G∞) + 1 the smallest degree in
which a non-trivial irreducible unitary representation of G∞ may have cohomology.
Then Borel proved that Jq is injective for q ≤ c(Rk/Q(G)) and an isomorphism
for q ≤ min(c(Rk/Q(G)),m(G∞)). It is easy to make these numbers explicit in the
considered case G = Sp4/k: we obtain c(Rk/Q(G)) = n−1 and m(G∞) = 1. Hence,
the claim follows.

This is in analogy to the case SL2/k, k being any number field with more than
one real place, as it was observed by Harder in [Har75, Prop. 2.3.(iv)]. See also
[Bor74, Example 7.7].

6.2. We now give a complete summary of the results of Kewenig and Rieband in
their Diplomarbeit [KR], made explicit for the case Sp4 over a totally real number
field. Following the approach of Franke, applied in [Fra08] to the special linear
group, they determined the kernel of J∗ :=

⊕
q≥0 J

q very explicitly for the sym-
plectic and odd special orthogonal groups of arbitrary rank over any number field.
This makes it possible to determine the image as well.

Their strategy is as follows. The cohomology H∗(g∞,K∞,1G∞) of the trivial

representation 1G∞ of G∞ can be identified with the cohomology H∗(X
(c)
G ) of the

connected compact dual X
(c)
G of the symmetric space XG = G∞/K∞, attached to

G∞ and its maximal compact subgroup K∞. In particular,

H∗(1G(A)) ∼= H∗(X
(c)
G ).

We need some notation by Kewenig–Rieband. They denote by H∗(X
(c)
G )kernel the

kernel of the Borel map J∗ viewed as a subspace of H∗(X
(c)
G ),

H∗(X
(c)
G )kernel := ker J∗ ⊆ H∗(X

(c)
G ).

The crucial fact, due to Franke [Fra08], is that this kernel can be computed as

the Poincaré orthogonal complement in H∗(X
(c)
G ) of another subspace, denoted by

H∗(X
(c)
G )image,

H∗(X
(c)
G )kernel ∼=

(
H∗(X

(c)
G )image

)⊥
.

This latter subspace is the image of the Poincaré dual of the Borel map restricted to
a certain subspace of H∗

c (G,C), defined by Franke in [Fra08]. In view of this latter

interpretation of H∗(X
(c)
G )kernel, Franke [Fra08, (7.2)] now provides an effective

description of the kernel of the Borel map.
The results for the symplectic group over a totally real number field are obtained,

using the above strategy, in Section 12.1 of [KR]. They first determine in Satz 12.1.1

the subspace H∗(X
(c)
G )image of

H∗(X
(c)
G ) ∼=

⊗
v∈S∞

H∗ (Sp(4)/U(2)) .

(Here we used the Lie group theorists’ notation Sp(4) for the real compact from
of Sp4(C), rather than USp4(C) used in [KR].) It is the ideal spanned by the
top Chern classes Xv, attached to the factor H∗ (Sp(4)/U(2)) corresponding to
v ∈ S∞. Since top Chern classes are self–orthogonal with respect to the Poincaré
pairing (see [KR, Korollar 10.1.5]), one obtains an explicit description of the kernel
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of the Borel map as well. This is done in [KR, Satz 12.1.2] and is summarized in
the next theorem.

Theorem 6.3 ([KR] Satz 12.1.2, Kor. 12.1.3). Let G = Sp4/k be the split symplec-
tic group of k-rank two over a totally real number field k of degree n over Q. Viewed

as a subspace of H∗(X
(c)
G ) ∼=

⊗
v∈S∞

H∗ (Sp(4)/U(2)), the kernel of the morphism
J∗ =

⊕
q≥0 J

q is the ideal which is spanned by the product
∏

v∈S∞
Xv ⊗ 1G(Af ),

Xv being the top Chern class associated to H∗ (Sp(4)/U(2)) at the place v. In
particular, its dimension is dimKerJ∗ = 2n.

From the description of the kernel of J∗ one can determine its image. In this way,
as a direct consequence of Theorem 6.3, one obtains the following corollary, which
shows that Jq is non–trivial in even higher degrees than what could be determined
using our approach in Corollary 6.1.

Corollary 6.4. The dimension of the image of the Borel map J∗ =
⊕

q≥0 J
q for

G = Sp4/k is given by

dim ImJ∗ = 2n(2n − 1).

Moreover, if n ≥ 2, then the trivial representation 1G(A) contributes non-trivially

to Eisenstein cohomology above the middle degree q = 3n = 1
2 dimG∞/K∞.

Proof. By induction on the degree n = [k : Q], one shows using the proof of
Proposition 4.6 that dimH∗(1G(A)) = 22n. Now, the first part of the corollary
is a consequence of Theorem 6.3. For the last assertion recall that the (g∞,K∞)-
cohomology of 1∞ satisfies Poincaré duality and the fact that for n ≥ 2, dim ImJ∗ =
2n(2n− 1) > 22n−1 = 1

2 dimH∗(1G(A)). This shows the last assertion in the case of

odd n. If n = 2� ≥ 2 is even, we need to prove that dim ImJ∗ > 1
2 dimH∗(1G(A))+

1
2n0(3n). An easy observation, again the proof of Proposition 4.6 and Poincaré

duality, shows that this is equivalent to 2n <
∑3
−1

j=0 aj , where aj is the coefficient

of yj in the polynomial (1 + y + y2 + y3)n. But this follows by induction on �. �

Remark 6.5. The last assertion of Corollary 6.4 is in accordance with the case
SL2/k considered by Harder; cf. [Har75, Prop. 2.3.(iv)]. He proved that if k 
= Q,
then 1SL2(A) contributes non–trivially to Eisenstein cohomology of SL2/k in some
degrees greater than the middle one, i.e., greater than half the dimension of the
symmetric spaces associated to SL2,∞ and a maximal compact subgroup.

Example 6.6. For the convenience of the reader, and as an example, we make in
Table 6.1 the contribution of the trivial representation to Eisenstein cohomology,
i.e., the behavior of the Borel map Jq : Hq(1G(A)) → Hq

Eis(G,C), explicit for the
group Sp4 over a real quadratic extension k/Q, i.e., n = 2.

Table 6.1. The behavior of the Borel map for the group Sp4 over
a real quadratic extension of Q

q 0 2 4 6 8 10 12

ImJq C C2 C3 C4 C2 0 0
KerJq 0 0 0 0 C C2 C

Jq is bij. bij. inj. inj. × ≡ 0 ≡ 0
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We use the notation “bij.” for bijective, “inj.” for injective but not surjective,
the symbol × for neither injective nor surjective, and ≡ 0 for the trivial map. The
middle degree in this example is q = 3n = 6. Hence, as predicted by Corollary 6.4,
we see that there is a non–trivial contribution in degree q = 8, which is above the
middle degree.
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