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ABSTRACT. The cohomology of an arithmetically defined subgroup of the symplectic Q-group Sp,
is closely related to the theory of automorphic forms. This paper gives a structural account of that
part of the cohomology which is generated by residues or derivatives of Eisenstein series of relative
rank one. In particular we determine a set of conditions subject to which residues of Eisenstein
series may give rise to non-vanishing cohomology classes. A non-vanishing condition on the value
at s = 1/2 of certain automorphic L-functions which naturally appear in the constant terms of the
Eisenstein series plays a major role.

1. INTRODUCTION

The cohomology of an arithmetically defined subgroup I' of the algebraic Q-group G = Sp, of
symplectic transformations on Q%" with its standard alternating form can be interpreted in terms
of the automorphic spectrum of I'. With this framework in place, there is a sum decomposition
of the cohomology into the cuspidal cohomology (i.e. classes represented by cuspidal automorphic
forms) and the so—called Eisenstein cohomology constructed as the span of appropriate residues
or derivatives of Eisenstein series. These are attached to cuspidal automorphic forms 7 on the
Levi components of proper parabolic Q—subgroups of G. The main objective of this paper is to
give a structural account of the building blocks of the Eisenstein cohomology which correspond to
maximal parabolic Q—subgroups.

Given a class { P} of associate maximal parabolic Q—subgroups of G we describe in detail which
types (in the sense of [30]) of Eisenstein cohomology classes occur and how their actual construction
is related to the analytic properties of certain Euler products (or automorphic L—functions) attached
to m. We exactly determine in which way residues of the Eisenstein series in question may give
rise to non—trivial classes in the cohomology of I'. The very existence of these residual Eisenstein
cohomology classes is subject to a quite restrictive set of arithmetic conditions on the automorphic
L—functions involved. In particular, a non—vanishing condition on the value of a certain Euler
product L(s,7) at s = 1/2 plays an important role in this discussion. These L—functions naturally
appear in the constant terms of the Eisenstein series under consideration. Determining these
conditions in an explicit form and viewing them in the cohomological context form the focal points
of our investigation.

This work may be viewed as a contribution to the program, initiated by Harder in the case of G Lo
over a number field [11], [13], to understand that part of the cohomology of an arithmetic group
which is related to the theory of Eisenstein series. The existence of these classes, in particular,
their arithmetic nature and close relation to the theory of L—functions are the core issues of these
investigations. There are some results for groups G of small Q-rank other than G L3 or very specific
types of Eisenstein series [12], [8], [24], [30], [32], [33]. In describing in the case of the symplectic
group Sp, that part in the cohomology which is attached to relative rank one Eisenstein series this
work concerns an algebraic group of an arbitrary Q-rank, the case n = 2 being already treated in

[31], [34].
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We describe more precisely the results of this paper. As is the case in the theory of automorphic
representations, the relation between the cohomology of arithmetically defined groups and the
corresponding theory of automorphic forms for G are best understood in terms of the cohomology
H*(G, E) of G defined as the inductive limit over congruence subgroups of G(Q). The coefficient
system F is given by a finite-dimensional representation of G(C) in a complex vector space. This
cohomology group has an interpretation in relative Lie algebra cohomology. By [7, Theorem 18],
this takes the form

H*(G, E) = H*(ﬁpanRaAE Q¢ E)a

where Ap denotes the space of automorphic forms on G(Q)\G(A) with respect to (v, E) as defined
in Section 2.

By a decisive result, first proved by Langlands [21], [3], and its refinement [8], the space Ag of
automorphic forms permits a decomposition (as a direct sum of (sp,,, Kg)-modules) along their
cuspidal support. More precisely, let C denote the set of classes of associate parabolic Q—subgroups

of G. Then we have
Ae= P D Awnirre
{P}eC ¢ (py

where the second sum ranges over the set ®p py of classes ¢ = {¢pp}peip) of associate irre-
ducible cuspidal automorphic representations of the Levi components of elements of {P}. The
space Ap (py,4 consists of all functions of uniform moderate growth whose constant term along
each P € {P} belongs to the isotypic component attached to m € ¢p. This decomposition induces
a direct sum decomposition

H(G.E)= @ € H"(spy Kns Ap )6 ©c E)
{P}YeC ¢€Pp, (P}

in cohomology. The summand in this decomposition indexed by {G} is called the cuspidal co-
homology of G with coefficients in FE, to be denoted H.,,,(G,E). Due to the results in [7], the
cohomology classes in the summands indexed by {P} € C, P # G, can be described by suitable
derivatives of Eisenstein series or residues of these. These classes span the so called Eisenstein
cohomology, to be denoted Hy, (G, E).

Our objects of concern are the families of summands H*(sp,,, Kr; Ag (p},¢ ® E) with {P} an
associate class of maximal parabolic Q-subgroups of G = Sp,. Up to conjugacy, a maximal
parabolic Q-subgroup has the form P, = L.N,, r = 1,...,n, with Levi component L, = GL, x
Spn_r if r <n, and L, &£ GL, if r = n, and N, the unipotent radical of P,. Since such a maximal
parabolic subgroup P, is conjugate to its opposite parabolic subgroup P-PP, the conjugacy class P,
of P, is self-opposite, and the associate class {P,} coincides with P,.

Given an associate class {F;} € C, with P, maximal parabolic, 7 = 1,...,n, and ¢ € ®g (py,
the space Ap ¢p,},4 has a two step filtration by the space Lg (p,1 4 consisting of square integrable
automorphic forms in Ag ¢p,y 4. For a given automorphic realization V; of an irreducible cuspidal
representation 7 of the Levi factor of P, we introduce a subspace L (p,} v, of Lg (p.},¢- For a
precise definition of these subspaces see Section 5. Note that in the case » = n, due to multiplicity
one for GLy(A), the spaces Lg 1p,},6 and Lg (p,},4,v, coincide.

We are ready now to state the main results of the paper. They give a set of necessary conditions
for non—vanishing of the Eisenstein cohomology classes in H*(sp,,, Kr; LE (p,},6,v, @ £). These
conditions are a subtle combination of arithmetic and geometric conditions. The former assure
that the Eisenstein series in question has a pole, and the latter are the necessary conditions for the
cohomology class so obtained to be non—vanishing. The first of the two theorems below refers to
the case P = P, (cf. Theorem 8.2), and the second one to the case P = P, with r < n (cf. Theorem
8.5).
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Theorem A. Let E be the irreducible representation of Sp,(C) of highest weight
A= MXep+ Ages + ...+ Anen,

where all N\, are integers and \y > g > ... > A\, > 0. Let {P,} be the associate class of the standard
mazximal proper parabolic Q—subgroup P, of Spy, with the Levi decomposition P, = L,N,, where
the Levi factor L, = GL,. Let ¢ be the associate class of a cuspidal automorphic representation T
of L (A).
The cohomology space
H*(sp,,, Kr; Lg (p,}.6 Oc E)
is trivial except possibly in the case where the following conditions are satisfied:

(1) a cuspidal automorphic representation T is selfdual, L(s,7,A?) has a pole at s = 1, and
L(1/2,7) #0,
(2) the Q-rank n of the algebraic group Sp,/Q is even,
(3) the highest weight A of the irreducible representation E satisfies Agj—1 = Mgy for all | =
1,2,...,n/2,
(4) the infinite component Too of T has the infinitesimal character
n/2

Xrw =D [— (b + (n+3/2 =20))er + (pu + (n+3/2 — 2l))6n+1—l]a
=1
where pp = Agj—1 = Agy, i.€. Too 1S a tempered representation fully induced from n/2 unitary

discrete series representations of GLa(R) having the lowest O(2)—types 2u; + 2n — 4l +4 for
l=1,...,n/2.

In the case of an associate class {P,}, r # n, the situation is even slightly more complicated.
Thus we only consider the case of the trivial coefficient system E = C, since this is the most
interesting case in view of the results in [33].

Theorem B. Let E = C be the trivial representation of Sp,(C). Let r < n, and let {P.} be
the associate class of the standard maximal proper parabolic Q—subgroup P, of Spy, with the Levi
decomposition P, = L, N,, where the Levi factor L, =2 GL, X Sp,_,. Let ¢ be the associate class of
a cuspidal automorphic representation m = 7 @ o of Ly(A) such that a fized realization Vi of m in

the space of cusp forms on L.(A) is globally 1»—generic (with respect to a fized non—trivial additive
character 1 of A/Q).

Let
[r/2] n—r
Xmtoo = Z (—mie + meri1-1) — Z Yueryr
=1 =1

be the infinitesimal character of the Archimedean component woo of m, where || denotes the greatest
integer not greater than x. Then, the cohomology space

H*(sp,,, Kr; Lo gPo),6,V2)

1s trivial except possibly in the case where one of the following two sets of conditions is satisfied:
(A) (al) a cuspidal automorphic representation T is selfdual, L(s, T, A?) has a pole at s = 1, and
L(1/2,7 x1I;) # 0 for all I1; appearing in the global functorial lift of o,
(a2) r is even,
(a3) the coefficients x; of the infinitesimal character x ... belong to the set
x; €{3/2,5/2,...,n—1/2},

and |z, — x,| # 0,1 for 1y # o,
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(ad) the coefficients yy of the infinitesimal character xr., are uniquely determined (up to
sign) by the coefficients x; through the formula
yr=n+1—ky,
forl'! =1,...,n—r, where
ky € Sy\{n—x;+1/2,n—x;+3/2:1=1,...,7/2}.
(B) (bl) a cuspidal automorphic representation T is isomorphic to one of Il; appearing in the

global functorial lift of o (this implies that T is selfdual, and r < 2”;'1),
(b2) the coefficients x; of the infinitesimal character x ., belong to the set

c {2,3,...,n}, ifr is even,
TLEN {3,4,....n), ifris odd,

and |z, — x1,| # 0,2 for 1y # o,
(b3) the coefficients yy of the infinitesimal character x... are uniquely determined (up to
sign) by the coefficients x; through the formula

yr =n+1—ky

forl’ =1,...,n—r, where
by € Sp\{n—ap,n—x+2:1=1,...,r/2}, if T is even,
v Sp\{n,n—zyn—x;+2:1=1,...,|r/2]}, ifr is odd.

Let us say a few words about the techniques applied in the proof of these theorems. The
arithmetic conditions which provide a pole of the Eisenstein series are (1) in Theorem A, and (al)
and (bl) in Theorem B. Determination of the poles of the Eisenstein series relies on the Langlands
spectral theory [20], [28]. The arithmetic conditions on the automorphic L—functions attached to 7
are obtained by passing to the constant term of the Eisenstein series, and applying the Langlands—
Shahidi method for the normalization of intertwining operators in terms of L—functions [37] (see
also [5, Section 11]). This method assumes that 7 is globally )—generic, and this is the only reason
for such assumption in Theorem B.

However, the Langlands decomposition depends on the analytic properties of the L—functions
involved. Those properties are not known for all the L—functions, but the geometric conditions
reduce the consideration to the region where they are known. This seems to be a consequence of
the subtle interplay between arithmetic and geometry.

The geometric conditions follow from the non—vanishing conditions for the Eisenstein cohomology
space H*(sp,,, Kg; Ag (P16 ®C E). They give the remaining conditions in the theorems, and as
already mentioned reduce the study of the poles of the Eisenstein series to the region where the
poles of the automorphic L—functions in question are known. The geometric conditions are derived
from the study of the way in which the Eisenstein series may give rise to a non—trivial cohomology
class [24, Section 3], [33, Remark 4.12]. These are reduced to certain abstract equations involving
the Weyl group and the root system. In unfolding the conditions the main tool is a variant of [40,
Lemma 4.3] giving explicitly the action of the Weyl group.

In the case of P = P,, we also obtain in Theorem 8.3 that the cohomology classes coming from
LE (p,},¢ are separated from the ones coming from AE7{pn}’¢/EE’{pn}7¢ by the degree in which they
occur. More precisely, the residual cohomology classes (i.e. those coming from Lg (p,},4) occur
only in degrees strictly lower than half the dimension of the space Xg, ®) = Spn(R)/Kg, while
the non-residual Eisenstein cohomology classes only occur in higher degrees.

Finally, let us describe the organization of the paper. In Section 2 the spaces of automorphic
forms required in the sequel are introduced. In Section 3, we define the automorphic cohomology,
and recall its decomposition along the cuspidal support. In Section 4 we turn our attention to the
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symplectic group by reviewing its structure in order to fix the notation. Section 5 deals with the
analytic properties of the Eisenstein series in question, and describes them in terms of the analytic
properties of certain automorphic L—functions. Section 6 recalls the construction of Eisenstein
cohomology classes and gives the non—vanishing conditions for those classes. Section 7 makes the
non—vanishing conditions explicit for the case of maximal parabolic subgroups of the symplectic
group. Finally, in Section 8 we combine the results of previous sections to obtain the main results
of the paper, namely the theorems discussed above.

(1)

(2)

NOTATION

Let Q be the field of rational numbers. We denote by V the set of places of QQ, and by
Vy the set of finite places. The Archimedean place is denoted by v = co. Let Q, be the
completion of Q at v, and Z, the ring of integers of Q, for v € V;. Let A (resp. I) be the
ring of adeles (resp. the group of ideles) of Q. We denote by A the finite adeles.

Let G be a connected reductive algebraic group defined over Q. Suppose that a minimal
parabolic Q—subgroup Py of G and a Levi decomposition Py = LoNy of Py over Q have been
fixed. By definition, a standard parabolic Q—subgroup of G is a parabolic Q—subgroup P
of G with Py C P. Then P has a unique Levi decomposition P = LpNp over Q such that
Lp D Lg. When the dependency on the parabolic subgroup is clear from the context, we
suppress the subscript P from the notation.

Let Ap be the maximal Q—split torus in the center of Lp. In the case of the minimal par-
abolic Q-subgroup Py we write A9 = Ap,. Then there is a unique Langlands decomposition
P =MpApNp with Mp D My and Ap C Ap.

Two standard parabolic Q-subgroups P and @ of G are called associate if Ap and Ag
are conjugate in G under an element in G(Q).

Let g, p, ... denote the Lie algebras of G(R), P(R),.... The Lie algebras of the factors in

the Langlands decomposition of P will be denoted by mp,ap,np, and [p = mp+ap. We put
ap = X*(Py) ® R, where X* denotes the group of Q-rational characters, and similarly for a
given standard parabolic Q-subgroup P D Py,ap = X*(P) ® R. Then ap = X.(Ap) ® R,
where X, denotes the group of Q-rational cocharacters, and ap = X.(Ap) ® R are in a
natural way in duality with ap and dp; the pairing is denoted by (, ). In particular, ap
and agp are independent of the Langlands decomposition up to canonical isomorphism. The
inclusion Ap C Ag defines ap — ag, and the restriction of characters of P to Py defines
ap — ap which is inverse to the dual of the previous map. Thus, one has direct sum
decompositions ag = ap P aéD and ag = ap P Elép respectively. Let CLIQD be the intersection
of ap and abQ in ag. Similar notation is used for a. By mg we denote the intersection
Nker(dy) of the kernels of the derivatives of all rational characters x € X*(G). Then we
put a% := ap N'mg; its dimension is called the rank of P. We denote by ® C X*(A4g) C do
the set of roots of Ag in g; it is a root system in the vector space dg. The ordering on & is
fixed so that ®* coincides with the set of roots of Ag in Py. Let A C ® be the set of simple
positive roots. If P is a standard parabolic Q—subgroup of G the Weyl group of Ay in Lp
is denoted by Wp. In particular, we write W = W for the Weyl group of the root system
®. Note that Wp is a subgroup of W.
Let U(g) be the universal enveloping algebra of g, and let Z(g) be the center of U(g).
Any element D in U(g) defines a differential operator on the space C*°(Ag(R)" \ G(A)) of
smooth complex valued functions on Ag(R)%\ G(A) by right differentiation with respect to
the real component of g € G(A). This operator is denoted by f +— Df. It commutes with
the action of G(R) given by left translation. If D € Z(g) this operator also commutes with
the action of G(R) by right translation.
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2. SPACES OF AUTOMORPHIC FORMS

2.1. Parabolic subgroups. Let G be a connected reductive algebraic group defined over Q. Fix
a minimal parabolic subgroup Py of G defined over Q and a Levi subgroup Lg of Py defined over
Q. One has the Levi decomposition Py = LgNy with unipotent radical Nyg. By definition, a
standard parabolic subgroup P of G is a parabolic subgroup P of G defined over QQ that contains
Py. Analogously, a standard Levi subgroup L of GG is a Levi subgroup of any standard parabolic
subgroup P of G such that L contains Lg. A given standard parabolic subgroup P of G has a
unique standard Levi subgroup L. We denote by P = LN the corresponding Levi decomposition
of P over Q.

2.2. Maximal compact subgroup. By definition, the adele group G(A) of the group G is the
!/

restricted product G(A) = H - G(Qy) with respect to the maximal compact subgroups G(Z,) C
v

G(Qy),v € Vy. The group G(A) is the direct product of the group G(R) of real points of G and

the restricted product H;evf G(Qy) =: G(Ay). We fix a maximal compact subgroup K of G(A)

subject to the following condition. Since it is of the form K = [] . K, where K, is a maximal
compact subgroup of G(Q,),v € V, we suppose (as we may) that K, = G(Z,) for almost all finite
places v € V. If v is archimedean we write K instead of K, and we write Ky = Hvevf K,.
We may assume that the group K is in good position relative to Py, that is, K satisfies the

following requirements:

e G(A) =P (AK,

e given a standard parabolic subgroup P = LN of G one has P(A)NK = (L(A)NK)(N(A)N

K) and L(A) N K is a maximal compact subgroup of L(A).

For a given standard parabolic subgroup P = LN of G one has the Iwasawa decomposition
G(A) = L(A)N(A)K. Then we can define the standard height function Hp : G(A) — ap on G(A)
by [Toey IX(D)]o = e HrR)> for any character x € X*(L) C a}.

2.3. Lie algebras. We denote by Mg the connected component of the intersection of the kernels
of all Q - rational characters of G, and by mg = Lie(M¢(R)) the corresponding Lie algebra. Note
that the maximal Q - split torus Ag in the center of G reduces to the identity if GG is a semi-simple
group. In such a case, mg = Lie(G(R)). In general, the Lie algebra g = Lie(G(R)) decomposes
as a direct sum of Lie algebras g = ag @ mg where ag denotes the Lie algebra of Ag(R). In
particular, mg coincides with Lie(Ag(R)? \ G(R)). The maximal compact subgroup Kg of G(R)
may be viewed as a subgroup of Ag(R)?\ G(R). A character Y € X*(G) defines a homomorphism
G(A) — T of G(A) into the group of ideles, also denoted by x. We denote by G(A)! the subgroup
{g € GA)|Ix(g)la = 1,x € X*(G)} of G(A). One has a decomposition G(A) = Ag(R)°? x G(A)*
as a product, and the group G(A)! can be identified with Ag(R)°\G(A). In an analogous way, mg
can be identified with Lie(Ag(R) \ (G(A) N G(R))).

2.4. Automorphic forms. We fix a height || || on the adele group G(A). By definition, a C>°—
function f: G(A) — C is of uniform moderate growth on G(Q)\G(A) if
e f is K-finite (i.e. the set {fx,k € K}, where fr(g) = f(gk), spans a finite-dimensional
space)
e there exists a constant ¢ > 0, ¢ € R, such that for all elements D € U(g) there is rp € R
with |[Df(g)| < rpllg|| for all g € G(A).
e f is invariant under left translation by elements of G(Q).

We denote the space of such functions by Vimg(G).



RESIDUAL COHOMOLOGY CLASSES FOR SYMPLECTIC GROUP 7

Let Ag denote the maximal Q - split torus in the center Zg of G. We write
Vo = Cing(GQAG(R)\G(A))

umg

for the space of smooth complex-valued functions of uniform moderate growth on G(Q)Ag(R)°\G(A).
The space Vg carries in a natural way the structure of a (g, Kg; G(Ay))-module.

Let Z(g) be the center of the universal enveloping algebra U(g) of g. We call an element
f € Vumg(G) an automorphic form on G(A) if there exists an ideal J C Z(g) of finite codimension
that annihilates f. We denote the space of automorphic forms on G(A) by A(G).

2.5. Constant term. Let P = LN be a standard parabolic Q—subgroup of G. For a measurable
locally integrable function f on G(Q)\G(A), the constant term of f along P is the function fp on
N(A)L(Q)\G(A) defined by

foig— / f(ng)dn , g € G(A)
N@Q)\N(4)

where the Haar measure dn on N (A) is normalized in such a way that one has volg, (N(Q)\N(A)) =
1. The assignment f —— fp is compatible with the actions of g, Kr and G(Af) on these functions
(if they are defined). If f is smooth (or has moderate growth) then fp is smooth (or has moderate
growth).

For an automorphic form f € A(G) we say that f is cuspidal if fp = 0 for all proper standard
parabolic Q - subgroups of G.

2.6. Decomposition over associate classes of parabolic subgroups. Two parabolic sub-
groups P and P’ of G are said to be associate if their reductive components are conjugate by
an element in G(Q). This is equivalent to the condition that their split components are G(Q)-
conjugate. This notion induces an equivalence relation on the set P(G) of parabolic Q-subgroups
of G. Given P € P(G), we denote its equivalence class by {P}, to be called the associate class of
P. Let C be the set of classes of associate parabolic Q-subgroups of G. For {P} € C denote by
Vo ({P}) the space of elements in Vi that are negligible along @ for every parabolic Q—subgroup
Qin G, Q ¢ {P}, that is, given Q = LoNg, for all g € G(A) the function | — fg(lg) is orthogonal
to the space of cuspidal functions on Ag(R)°Lo(Q) \ Lo(A).

The space Vg({P}), {P} € C, is a submodule in Vi with respect to the (g, Kr; G(Af))-module
structure. It is known that the > Va({P}), {P} € C, forms a direct sum. Finally, one has a
decomposition as a direct sum of (g, Kg; G(Ay))-modules

Vo= P Ve{P}).

{P}eC

This was first proved in [21], see [3, Theorem 2.4], for a variant of the original proof.

3. AUTOMORPHIC COHOMOLOGY

3.1. Eisenstein cohomology. We retain the notation of section 2. Let (v, E) be a finite-di-
mensional algebraic representation of G(C) in a complex vector space. We suppose that Ag(R)°
acts by a character on E, to be denoted by x~!. Let Jg C Z(g) be the annihilator of the dual
representation of £/ in Z(g). Let Ap C Vo = Cgp,, (G(Q)Ac(R)°\G(A)) be the subspace of
functions f € Vg which are annihilated by a power of Jg. Then the spaces Ap ®c E and Vg ®¢c F
both are naturally equipped with a (mg, Kg) - module structure. By [7, Theorem 18], the inclusion
Ap @c E — Vg ®¢ E of the space of automorphic forms on G (with respect to (v, F)) in the
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space of functions of uniform moderate growth induces an isomorphism on the level of (mg, Kg) -
cohomology, that is,

(3.1) H*(mg, Kr, Ap ®@c E)——H"(mg, Kr, Vg @c E).

Both cohomology spaces carry a G(Ajf)-module structure induced by the one on Ag and Vg re-
spectively, and the isomorphism is compatible with this G(Af)-module structure. We define the
automorphic cohomology of G with coefficients in £ by

(3.2) H*(G,E) := H*(mg, Kr, Ap ®¢c E)

As explained in [8] we keep in mind that these cohomology groups have an interpretation as the
inductive limit of the deRham cohomology groups H*(X¢, F) of the orbit space

Xo = G(Q)Ac(R)’\ G(A)/KrC

with coefficients in the local system given by the representation (v, E) where C' ranges over the
open compact subgroups of G(Ay).

With this general framework in place, given a class { P} € C of associate parabolic Q-subgroups
of G, one can set Ag (py = Arp N Vg({P}). The spaces Ag (py, {P} € C, form a direct sum, and
one has a decomposition as a direct sum of (g, Kr, G(Af))-modules

(3.3) As= P Apiry
{P}eC

This direct sum decomposition where the sum ranges over the set C of classes of associate parabolic
Q - subgroups of GG induces a direct sum decomposition

(3.4) H*(G,E) = @ H*(mg, Kg; Ap (py ® E)
{P}eC

in cohomology. The summand in the direct sum decomposition of the cohomology H*(G, E) that
is indexed by the full group {G} will be called the cuspidal cohomology of G with coefficients in E,
to be denoted H;,,,(G, E).

The decompostion of H*(G, E) according to the set C of classes of associate parabolic Q -
subgroups of G exhibits a natural complement to the cuspidal cohomology, namely the summands
indexed by {P} € C,{P} # {G}. Due to the results in [7] that these cohomology classes can be

described by suitable derivatives of Eisenstein series or residues of these, one calls this complement

Hpi(G.E):= P H(mg, Kr; App} ® E)
{P}eC,P#G
the Eisenstein cohomology of G with coefficients in E. In addition, one can take into account the

cuspidal support of each of these Eisenstein series. This results in an even finer decomposition of
Hy, (G, E) to be discussed below.

3.2. Decomposition along the cuspidal support. Let {P} be a class of associate parabolic
Q-subgroups of G, and let ¢ = {¢p} pe{p} be a class of associate irreducible cuspidal automorphic
representations of the Levi components of elements of { P} as defined in [8, Section 1.2.].

The set of all such collections ¢ = {¢p}pcipy is denoted by ®p py. Given a class {P} of
associate parabolic Q-subgroups of G, and any ¢ € ®f (py, we let

AE,{P},(}S = {f € VG({P})‘fP S @ Lgusp,fr(LP(Q) \LP(A))XW ® S(ag)}

TEGP

be the space of functions of uniform moderate growth whose constant term along each P € {P}
belongs to the isotypic components attached to the elements m € ¢p. Finally, we have the following
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Theorem 3.1. The automorphic cohomology H*(G, E) has a direct sum decomposition

H'(G.E)= @ D H'(me Kp Apipys @ E)
{P}eC ¢€PE (py

where, given {P} € C, the second sum ranges over the set Pp (py of classes of associate irreducible
cuspidal automorphic representations of the Levi components of elements of {P}.

For a proof of this result we refer to [8, Theorem 1.4 resp. 2.3|, or [28, Theorem in III, 2.6], where
a different approach to the decomposition of the space of automorphic forms along the cuspidal
support is given.

4. THE SYMPLECTIC GROUP

In the rest of the paper we consider the Q—split simple simply connected symplectic group Sp,
of Q-rank n, where n > 2. Let Py be a minimal parabolic Q—subgroup, and Py = LoNy its Levi
decomposition, which are fixed throughout the paper. The maximal split torus Lg is isomorphic
to a product of n copies of G,,/Q, and Ny is the unipotent radical. Let ®, ®*, A denote the
corresponding sets of roots, positive roots, simple roots, respectively. If e; is the projection of L

to its i*" component, then

A={oy =€ —eg,ap=e3—€3,...,0p_1=€n_1 — €y, 0p = 2ep}.

The half-sum of the positive roots equals

PP, :% Z B=ner+(n—1)ea+...+2ep_1+eyp.
Bed+
Let W be the Weyl group of G with respect to Ly.

The standard parabolic Q—subgroups of Sp,, are in bijection with the subsets of the set A of simple
roots. For © C A, we denote by Pg the corresponding parabolic Q-subgroup. Let Pg = LgNeg
be its Levi decomposition, where Lg is the Levi factor, i.e. the centralizer of Sg = (NacoKer(a))®,
and Ng is the unipotent radical.

The bijection with the subsets of A gives rise to a bijection between standard parabolic Q-
subgroups of Sp,, and the [-tuples of positive integers (ri,ro,...,7;), where r; > 1 fori=1,...,,
andri+...+r<n. Let rg=n— Z§:1 r; > 0. The standard parabolic Q-subgroup P, ,, . )
corresponding to the I—tuple (ry,7a,...,7) is given by the subset A\ {4yt 4r;, 11 =1,2,...,1}
of A. Its Levi factor is isomorphic to GL,, x GLy, X ... x GLy; X Spy,.

In particular, for r = 1,2,...,n, the maximal proper standard parabolic Q-subgroup Pa\{q,}
corresponding to the subset A\ {«a,} of A is denoted shortly by P,, and its Levi decomposition
by P, = L.N,, where L, is the Levi factor, and N, the unipotent radical. For r < n we have
L. =2 GL, x Sp,—,, and for r = n we have L,, =2 GL,. Observe that the parabolic subgroups P,
are self-associate, i.e. P, itself is the only standard parabolic subgroup which is associate to P, (see
Section 1.6). However, P, is conjugate to its opposite parabolic subgroup PP by a representative
of the unique non-trivial Weyl group element wy € W with the property that wo(A \ {a,}) C A.

For r =1,2,...,n, let pp. be the half-sum of positive roots not being the positive roots of L.
Then,

Mm+1—7r
e
i

As a convenient basis for ap. ¢ = C we choose
T
~ V-1, _ Z
pPr_<pPr’aT> pP’r_ ei’
i=1
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motivated by the work of Shahidi [37], where (-, -) is the natural pairing of ap, ¢ and ap, ¢, and we
always identify accordingly s € C with Ay = pp, ® s € dp, c.

For later use we recall that the standard parabolic Q—subgroups of a general linear group GLy/Q,
split over Q, are in bijection with the set of all partitions of IV into positive integers. The parabolic
Q-subgroup corresponding to partition (di,...,dn), where Y " d; = N, we denote by P4, .. 4,.),
and its Levi factor is isomorphic to GLg, X ... x GLg,,.

5. EISENSTEIN SERIES OF RELATIVE RANK ONE

In this section, following the Langlands spectral theory [20] and [28], we study in some detail
the main analytic properties of Eisenstein series attached to cuspidal automorphic representations
on the Levi components of maximal proper parabolic Q—subgroups of Sp,, (for the approach to
the residual spectrum via Arthur’s conjectures see [26], [27]). Although the arguments and results
apply over any number field, we work over Q having in mind the cohomological application. We
retain the notation introduced in Section 4. In particular, P,, for r = 1,...,n, denotes the standard
maximal parabolic Q—subgroup of Sp,, which corresponds to A\ {a,}. We write P, = L, N, for its
Levi decomposition.

5.1. Eisenstein series. Let m = 7 ® o be a cuspidal automorphic representation of L,(A), where
T is a cuspidal automorphic representation of GL,(A) and o a cuspidal automorphic representation
of Spp—r(A). For r = n, we write 1 = 7, where 7 is a cuspidal automorphic representation of
GL,(A). Throughout the paper by a cuspidal automorphic representation of G(A), where G is a
Q-split reductive group defined over Q, we mean an irreducible (g, Kr; G(Af))-module realized on
a subspace of the space of cusp forms on G(Q)\G(A) (see [28, Section 1.2.17]). We denote by V.
the subspace of the space of cusp forms of L,(Q)\L,(A) on which 7 acts.

When computing the Eisenstein cohomology, one considers only the real poles of the Eisenstein
series. Hence, we make the following convention. We assume that 7 is normalized in such a way
that the differential of the restriction of the central character of m to Ap (R)" is trivial. This
assumption is just a convenient choice of coordinates, which makes the poles of the Eisenstein
series attached to 7 real. As explained in [8, Section 1.3], it can be achieved by replacing 7 by an
appropriate twist. The twist just moves the poles of the Eisenstein series along the imaginary axis.

As in [8, Section 1.3], consider the space W of right K-finite smooth functions

[ Ne(A) Ly (Q\Spn(A) — C

such that for every g € Sp, (A) the function f4(l) = f(lg) on L,(Q)\L.(A) belongs to the subspace
Vy of the space of cusp forms on L, (A). Then, for f € Wy, and A\s € ap, ¢, and for each g € Sp,,(A),
one defines (at least formally) the Eisenstein series as

B (g = Y oAt g = ST fu(g),

YEP(k)\Spn (k) YEP(k)\Spn (k)

where fi(g) = f(g)etHPr(@)As+pr)  This Eisenstein series converges absolutely and uniformly in
g if Re(s) > 22=" " and the assignment s — E}Zf "(f,As)(g) defines a map that is holomorphic
in the region of absolute convergence of the defining series and has a meromorphic continuation
to all of ap, c. It has a finite number of simple poles at in the real interval 0 < A; < pp,, ie.
0<s< 2”5# in the coordinate pp.. All the remaining poles lie in the region Re(s) < 0. The
reference for these facts is [28, Section IV.1].
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5.2. Franke’s filtration. The space Ag p,} introduced in Section 2 has a two-step filtration
defined in [7, Section 6]. However, we use a slight modification as in [8, Section 5.2]. According
to the decomposition of AE7{ p,} along the cuspidal support as in Section 2, it suffices to give the
filtration of the spaces Ag (p,1 4, Where ¢ is the associate class of . Then, the filtration is given by
Lgipy.6 C Ap(p},¢ Where L (py 4 is the subspace of Ag (p,} ¢ consisting of square integrable
automorphic forms. The space Lg (p,},4 is spanned by the residues at s > 0 of the Eisenstein
series attached to a function f such that for every g € Sp,(A) functions f, defined above belong to
the m—isotypic subspace of the space of cusp forms on L,(A). Those residues are square—integrable
automorphic forms by the Langlands criterion [28, Section I.4.11]. The quotient Ag (p,y.6/LE{P.}.6
is spanned by the principal value of the derivatives of such Eisenstein series at Re(s) > 0.

We also consider a subspace of Lg (p1 4 spanned by the residues at poles s > 0 of the Eisenstein

series ng "(f,As)(g) attached as above to a fixed (irreducible) realization V; of a cuspidal auto-
morphic representation 7 of L,.(A). We denote that subspace by Lg (p,},4v,- In the case r = n,
ie. L, =2 GL,, due to the multiplicity one theorem for cuspidal automorphic representations of
GL,(A) (see [38], [29]), the m—isotypic subspace of the space of cusp forms on L, (A) is irreducible.
Hence, if r = n, then Lg ¢p,y 4 and Lg ¢p,y 4V, coincide. Otherwise, if r < n, it might not be the
case.

5.3. Normalization of intertwining operators. Since P, is self-associate, the poles of the
Eisenstein series coincide with the poles of its constant term ng "(f,As)p, along P, (see [28,
Section I1.1.7]). The constant term along P, is given by

(5.1) E"(£,26)p,(9) = fs(g) + M(As, m,w0) f5(9),

where wy € W is the unique non-trivial Weyl group element such that wo(A \ {ar-}) C A, and
M (X, m,wp) is the standard intertwining operator defined as the analytic continuation from the
domain of convergence of the integral

(5.2) M(As,m,wo) folg) = / o

where 1wy is the representative for wg in Sp, (Q) chosen as in [35]. Away from the poles it intertwines
the induced representation

I()\Sa 7T) = Indifgg)&) (T€<HPT(.)7>\S) ® O')

) {fs =f- o(HP () As+pp) fe Wﬂ}

and T(A_g, wo(m)), where the action of wg on 7 is given by wo(7)(l) = m(wy i) for I € L.(A).
Let 7 denote the contragredient of 7. If » = n, then o does not appear in the above equation, and

~Y

wo(m) = wo(r) 2 7. If r < n, then wy(r) = wo(r ® 0) = 7 ® 0. Observe that in our notation
Indfpf a@) includes the normalization by pp,, and thus pp. does not appear in the first line but
appears in the second line of the above equation.

The poles of the constant term E;Zf "(f,As)p.(g) of the Eisenstein series coincide with the poles
of M(As,m,wo)fs(g). As explained below, for a globally ¢—generic cuspidal automorphic repre-
sentation 7, the poles of the standard intertwining operator M (A4, w,wp) for s > 0 coincide with
the poles of certain automorphic L—functions. Therefore, in what follows we assume that 7, as a
cuspidal automorphic representation on a subspace V. of the space of cusp forms on L,(Q)\L,(A),
is globally generic with respect to a fixed non—trivial continuous additive character ¢ of Q\A. In
other words, there exists a cusp form in V; such that its ¢—Fourier coefficient along the minimal
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parabolic Q—subgroup is non—trivial. Since all cuspidal automorphic representations of GL,(A) are
globally generic, this assumption applies only for » < n, and is in fact a condition on o.

Let m & ®,m, = @y (Ty ® 0,,) be the decomposition into a restricted tensor product as in [6],
where 7, & 7, ® 0, is a unitary irreducible representation of L,(Q,), and 7, and o, are unitary irre-
ducible representations of GL,(Q,) and Sp,_,(Q,), respectively. At almost all non—Archimedean
places v € Vy, m, is unramified, and we denote by f¢, the unique K,-invariant vector in [ (Nsy 7o)
normalized by the condition fg,(e) = 1, where e is the identity in Sp,(Qy). By [19, Section 5], the
standard local intertwining operator A(\s, 7y, wy), defined as the analytic continuation of the local
analogue of the integral (5.2), acts at an unramified place v € Vy on Jow a3

A()\S7 Ty, wO)f;),v = 7/‘()\57 Ty, wO)fis,vv
where (s, my, wo) is the local normalizing factor given as a certain ratio of the local L—functions,

and f°, , is the normalized K,~invariant vector in I(A_g, wo(my)). If fs = @y fsp 1S decomposable
let S be the finite set of places which contains all Archimedean places Vo and such that fs, = fg,
for all v € V; \ S. Then the global standard intertwining operator acts on fs as

M()\S7 , w())fs = [®’UESA()\87 T, wO)fs,v] & TS()\S) T, UJ()) |:®1)€S.f3371;} s

where
)\saﬂ— wO H’r )\877r’uaw0
vgS
is a certain ratio of partial L-functions attached to .
In [37], the local normalizing factors r(\s, m,, wo) are defined at all places for a 1),—generic
representation m,. Let N (g, 7y, wp) be the local normalized intertwining operator defined by

A()\S77TU7 wO) = T(As; anw0>N()‘577Tvaw0)-

It intertwines the induced representations I (s, m,) and I(A_s, wo(m,)). Note that at a place v € V;
where , is unramified N(\s, 7y, wo) maps fg, to f2 . Hence,

(5.3) M (s, m,w0) fs = r(Xs, ™, w0) [®UGSN(A87 Ty, wO)fs,v] ® |:®1)€S.f3371;} )

where
)\syﬂ— UJ(] HT Asaﬂ_vywo

is the global normalizing factor given as a certain ratlo of automorphic L—functions attached to .
This ratio is made precise in Theorem 5.1 below.

Theorem 5.1. Let r < n be a positive integer, and P, = L,.N, the maximal proper standard
parabolic Q—subgroup of Sp,. Let 1 = 7 ® o be a cuspidal automorphic representation of the Levi
factor L,(A), where o does not appear if r = n. If r < n, assume that o is globally generic with
respect to 1. Then:
(1) There is a global functorial lift 11 of o to G'La(y—y)+1(A), where 11 is an automorphic rep-
resentation of GLQ(n_T)_j’_l(A) such that there exists a standard parabolic subgroup P; =
Pl do,....dm) Of GLogn—yy41, where dy +da+ ... +dp = 2(n — 1) + 1, and cuspidal automor-
phic representations 11; of GLqg;(A) satisfying the following:

o I =Tndj, 20" ) (L ®L®...o10,,),

o cach 11; is selfdual, i.e. ﬁj = I1;, where ﬁj denotes the contragredient representation
of 1,
o II; 211y for j # j', i.e. II; are pairwise non-isomorphic,
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e the symmetric square L—function L(S,Hj,Sme) has a simple pole at s = 1 for all
j=1....m,
e the central character of Il is trivial.
(2) The Rankin—Selberg L—function for 7 and o equals

m
L(s, T x 0) = HL(S,T x I1;),
j=1

where the L-functions on the right hand side are the Rankin—Selberg ones for T and II;.

(3) The local normalized intertwining operator N (g, Ty, wo) is holomorphic and non—vanishing
for s >0, and thus the possible poles of the standard intertwining operator M (s, m,wp) for
s > 0 coincide with the poles of the global normalizing factor which is given by

L(s,7X0) . L(2s,7,A2) fOT r<n

7“(/\ oW ) _ { L(14s,7x0)e(s,7xo)  L(1+2s,1,A2)e(2s,1,A2)" ’
s, 7 10 L(s,T) L(2s,7,A2) _

L(1+s,m)e(s,m)  L(1+2s,7,/A2)e(2s,7,A2)" forr=mn,

where L(s,T,A\2) is the exterior square L—function, and for r = 1 we make a convention
that L(s,7,A?) = 1 for any Hecke character 7 of Q*\I.

All these L—functions are defined as the product over all places of the local ones, which are defined
in [37] for generic representations.

Proof. All the assertions are given in [5]. The first one is Theorem 7.2 of [5] describing the image of
the global functorial lift of the globally generic representation of a split symplectic group. In fact,
that image was already described in [9] and [39] before its construction in [5]. The second assertion
follows from the proof of Lemma 7.1 of [5]. The claim on the local normalized intertwining operator
in the third assertion is Theorem 11.1 of [5], and the rest follows from (5.3). The formula for the
global normalizing factor (s, 7, wp) is given in [36]. O

Remark 5.2. The non—vanishing of N (A, 7y, wp) at s = sp means that its image is non—trivial,
i.e. there is a section fs, € I(Xs,m,) such that N (A, Ty, wo)fspw Z 0. This assures that the
residues of the Eisenstein series in Theorems 5.6 and 5.7 below are non—trivial.

5.4. Analytic properties of automorphic L—functions. Next we recall the analytic properties
of the L—functions appearing in the normalizing factors.

Theorem 5.3. Let r and r' be positive integers. Let 7 and 7' be cuspidal automorphic represen-
tations of GL,(A) and GL,/(A), respectively. We assume, as explained above, that T and 7' are
normalized to be trivial on Agr, (R)* and Agr ,(R)*. Then:

(1) If r =1, i.e. T is a Hecke character of Q*\I, then the Hecke L—function L(s,T) is entire if
T 18 non—trivial, while it has simple poles at s =0 and s = 1 and is holomorphic elsewhere
if T is trivial.

(2) If r > 1, then the principal L—function L(s,T) is entire.

(3) If either v # 1, orr = 1" and 7 ¥ 7', then the Rankin-Selberg L—function L(s,7 X 7')
is entire, while if r = v’ and T = 7', then it has simple poles at s = 0 and s = 1 and is
holomorphic elsewhere.

(4) Ifr > 1 and 7 is not selfdual, then the exterior square L—function L(s, T, A?) is entire, while
if r > 1 and 7 is selfdual, then it is holomorphic for s > 1 and s < 0, and has simple
poles at s = 0 and s = 1 if and only if the symmetric square L-function L(s, T, Sym?) is
holomorphic at s =0 and s = 1.

(5) All the L—functions involved are non—zero for Re(s) > 1 and Re(s) < 0.
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Proof. Most of the analytic properties of the theorem are well-known. Property (1) is obtained in
[41], and (2) and (3) follow from the integral representations for the L—functions developed in [14],
[15], [16]. The property (5), i.e. non-vanishing for Re(s) > 1 and Re(s) < 0 of all the L-functions
involved, follows from [36]. The analytic properties in that region for the exterior and symmetric
square L-functions follow from the relation L(s,7 x 7) = L(s, 7, A?)L(s, T, Sym?) and properties
(3) and (5). The holomorphy of L(s, 7, A?) inside the strip 0 < s < 1 for non-selfdual 7 follows
from section IV.3.12 of [28], thus giving property (4). O

5.5. Residues of Eisenstein series. Before discussing the poles of the Eisenstein series we intro-
duce some more notation. We consider the local normalized intertwining operator N (s, 7y, wo)
acting on the induced representation I(\s,,m,), where either so = 1/2, or r < n and sp = 1. Let
W (Asos ™) C I(Asy, ™) denote its kernel, and J(As,, m,) its image.

Proposition 5.4. Let either so = 1/2, orr < n and so = 1. Let Too = Too @00 be the Archimedean
local component of a globally generic (with respect to ¥) cuspidal automorphic representation m of
L.(A). Assume that T is tempered. Then, the image J(As,, Too) of the local normalized intertwin-
ing operator N (s, Too, Wo) s irreducible.

Proof. Since 7 is tempered, there are a standard parabolic Q-subgroup P, ,, .. ,.) of GL,, and
irreducible unitary square-integrable representations §; of GL,,(R) (thus r; = 1 or r; = 2) such
that 7 is the fully induced representation

Too =2 Ind&r®) ®) (61 ®I®...Q ).

P(rl,rg AAAAA L)

On the other hand, with regard to the representation oo of Sp,—(R), in Section 10 of [5] a bound
on the exponents of the local components of a globally generic cuspidal automorphic representation
is given. More precisely, following the description of the generic unitary dual given in [23], there
are

e a standard parabolic Q-subgroup P s 1) of Spn—r, where i+ 4+ <n—r,
e irreducible unitary square integrable representations d’ of GLr;. (R) (thus v’ =1 or r; = 2),

e an irreducible tempered representation oy of Spy,(R), where ro =n —r — Zé-:l r},

e and real exponents ¢, where 1/2 >t >ty > ... >, >0,
such that o, is the fully induced representation

Spn—r (R)
P

('r’l ,r’2 AAAAA rz)

Ooo = Ind ®) (61| det |"* ® 8h| det [ @ ... @ &]| det |[" ® o) .
By induction in stages, the induced representation I(As,, o) on which N(Ag,, moo, wo) acts is the
fully induced representation

I(Asp, Too) = Ind2P®) (6] det [0 @ ... @ 64| det |* @ 6}|det | ® ... ® 6| det [ © a9)

QER)
where () = Py iror]r)) 18 8 standard parabolic Q-subgroup of Sp,. Denote by ¢ the represen-
tation of the Levi factor Lg(R) of Q(R) appearing on the right hand side.

Let s = (80, e, 80,t1,t9, ... ,tl) € Cle,@. Observe that sg > t1 > to > ... > t; > 0, i.e. s satisfies
the condition of the Langlands classification for Sp,(R) (see [22]). Let w; be the longest element in
the Weyl group Wy, of the Levi factor L, modulo the Weyl group Wi, of the Levi L of . Then
the local normalized intertwining operator N (s, d,w;) is an isomorphism because it is in fact an
intertwining operator for the group L,(R) acting on the irreducible induced representation. Hence,
by the decomposition of local intertwining operators according to a decomposition of the Weyl
group element, the image J(As,,my) is isomorphic to the image of the composition

N(Xg, Ty, wo)N (8,0, wy) = N(s,0, wowy).
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However, wow; is the longest element of the Weyl group W of Sp, modulo the Weyl group Wy,
and s satisfies the inequality of the Langlands classification. Therefore, the image of N (s, d, wow;)
is irreducible by the Langlands classification. Thus J(\s,, my) is indeed irreducible. O

Remark 5.5. For any place v, if we assume that 7, is tempered, the proof of the Lemma applies
showing J(\s,,Ty) is irreducible. However, since the Ramanujan conjecture for cuspidal auto-
morphic representations of GL,(A) is not proved, the assumption of temperedness might not be
satisfied. It is not difficult to see, using the theory of R groups of [17], [10] (see also [23]), that
there are non-tempered unitary generic representations of GL,(Q,) such that J(As,,m,) is not
irreducible.

Nevertheless, the cuspidal automorphic representations of GL,(A) having a non—tempered local
component at an Archimedean place are of no interest in the application to automorphic cohomol-
ogy. The reason is that only cuspidal representations having tempered 7, may give a non—trivial
cohomology class ([32, Section §3]).

Theorem 5.6 (Case r =n). Let r =n, m = 7 as above, and sop > 1/2.

(1) The Fisenstein series Eﬁf” (f,As) is holomorphic at s = sg unless so = 1/2, T is selfdual,
L(s,7,A%) has a pole at s = 1, and L(1/2,7) # 0. In this case, the map

f . e(HPn(')7A30+pP’n,) — E}an (fa /\so)

is an embedding of the induced representation I(Xs,,T) into the space of automorphic forms
on Spn(Q)\Spn(A).

(2) Moreover, if so = 1/2, 7 is selfdual, L(s,7,A?) has a pole at s = 1, and L(1/2,7) # 0,
but f = ®ufy has at least one local component f, in the kernel W(Al/g,rv) of the local
normalized intertwining operator N (A2, Ty, wo), then the Eisenstein series E;Zf" (f,As) is
holomorphic at s = sp = 1/2 as well.

(3) Finally, if so = 1/2, T is selfdual, L(s,7,A\?) has a pole at s = 1, and L(1/2,7) # 0,
and f = ®yfy is such that for all places v its local component f, is not in the kernel
W (A1 /2, 7o) of the local normalized intertwining operator N (A 2, Tv, Wo), then the Eisenstein

series Ef;f”(ﬂ As) has a simple pole at s = sg = 1/2. The map

feeHenOAator) (g — 1/2)E1§p"(f, As)
" s=1/2

is an intertwining of the induced representation I(\;/o,T) and the space of automorphic

forms on Spn(Q)\Spn(A). Its image is non-trivial, isomorphic to J (A2, 7) = @pJ (A1 /2, 7o),

and consists of square integrable automorphic forms.

Theorem 5.7 (Case r <n). Letr <n, m =7 &0 as above, and sop > 1/2.

(1) The Eisenstein series Eﬁf”(f, As) is holomorphic at s = sg unless
e cither sp = 1/2, 7 is selfdual, L(s,7,A%) has a pole at s = 1, and L(1/2,7 x II;) # 0
for all I1I; appearing in the global functorial lift of o,
e or sp =1, and T = 1I; for some 11; appearing in the global functorial lift of o.
In this case, the map

7 e<HPT(~),/\SO+PPr> — ng” (f, /\so)

is an embedding of the induced representation I(\s,, ) into the space of automorphic forms

on Spn(Q)\Spn(A).
(2) Moreover, if
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e cither so = 1/2, 7 is selfdual, L(s,7,A?) has a pole at s =1, and L(1/2,7 x II;) # 0
for all IL;, but f = @, f, has at least one local component f, in the kernel W(/\l/g,m,)
of the local normalized intertwining operator N()\l/z, Ty, W0),

e orsop =1 and 7 = 11; for some 1l;, but f = ®,f, has at least one local component f,
in the kernel W (A1, m,) of the local normalized intertwining operator N (A1, 7y, wo),

then the Eisenstein series ng”(f, As) s holomorphic at s = sy as well.
(3) Finally, if

e cither sp = 1/2, 7 is selfdual, L(s,7,A%) has a pole at s = 1, and L(1/2,7 x II;) # 0
for all 11;, and f = ®,f, is such that for all places v its local component f, is not in
the kernel W (A /o, my) of the local normalized intertwining operator N ()2, Ty, wo),

e or 5o = 1, 7 =2 1I; for some Il;, and f = ®,f, is such that for all places v its
local component f, is not in the kernel W (A1, m,) of the local normalized intertwining
operator N(Ay, my, wp),

then the Eisenstein series Eﬁf’”(f, As) has a simple pole at s = sg. The map

[ elfIPOAsotor) (5 — o) EPP (£, )
s=sq
is an intertwining of the induced representation I(As,, ) and the space of automorphic forms
on Spn(Q)\Spn(A). Its image is non—trivial, isomorphic to J(Asy, ) = ®yJ (Asy, Ty), and
consists of square—integrable automorphic forms.

Proof. We prove Theorems 5.6 and 5.7. By claim (3) of Theorem 5.1 and the expression (5.1) for
the constant term of the Eisenstein series which relates the poles of the Eisenstein series to the poles
of the standard intertwining operator, the poles of the Eisenstein series E}S;f "(f,As) at s =350 >0
coincide with those of the normalizing factor r(\s, 7, wp), unless there is a place v where f, is in
the kernel of the local normalized intertwining operator. Then, claim (2) of Theorem 5.1, and the
analytic properties of L—functions of Theorem 5.3, imply the conditions for the pole given in the
theorems. The description of the spaces of automorphic forms so obtained follows by looking at
the expression (5.1) for the constant term. The space J(As,,7) is non-trivial because J(As,, 7y)
is non—trivial for all places v due to the non—vanishing of the normalized intertwining operator
N(Asy, Ty, wp) in claim (3) of Theorem 5.1 (see also Remark 5.2). O

Remark 5.8. Observe that if r < n, the two poles syp = 1/2 and sy = 1 cannot both occur for a
fixed selfdual representation 7. Indeed, for the pole at s = 1/2 it is necessary that L(s, 7, A?) has
a pole at s = 1, while for the pole at sy = 1 it is necessary that 7 = 1I; for some j, which implies
L(s,7,Sym?) = L(s,11;, Sym?) has a pole at s = 1 by claim (1) of Theorem 5.1. However, by (4) of
Theorem 5.3, the exterior and symmetric square L-functions L(s, 7, A?) and L(s, 7, Sym?) cannot
both have a pole at s = 1.

Remark 5.9. In both Theorems we consider only sg > 1/2 because the condition for the non-
vanishing of the cohomology studied in Section 6 excludes the strip 0 < sy < 1/2 as possible
evaluation points. However, the proof of the Theorems applies for sg > 0 up to the analytic
properties of the exterior square L—function L(s, 7, A?) inside the strip 0 < s < 1. The holomorphy
of that L—function inside 0 < s < 1 would follow from Arthur’s conjectural description, given in
section 30 of [1], of the discrete spectrum for Q-split connected classical groups.

Corollary 5.10. Let L?fé{iqﬁ,vﬂ be the subspace of Lg (p.y¢v, spanned by the square integrable au-

tomorphic forms which are obtained as the residues at so > 1/2 of the Fisenstein series ng" (f, Aso)

s0>1/2

attached to V. In the case r = n, we use the notation L (Pt
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(1) In the case r = n, the space ESE()?P/? s 8 non-trivial if and only if T is selfdual, L(s,T,N?)

has a pole at s =1, and L(1/2,7) # 0. If non—trivial, ﬁ?%}:ﬁ 4
of the Fisenstein series attached to T at the pole sy = 1/2, and it is isomorphic to the image
J(A1/2,7) of the normalized intertwining operator N (A9, T, wo).

(2) In the case r < n, the space Egﬁgi(ﬁ’vﬁ 18 non—trivial if and only if
(a) either T is selfdual, L(s,7,A%) has a pole at s = 1, and L(1/2,7 x I1;) # 0 for all 11,

appearing in the lift of o (see Theorem 5.1); in this case E?iﬁ SV is spanned by the
residues of the Fisenstein series attached to Vi at the pole sy = 1/2, and it is isomorphic
to the image J(\1/2, ™) of the normalized intertwining operator N (A2, T, wo),
(b) or 7 is selfdual, and T = II; for some Il; appearing in the lift of o; in this case
[50>1/2
EA{Pr},¢,Vx
pole sy = 1, and it is isomorphic to the image J(A1,7) of the normalized intertwining

operator N(Ay,m, wp).

1 spanned by the residues

is spanned by the residues of the Fisenstein series attached to Vi at the

6. EVALUATION POINTS AND NON—VANISHING CONDITIONS

Given an associate class { P.} € C of maximal parabolic Q—subgroups in Sp,,, we now analyze the
actual construction of cohomology classes in the corresponding summand H*(sp,,, Kr, Ag (p,} ®c E)
of the Eisenstein cohomology Hy,; . (Spn, E). By Theorem 3.1, the latter space decomposes as

H* (spnv K, AE,{PT,} c E) = @ H* (5pn> K, AE7{P7.},¢ Ac E)7
PEL s, 1Py

where the sum ranges over the set ®p (p ) of classes ¢ = {qﬁQ}Qe{ p.y of associate irreducible
cuspidal automorphic representations of the Levi components of elements of { P, }.

Suppose T € ¢p, is an irreducible cuspidal automorphic representation of the Levi component
L,(A) on the subspace V; of the space of cusp forms on L, (A). By carrying through the construc-
tion of residues or derivatives of Eisenstein series attached to (m, V) (as in [24], Section 3), the
corresponding contribution to H*(sp,,, Kg, Ag AP },¢ QC E) is embodied in the cohomology

<5meRalndip8§A)f)I d&;g:;ﬁﬂf?@%m» <V ®E® S(a Spn))) 7
where S (dif ™) is the symmetric algebra of Elpf " with the (sp,,, Kr)—module structure as defined on
page 218 of [7] (see also Section 3.1 of [24]).

Using Frobenius reciprocity, the study of this space is reduced to an analysis of the Sp,(Af)-

module

Spn (A * *
6.1) Wndy i H (4, K 0 L(R); Ve @ H (ny, B) © S(&))

Following Kostant ([18], Thm. 5.13), the Lie algebra cohomology H*(n,, E) of n, with coefficients
in the irreducible representation (v, E) of Spn((C) is given as a ([, Kg N L, (R))-module as the sum

*(n,, E @ E,.
weW Fr

where the sum ranges over w in the set W of the minimal coset representatives for the left cosets
of W modulo the Weyl group Wp, of the Levi factor L, of P, and F},, denotes the irreducible
finite-dimensional ([, Kg N L,(R))-module of highest weight

(6.2) o = w(A + pPo) — PPy
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where A € ap, ¢ is the highest weight of (v, E'). The weights p,, are all dominant and distinct and,
given a fixed degree ¢, only the weights u,, with length ¢(w) = ¢ occur in the decomposition of
H(n,, E) into irreducibles. As in [30, Section 3.2], we call a cohomology class in (6.1) which gives
rise to a non—trivial class in

H* (L., K N L,(R); Voo, ® F,,,,)

a class of type (m,w), w € W, If the infinitesimal character x,. of the Archimedean component
Teo Of m does not coincide with the infinitesimal character of the representation contragredient to
F,.,, the cohomology space H* ([,, Kr N L(R); V. ® F},,) vanishes, that is, there are no classes
of type (m,w).

Moreover, if F),  is not isomorphic to its complex conjugate contragredient F;w, then the co-
homology space H* (I, Kr N L,(R); Vx ® F,,) = (0), since this condition implies that the com-
plex contragredient of F,, and V; have distinct infinitesimal character. Following [2, Section §1],

w 7 F ., Is equivalent to the condition that —wy (uw‘v Ip;) is distinct from ,u,w‘ pr, where wy 1, is

the longest element in the Weyl group Wp, of the Levi component L,. We recall that the transfor-
mation —wy 7, maps the highest weight of an irreducible [, c-module into that of the contragredient
one.

Suppose there is a non-trivial cohomology class of type (7, w), w € W*r. In order to understand
the cohomological contribution of the corresponding Eisenstein series ng "(f,\s) or a residue of
such in H*(sp,,, Kr, Ag (p,},¢ ®c E), following [30, Corollary 3.5], we have to analyze the analytic

behaviour of E}Zf "(f, As) at the point

(6.3) Mo = —w(A+ pp)|.

aP,,,
This evaluation point is real and uniquely determined by the datum (7,w). It only depends on
w and the highest weight A € ap, c. As a consequence of the description of the space Ag (p14
of automorphic forms in Section 1.3 of [8], only the points A, with (A, ) > 0 matter in our
analysis. In other words, it suffices to consider only the evalution points A, such that in the basis
pp,. of ap. we have Ay, = A, = pp, ® Sy With s, > 0.

In the following, under the assumption that H* (I, Kr N L,(R); Vz ® F),,,) is non-trivial for a
given {P,} € C, and a pair (7, w), we make explicit the two necessary conditions this assumption
implies by the discussion above, namely:

ﬁ?g) = Nw‘aggv
and

(6.5) Xroo = —W (A + pp,)

(6.4) —wy L, <uw

e
In a next step, given a non-trivial cohomology class of type (m,w), w € W', we determine the
corresponding evaluation point A\, = pp, ® s,. Finally, this allows us to decide for which minimal
coset representatives w € W, the corresponding point A, takes the value s, = 1/2 or s, = 1.
In Section 7 it will turn out that the condition (6.4) is never satisfied for w € W such that
0 < sy < 1/2. Therefore, in view of the results in Section 5 concerning the analytic behaviour of
the Eisenstein series in question, the evaluation points s,, = 1/2 and s,, = 1 (the latter in the case
of P, with r < n) are decisive for the eventual construction of residues of Eisenstein series and
related cohomology classes.

For later use we introduce the following notation. As before, let (v, E') be an irreducible represen-
tation of Sp,(C) with highest weight A € ap, ¢. If we write A = >""" | Aje;, with e; the projection
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of Ly to its i*" component as in Section 4 then all \; are integers and A\; > A2 > ... > A, > 0. On
the other hand, if we write A = )" | ciw;, where w; = 23:1 ej is the ith fundamental weight, then
all ¢; are non—negative integers. The relationship between the two expressions for A is given by

n .
)‘i:ZCj and Ci—{)\i_)\“‘l’ fori=1,2,...,n—1,
=i

Ans for i = n.

7. NON—VANISHING COHOMOLOGY FOR MAXIMAL PARABOLIC SUBGROUPS

Let (v, E) be a finite-dimensional irreducible representation of Sp,(C) of highest weight A €
apy,c. Forr =1,...,n, let P, = L,.N, be the Levi decomposition of the standard parabolic Q-
subgroup of Sp,, corresponding to the subset A \ {a,} of the set of simple roots. Recall that we
assume n > 2.

Let m = 7 ® o be a cuspidal automorphic representation of L,(A) = GL,(A) x Spp—r(A). In
this section we explicitly determine, for w € W such that the corresponding evaluation point is
Sw = 1/2 or s, = 1, the two necessary conditions (6.4) and (6.5) implied by the assumption that
the space H* (I, Kg N L.(R); V.. ® F,,) is non-trivial. We also show that for w € W such that
0 < sy < 1/2 that space is trivial since the condition (6.4) is never satisfied.

7.1. Action of elements of W, The calculations in this section are based on Lemma 7.1 which
gives the explicit formula for the action of w € W on dp,. This Lemma is a variant of [40, Lemma
4.3).

Lemma 7.1. In the case of the maximal proper parabolic subgroup P, withr =1,...,n, there is a
bijection
(I, J) = U)LJ

between the family S of all ordered pairs (I,J) of disjoint subsets I and J of the set S, =
{1,2,...,n} such that their union I U J contains exactly r elements, and the set W of mini-
mal coset representatives for Wp, \ W. The bijection is defined as follows: let

I = {il,ig, R ,i|[|}, where 11 < ig < ... < im,

J = {J1, 02,5 gyt where j1 < g2 < ... <,

Sp\(TUJ) = {ki,kay ... kn_r}, where kg < ko <...<kp_p,

where |I| and |J| denote the cardinality of I and J, respectively. Then, wr,  is defined by its action
on ey, e, ..., e, € X*(Ag) as

wI,J(eill) = —€rt1-I, fOT ll :1727---7|I|7
w["](ejb) = e, forla=1,2,...,|J|,
wI,J(ele) = ertiy, forls=1,2,... ,n—r.
In other words,
n |J] 11| n—r
wr,.J Zslel = Z Sjip €12 — Z Sijrp1, €1+ T Z Skig Ertlss
=1 l2=1 =1 I3=1

where s; € C. In particular, in the case r = n, we have J = S, \ I for any pair (I,J) € S.

Proof. The assignment (I, J) — wy s obviously defines an injective map & — . However, one
needs to check that wy ; € W¥r. By [18, Theorem 5.13], the set W% consists of all w € W such
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that w=! (A \ {a,}) C @, i.e. w™!(a) is a positive root for all simple roots « in the subset A\ {a,.}
of A corresponding to the parabolic subgroup P,. The action of wl_}] is given by

X €, fori=1,...,]J],
wryle) =9 =€, forl=[J[+1,...r
Chy_ s forl=r+1,...,n.
Hence,
S form=1,...,|J| -1,
X €5+ € for m = |J|,
wy y(am) =4 €,y = €y form=|J+1,... =1
Chpy = Chm_rs1> fOTmMm=r+1,...n—1,
2ek, ., for m = n,

and all the roots on the right hand side are positive. Note that for r = n the last two cases do not
exist,.

For surjectivity we prove that S and W’ have the same cardinality. The number of ordered
pairs (I, J) of disjoint subsets of S,, such that I U .J has exactly r elements is counted as follows. In
the first step we choose a subset of r elements inside .S, to be I U J. This step can be done in (Z)
ways. Next, in the second step, we choose I to be any subset of already chosen I U J. This step
can be done in 2" ways, since that is the number of subsets of a set of r elements. Hence, there are
(Zf) - 2" ordered pairs (I, J). On the other hand, the number of representatives in WP is obtained
as the quotient of [W|=n!-2" and [Wp,| =r!- (n —r)!-2"7" which is the same. O

Lemma 7.2. Let the notation be as in the previous Lemma. For a € Sy, let
SLJ(a):{xESn\(IUJ) : :IZ<CL},
and mr j(a) the cardinality of St j(a). Then, the length of wr s is given by

lwry) =Y (n+1=i)+> mps()+|I(n—r).

il jeJ
In particular, for r =n, we have L(wy g \1) = Y ;c; (n+1—1).

Proof. We compute the length of w; ; by writing its reduced decomposition in simple reflections.
This is achieved in three steps.

In the first step we move the e; with ¢ € I to the end and change the sign starting with the
largest index in I. This step is in fact the only step in the » = n case. For every ¢ € I we apply
n — i simple transpositions and one sign change which gives the total of ). ; (n + 1 —4) simple
reflections.

In the second step we move the e; with j € J to the beginning, starting with the smallest index
in J, but without changing their order. Since the elements of I are already at the end, for every
7 € J one has to apply as many simple transpositions as there are indices smaller than j which
are neither in I nor in J. That number is denoted by my j(j), and hence in this step we use
> jesmi,s(j) simple reflections.

Finally, in the third step, we move the e; with ¢ € I, without changing their order, from their
position at the end to the places just after the elements e; of J which occupy the first |.J| places.
During this step we apply for every ¢ € I as many simple transpositions as there are indices outside
both I and J which is n — r. Hence, in this step we use |I| - (n — r) simple reflections.

Summing up the total number of simple reflections used in each step gives precisely the formula
for the length given in the Lemma. O
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7.2. Evaluation point.

Lemma 7.3. Let E be an irreducible representation of Spy,(C) with highest weight A = ") _; Ager €
apy,c, where A\, are integers, and \y > Ao > ... > N\, > 0. Then
I
—wry (A pp) = — Y MQ+%R+1—ﬁJ}@2

+ Z _)‘i|1|+141 + (n +1- i\1|+1—11)] €I+

_ Z )\le —+ (n +1- kl3)j| €rtlss

where the notation is as in Lemma 7.1.

Proof. This is a straightforward computation using the formula for the action of w; ; given in
Lemma 7.1. O

Corollary 7.4. In the notation of Lemma 7.1, the evaluation point /\ww = )‘Swf forwr ;€ Wt

corresponds to the real number

Suns = 5 [N =N = Y g (= ) (a4 1)

iel jeJ i€l jeJ

J

Moreover, 8., ; is always an integer. In particular, if s, ; = 1/2, then r is necessarily even.

Proof. The restriction to dp, in the formula (6.3) for Ay, ; is obtained by replacing every ey for
k=1,2,...,r by %Z;Zlel = %ﬁpr € ap,, and every e, for k = r+1,...,n by 0. In other
words, sy, , is the arithmetic mean of the first r coefficients in the expression for —wz j(A + pp,)
obtained in Lemma 7.3. These are in fact the coefficients appearing in the first two sums. Thus, a
straightforward computation gives the formula. Finally, sy, , is an integer because all the terms
in the square bracket are integers. U

7.3. Non—vanishing condition.
Lemma 7.5. Let E be as in Lemma 7.3. Then, in the notation of Lemma 7.1,

Hwy ; = WI,J (A + pPo) — pp, € ap,

is given by the formula

Mb_ﬁfH4q2

Hwr ;=

7]
lo=1
1l
= D iy (0 L =dg) + (1= ] - ll)] €1J]+0
=1 )
n—r

+ )\le — kl3 +7r 4+ lg] €rils-

Proof. This is a direct computation using Lemma 7.1. ]
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Proposition 7.6. Let E be of highest weight A = ;" | \je; as above. Let wr,j € WP be such
that sy, , = 1/2. Thus, by Corollary 7.4, r is necessarily even. Let 1 = 7 ® o be a cuspidal auto-
morphic representation of Ly(A) = GLy(A) X Spp—r(A), where T and o are cuspidal automorphic
representations of GLy(A) and Spn—(A), respectively. Then, if a non—trivial cohomology class in
H*(L, K N Ly (R); Ve ® H*(n,, E)) of type (m,wr y) exists, the following holds:

e wr,j corresponds to a pair of disjoint subsets (I,.J) of the form

I - {i17i27"'7iT/2}7
J = {in+1lidg+1,... 00+ 1},
where the form of I and J implies that neither of them contains a pair of consecutive
integers,
o the coefficients of A satisfy A; = N\iy1 for alli €1,
o the infinitesimal character x .. of the infinite component mo of ™ equals

r/2
Xmo = Z [— (i +n+1/2=i)) e+ (e + (n+1/2 —14p)) 6r+171]
=1
- Z (Aky + (n4+1—ky)) epsr,
=1

where p = N, = Xjj41 forl=1,2,...,1/2.
In particular, for r = n, there is a unique wy, s,\1, € W satisfying those conditions. It corre-
sponds to Iy = {1,3,...,n— 1}. Here n is necessarily even.

Proof. We first make the non—vanishing condition (6.4) more explicit. Let Y ;" s;¢; € @p,. As in
the proof of Corollary 7.4, its restriction to ap, is just > ,_, Se; = Spp, € ap,, where 5 = %ZLI s
is the arithmetic mean of the coefficients s1, s9, ..., s,. Note that here 5 is the arithmetic mean of
the first r coefficients. Hence, the restriction to d;’; equals

T

Z(Sl_§)€l+ Z SkC-

1=1 k=r+1
Since L, = GL, x Sp,_,, the longest Weyl group element w; 1, € Wp, acts as

r

r n n
wy,L, (Z (s1—5) e+ Z 5k6k> = Z(Sr-‘rl—l —5)e — Z SkCk-

=1 k=r+1 =1 k=r+1
Therefore, condition (6.4) is in fact
(7.1) Si+ Sp41-1 =25

for | =1,2,...,r. Observe that the condition is only on the first r coefficients of ji, -
From this point on, let s; denote the coefficient of ¢; in the expression for pi,, ; in Lemma 7.5,
and § the arithmetic mean of the first r coefficients. Direct computation gives that

1 . or(r+1)
5= ZAJ-—ZAi+Zz—Zg+T—2yI\(n+1) ,
jeJ el i€l jeJ

which can be written in terms of the evaluation point sy, , using the formula of Corollary 7.4 as

_ r—1
§=—|Sw;;, tn— 5 .
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In this Proposition we study the case s,, , = 1/2. Hence,
2s=-2n+r—2.
We consider separately the three cases depending on the size of I. Recall that r is even.

Case 1: |I| < r/2. In this case |J| > r/2, and hence there is an index m € S,, such that m < |J]|
and r + 1 —m < |J|. Thus, the coefficients s, and s,41_p, are both in the first sum in the formula
for piy, ;, of Lemma 7.5. Their sum equals
Smt+ Sr41-m = Aj,, + >\jr+l—m = (Um + Jre1—m) + 7+ 1.
By (7.1) this sum should be equal to 25 = —2n + r — 2 which gives the condition
)\Jm + )\j'r+17m + 2n + 3 = jm + j”"i’l*m’

which is never satisfied since the left hand side is at least 2n + 3, while the right hand side is not
greater than 2n.

Case 2: |I| > r/2. In this case |J| < r/2. Hence, for | = 1,2,...,|J]| the coefficient s; is in the
first, and the coefficient s, 1; in the second sum of the formula for s, , of Lemma 7.5. Their
sum equals
sit st = (N =g+ =N+ m+1—d)+ (n—r+1))
= — [()‘iz —)\jl) + (71 —’il)] —2n+r—1.
By (7.1), this sum should be equal to 25 = —2n + r — 2, which gives
(/\il - )‘jz) + (i — i) = 1.
Recall that i; # j;, and Ay > A2 > ... > A\, > 0. Hence, if ¢ > j;, then \;; — \;, < 0, and the
condition is not satisfied since the left hand side is negative. If 4; < j;, then A\;; — Aj, > 0, and
the left hand side is strictly positive. It equals 1 if and only if j; = 4 + 1 and \;, = Aj, for all
l=1,2,...,n—|I|. The subsets I and J are of the form
I = {ivyio, iy iy g1y -8 s
J = {i+Lia+1,... iy +1}.
We denote by
Iena = {ig+1 - 500 }
the set containing the last |I| — |J| elements of I. In this case Ienq is not empty. Finally, consider
the condition s,, , = 1/2. By Corollary 7.4, it can be written as

D= N=r/24) i) (=) (n+1).

iel jed el  jeJ

Since A\;;, = A, for I =1,...,|J|, the left hand side of this condition equals
> xizo.
ie[end

Using ji =4+ 1for l=1,...,|J|, and |I| + |J| = r, the right hand side becomes
— (=T (n+1/2)+ .
ie[end
Since |Igng| = |I]| — |J| > 0, the right hand side is not greater than
= (I =) (n+1/2) + (U] = [J)n = = (]| = |J]) /2 < 0.

This shows that the condition sy, , = 1/2 and (6.4) are never simultaneously satisfied in this case.
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Case 3: |I| = r/2. The first part of the argument in Case 2 applies to obtain j; = i; + 1 and
Xiy = Aj, for 1 =1,2,...,7/2, and the disjoint subsets I and J are of the form

I = {irio, .. yippa}s

J = {in+Lis+1,... i, +1}.

Their disjointness implies that neither of them contains a pair of consecutive integers. All the wr y
corresponding to such a pair of subsets (I, .J) satisfies the condition (6.4) and s, , = 1/2.

It remains to compute .. from the condition (6.5) for wy ; as above. The right hand side of
(6.5) equals
ﬁPo) ’

where the first term is given in Lemma 7.3, while the second one is just s., ;pp, = 1/2_; €.
Hence, using the form of I and J, \; = A\iy1, and |I| = |J| = r/2 gives the expression for x,. . O

—wrg (A4 ppy) — (—wI,J (A+pp,)

Corollary 7.7. In the notation as in Proposition 7.6, assume that, for wr; € W such that
Swy ;= 1/2, there exists a non-trivial cohomology class of type (mw,wr y). Then, the length of wr, ;

equals
r(4n — 3r +2)

4
Recall that r is necessarily even. In particular, for r = n, we have g(wlo,Sn\I()) = "("4+2).

g('lULJ) =

Proof. By Proposition 7.6, the existence of a non-trivial cohomology class of type (m, wr s) implies
the form of the subsets I and J. Thus, using the formula for the length of wr ; obtained in Lemma
7.2, gives the expression for £(wr,s). Note that for j; = 4, + 1, where [ = 1,2,...,7/2, the term
mr,7(j) in the formula equals my j(j;) = 4 — 2l + 1, because there are [ elements of I and | — 1
elements of J which are smaller than j;. O

Remark 7.8. Observe that the condition of Corollary 7.4 on w; ; € W and the highest weight
A, which gives sy, , = 1/2 could be in general satisfied for a large number of wy ;. For example,
in the case P = P, and the trivial coefficient system, the condition s, s =1 /2 is equivalent to

Yier(n+1—i) = %. Since assignment i — n+1—i defines a permutation of \S,,, this condition

in fact shows that the number of w; g \; € Whe with Swy gy = 1/2 for the trivial coefficient

system is the same as the number of ways to write U2 a5 the sum of different positive integers

not greater than n. !

However, as proved in Proposition 7.6, the necessary condition for the existence of a non—trivial
cohomology class of type (7, w175n\1) singles out at most one among wy g, \7 such that Swr g = 1/2.
Even more, it implies a condition on the highest weight A and the infinitesimal character of the
infinite component 7., of 7.

Proposition 7.9. Let E be of highest weight A = ;" \je; as above. Let wr,j € WPEr be such
that 0 < sy, , < 1/2. Then, for any cuspidal automorphic representation @ of L,(A), a non—trivial
cohomology class in H*(l,, Kg N L, (R); Vz @ H*(n,, E)) of type (7w, wr y) does not exist.

Proof. Consider first the case » = 1. Then, either I = {i} is a singleton and J = 0, or I = () and
J ={j} is a singleton. For the two possibilities, using the formula of Corollary 7.4, we compute
N+ n+1—49)>1, for I = {i} and J =0,
o = U (A4 (n+1—75) < -1, for I =0 and J={j}.
This shows that for » = 1 the evaluation point s,, , is never inside the interval 0 < s,, , < 1/2,
and the claim trivially holds.
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A similar argument shows that for r > 1, if either [I| =r and J =0, or [ = () and |J| = r, then
the formula for s, , of Corollary 7.4 gives

L L e hi+ e n+1=40)] > 1, for |I] =7 and J = 0,
wro =\ -1 [zjej N+ Y ey (n 1 —j)} <1, for T=0 and |J|=r

Thus, the claim again trivially holds.

It remains to consider for » > 1 the case when both I and J are not empty. Then, in the
expression for P, , in Lemma 7.5 the coefficient s; of e; is in the first, while s, of e, is in the
second sum. In the notation of the proof of Proposition 7.9, the existence of the cohomology class
of type (m,wyr ) would imply that

$1+ s =25=—2sy, , —2n+r—1
As in Case 2 of the proof of Proposition 7.6 this condition is equivalent to
(A = Ajn) + (1 — 1) = 250 5,
which is impossible for 0 < sy, , < 1/2 since the left hand side is a non-zero integer. O

Remark 7.10. The condition of Corollary 7.4 allows the evaluation point s, , to be less than 1/2,
and moreover, there are several wy j € WEr giving every such point. However, as in Remark 7.8,
the necessary condition for the existence of a non-trivial cohomology class of type (7,wy, ) rules
out all those possibilities in the cohomological context. See also Remark 5.9.

Proposition 7.11. Let E be of highest weight A = > ' Ne;, as above. Consider the case of

the parabolic subgroup P, with v < n. Let wrj € WP be such that Sw;; = L. Let t 2 171®0

be a cuspidal automorphic representation of Lp(A) =2 GL,(A) X Spp—(A), where T and o are

cuspidal automorphic representations of GL,(A) and Spy,—,(A), respectively. Then, if a non—trivial

cohomology class in H* (I, Kg N L. (R); Vz ® H*(n,., E)) of type (w,wy ;) exists the following holds:
e wr,j corresponds to a pair of disjoint subsets (I,.J) of the form

[ {i1, 92, iy 0}, if T is even,
o {il,’iQ,...,iLr/Qj,n}, ifr 18 Odd,
J = {ir+eia e+ €l
where ¢ € {1,2}, and |x] is “the floor” of x, i.e. the greatest integer not strictly greater
than zx,
o the coefficients of A satisfy Nij = Nij4e, +2 — €1, forl =1,...,[r/2], and in the case of r
odd A, =0,
o the infinitesimal character xr.. of the infinite component mo of ™ equals
lr/2]
Xrw = 3 [— (N + 1 =) er + (N, +n — 1) er—l—l—l]
=1
n—r

- Z My +1+1—ky) erqr,
r=1

Proof. The proof goes along the same lines as the proof of Proposition 7.6. Since sy, , = 1, we
have

25 =-2n+r—3,
and the condition (6.4) is equivalent to

(7.2) Si+ Spy1-1=—2n+1r — 3,
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forl=1,...,r.
The same argument as in Case 1 in Proposition 7.6 shows that if |I| < r/2, the condition (6.4)
is never satisfied. Hence, let |I| > r/2. As in Case 2 in Proposition 7.6, we obtain

Ny =)+ (i —i) =2

for I = 1,...,|J|. If j; < 4, then A;; < Aj;, and the left hand side is negative. If j; > 4;, then
Ai; > Aj,, and both brackets in the above equation are non-negative integers. Hence, the solutions
satisfy ji — i = ¢ € {1,2}, and A\, — \j, =2 — €.

Write
I = {il,...,i|J|,i|J|+1,...,im},
J = {i1+61,...,i|J| +6|J|},
and let Iena = {4 7|41, - 4|7}~ Inserting sy, ;, = 1, [lena| = [I| = |J], [I| + |J| = r, and taking into
account the relationship between 4; and ji, and \;; and \;, for I = 1,...,].J|, the formula for s, ,
of Corollary 7.4 gives
> i=Ienal nt D> A
iEIend Zlelend

Since \; > 0, and i € I4,q are distinct and not greater than n, this equation has a solution only if
either I,q is empty (thus, r is even), or Isng = {n} and A, = 0 (thus, r is odd). This gives the
first two conditions of the proposition.

The remaining condition on the infinitesimal character xr. of 7T follows from (6.5) using the
description of wy ; and A. O

8. RESIDUAL EISENSTEIN COHOMOLOGY

Let ¢ be the associate class of a cuspidal automorphic representation 7 of L,(A). There is a two
step filtration of the space Ag (p,} ¢ by the subspace Lg (p1 4 spanned by the square integrable

automorphic forms. Let [,??}{ f 4 be the subspace of L (p,1 4 spanned by the residues at so > 1/2
of the Eisenstein series attached to the m—isotypic subspace of the space of cusp forms on L,(A).

The following lemma shows that the two spaces give the same contribution to cohomology.

Lemma 8.1. Let E be an irreducible representation of Sp,(C). Let {P,} be the associate class of
the standard parabolic Q—subgroup, corresponding to the subset A\ {a,} of the set of simple roots,
with the Levi factor L,. Let ¢ be the associate class of a cuspidal automorphic representation w of
L.(A). Then, the map

H (spy. Kii L7y 6 ©¢ B) = H' (30, Kz; L gp,.0 O F)

induced on the cohomology by the inclusion £g)il)g¢ C Lg{p.},6 S an isomorphism.

Proof. The injectivity of the map in the cohomology is a consequence of the fact that E??}DT/ f & is
a direct summand in the space of square integrable automorphic forms Lg (p,y,4. The surjectivity
follows from Proposition 7.9. Those propositions show that even if the Eisenstein series, attached
to a cuspidal automorphic representation 7 of L,(A), had a pole at 0 < sp < 1/2, its contribution
to the cohomology is trivial because, for w € Wr such that s, = so, a non-trivial cohomology
class in H*(l,, Kg N L, (R); V. ® H*(n,, E)) of type (7, w) does not exist. O
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8.1. The case P = PF,.

Theorem 8.2. Let E be the irreducible representation of Spn(C) of highest weight A =" Axex,
where all N\, are integers and A\; > g > ... > A\, > 0. Let {P,} be the associate class of the standard
mazximal proper parabolic Q—subgroup P, of Spy, corresponding to the subset A\ {a,} of the set of
stmple roots, and with the Levi decomposition P, = L, N,,, where the Levi factor L, =2 GL,,. Let ¢
be the associate class of a cuspidal automorphic representation T of L, (A).

The cohomology space

H*(sp,,, Kr; LE (P,},6 @ E)
18 trivial is trivial except possibly in the case where the following conditions are satisfied:

(1) a cuspidal automorphic representation T is selfdual, L(s,7,A?) has a pole at s = 1, and
L(1/2,7) #0,
(2) the Q-rank n of the algebraic group Sp,/Q is even,
(3) the highest weight A of the irreducible representation E satisfies Aoj_1 = Ay for all | =
1,2,...,n/2,
(4) the infinite component T of T has the infinitesimal character
n/2

Xrw =D [ —(+n+3/2=20))e + (u+ (n+3/2— 25))en+17z]7
=1

where p; = Agj—1 = Aoy, i.€. Too 1S a tempered representation fully induced from n/2 unitary
discrete series representations of GLo(R) having the lowest O(2)~types 2y + 2n — 4l +4 for
l=1,...,n/2.

[5021/2

E{Pn},0
H*(sp,,, Kg; £E7{pn}’¢®@E) is trivial as well. By Corollary 5.10, condition (1) assures that the space

C??}J ? & is non—trivial. Moreover, it is spanned by the residues of the Eisenstein series E}Zf "(f, As)

at sp = 1/2. Hence, in order to have a non—trivial cohomology class in H*(sp,,, Kg; /329%;,1 i »®cC E),

) of
WI,8p\I
type (7, wy, S\ 1), such that the corresponding evaluation point for the Eisenstein series is s,, LS\ =
1/2. By Proposition 7.6, this gives the remaining three conditions, and only the classes of type
(7, wry,5,\1p) With Io = {1,3,...,n — 1} may exist. O

Proof. By Lemma 8.1, if the cohomology space H*(sp,,, Kg; ®c E) is trivial, then the space

it is necessary to have a non-trivial cohomology class in H*(l,,, Kg N L,(Q); V- ® F),

Theorem 8.3. Suppose that the necessary conditions for a non—trivial cohomology class in
H*(sp,,, Kr; Lg (p,},¢ ®c E)

given in Theorem 8.2 are satisfied with E = C the trivial representation. In particular, n is even.
Then the map

H%(sp,,, Kr; Lo gp,y,e) — HU(sp,, Kr; Ac (Po),6)

1s the trivial map for q > %7 and an epimorphism for q < w In other words, the
cohomology classes coming from Lg (p,y,s are separated from the ones coming from Ac (p,1.¢/
Lc(p.y,6 by the degree. Note that @ = %dim Xsp,(r) @5 half of the dimension of the space

XSpn(R) = Spn(R)/KR

Proof. We have to analyze in which cohomological degree the spaces Lc (p,1.4 and Ac (p,1.6/
Lc (p,},» have a non-vanishing relative Lie algebra cohomology. Let ¢ be the associate class of a
cuspidal automorphic representation 7 of L, (A) subject to the necessary conditions of Theorem 8.2.
In view of the actual construction of elements in A¢ ¢p,},4 and L¢ (p,1,¢ as described in Section 5,
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we have to determine the range in which the following relative Lie algebra cohomology spaces are
non-trivial:

* Spn (R .
(8.1) H (spn,KR;IndPi(ﬂé)) (Tooe<HP"( ),Asw>>) 7
for w € W such that there is a non-trivial cohomology class of type (7,w), and respectively
(8.2) H* (5pm Ko Tnd 2k, (Tooe<Hpn(~>,Ll/2>>> _

In the latter case we have a class of type (7,w), with w € WP and A\, = A1y2, 1.e. sy = 1/2, and

thus ¢(w) = W by Corollary 7.4. Following Proposition 7.6, this element w € W is uniquely
determined, and it is the element wy, g\, corresponding to the subset Iy = {1,3,...,n—1} in the
notation of Lemma 7.1.

In our computation we use the following notation: suppose L is a Lie group with finitely many
connected components, and let K, be a maximal compact subgroup of L. Suppose the Lie algebra
[ of L is reductive. Write

2¢(L) := dim L — dim K,
for the dimension of the corresponding space X, = L/K, of maximal compact subgroups of L. Set
lo(L) :==1k(L) — rk(Kp), and write
1

(L) = 5 (2a(L) ~ fo(L)) = 5 (dim X~ o(L)).

The rank and the dimension of a reductive Lie algebra are congruent modulo 2. Thus, go(L) is an
integer. The following result [24, Proposition 4.4] is decisive: let (§, Hs) be an irreducible unitary
tempered representation of L, and let (u, F') be a finite-dimensional representation of L. Then,
HI(L Ky Hy © F) = (0) if j  [ao(L), ao(L) + fo(L).

In our case at hand, by [4, Section III, 3.3], the cohomology (8.1) is the tensor product of

H* (1, K N Lo (R); Vo, ® Flu,,)

by A*ap, ¢, up to a shift in degrees by ¢(w). Thus, since 7o is a unitary tempered representation
of L,(R) =2 GL,(R), the cohomology space (8.1) vanishes in degrees outside of

(8.3) [90(GLn(R)) + £(w), qo(GLn(R)) + £o(GLn(R)) + £(w) + 1].

In the case L = GL,(R), by [32, Section 3], we have 2¢(L) = n? —1— 221 f(L) = n—1—|n/2],
and thus, for n even, qo(L) = n?/4. By Proposition 7.9, for w € W such that 0 < s, < 1/2, a
cohomology class of type (7, w) is trivial. In view of Corollary 7.4, since the length ¢(w) increases as

Sy increases, the minimal possible length ¢(w) is obtained for s,, = 1/2, and it equals £(w) = %.

Hence, we obtain

n(n +2)

40(GLn(R)) + £(w) = inz 4 ol

1.
= 5 dlm XSpn(]R)'

as a lower bound in (8.3).

By the duality result [4, Section V, 1.5] regarding the relation between the cohomology (8.1) with
sw = 1/2, and the analogue (8.2), we obtain as the upper bound for the range outside of which the
cohomology (8.2) vanishes the value

1 .
2q(Spn(R)) — (qo(GLn(R)) + L(wyy 5,010)) = 5 dim Xy, (&).

Since the actual contribution of a class in (8.2), and (8.1) as well, is given by the image of

H*(l, K N Lp(R); Too ® F“wzo,sn\zo) ® A%p, ¢, the residual Eisenstein classes may occur only
1,2

in degrees j with j < %dimX Spn®) — 1. The lowest possible degree for these classes is 5n?,
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i.e. HY(sp,,, Kr; L (p,1,0) = (0) for j & [3n2,in(n+1) — 1]. Since the lowest possible degree for
a cohomology class in H*(sp,,, Kg; Ac g pr}7¢) given by a regular value of an Eisenstein series in the
given situation is qo(GLn(R)) + (wy, 5,\10) = % dim X Spn(r) Our claim follows. O
Remark 8.4. Write

~ GLn(R)
Too = Iﬂdp(2 ,,,, 2)(R)(51 ®...Q 571/2)7

where 0; are unitary discrete series representations of GLy(R) as in Theorem 8.2. Then the

Archimedean component of the space ﬁ??},j i & which is by Corollary 5.10 spanned by the residues

of the Eisenstein series attached to 7 at the pole sop = 1/2, is isomorphic to the Langlands quotient
of the standard module

Indif;(R) (1] det V2 @ ... @8, 5| det |1/2).
This follows from Proposition 5.4.

8.2. The case P = P, with r < n. Now we turn our attention to the associate class {P,},
r < n. In this case, for simplicity, we consider only the trivial coefficient system F = C, and the
corresponding cohomology spaces H*(sp,,, Kr; Lc (p,},6,v,) and H*(sp,,, Kr; Ac (p,},6)- Here Vi
is the fixed realization of a cuspidal automorphic representation 7 of L,.(A) in the space of cusp
forms on L, (A), which is globally 1)—generic (for a fixed non-trivial additive character ¢ of Q\A),
i.e. there is a cusp form in V; whose ¥—Fourier coefficient is non—trivial. This assumption on V; is
required for the computation of the poles of the Eisenstein series in Section 5.

Theorem 8.5. Let E = C be the trivial representation of Sp,(C). Let v < n, and let {P,} be
the associate class of the standard mazximal proper parabolic Q—subgroup P, of Spy, corresponding
to the subset A\ {«a,} of the set of simple roots, and with the Levi decomposition P, = L,N,,
where the Levi factor L, = GL, X Spp—r. Let ¢ be the associate class of a cuspidal automorphic
representation T = 7 ® o of L,.(A) such that a fized realization Vi of w in the space of cusp forms
on L,(A) is globally 1—generic (with respect to a fized non—trivial additive character b of A/Q).
Let
/2] n—r
oo = Z (—z100 + 1100 411) — Z Y er gy

=1 =1
be the infinitesimal character of the Archimedean component oo of m, where | x| denotes the greatest
integer not greater than x. Then, the cohomology space

H*(sp,,, Kr; Le (P, },6,Vs )
is trivial except possibly in the case where one of the following two sets of conditions is satisfied:
(A) (al) a cuspidal automorphic representation T is selfdual, L(s, T, A?) has a pole at s = 1, and
L(1/2,7 xII;) # 0 for all I1; appearing in the global functorial lift of o,
(a2) r is even,
(a3) the coefficients x; of the infinitesimal character xr., belong to the set
2 € {3/2,5/2,...,n—1/2},

and |z, — x,| # 0,1 for 1y # o,
(ad) the coefficients yy of the infinitesimal character x ., are uniquely determined (up to
sign) by the coefficients x; through the formula

yr=n+1—Fky,
forl'! =1,....,n—r, where
ky € Sy \{n—x;+1/2;n—a;+3/2:1=1,...,7/2}.
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(B) (bl) a cuspidal automorphic representation T is isomorphic to one of Il; appearing in the
global functorial lift of o (this implies that T is selfdual, and r < 2";1),
(b2) the coefficients x; of the infinitesimal character x ., belong to the set

. {2,3,...,n}, ifr is even,
! {3,4,...,n}, ifris odd,

and |z, — x,| # 0,2 for 1y # la,
(b3) the coefficients yy of the infinitesimal character xr., are uniquely determined (up to
sign) by the coefficients x; through the formula

Y ——n—l—l—kl/
for I'=1,...,n—r, where
) I )

b Sp\{n—x,n—a;+2:1=1,...,r/2}, if T 1s even,
v Sp\{n,n—xpn—x;+2:1=1,...,(r/2|}, ifr is odd.

Proof. As in the case r = n, applying Lemma 8.1, the conditions (al) and (bl) assure that the
space E?ﬁ,ﬁ f SV is non—trivial (see Corollary 5.10). Already these two conditions are never both
50>1/2
E{P-},¢,Vx
Eisenstein series Ef,f"(f, As) attached to the realization Vi of m at the pole so = 1/2 if (al) is
satisfied, and at sop = 1 if (bl) is satisfied.

Again, as in the case r = n, in order to have a non-trivial cohomology class in H*(sp,,, Kr; L, (P },6®C
E), it is necessary to have a non-trivial cohomology class in H*(I,., Kg N L,.(R); V., ® H*(n,, E))
of type (m,wy, s), with wr,; € W such that s, , = 1/2 for (A), and s, , = 1 for (B).

The remaining conditions in (A) follow from Proposition 7.6 with £ = C, i.e. \; = 0 for all
[ =1,...,n. Necessarily r is even which is condition (a2). Furthermore, the formula for .
in that proposition shows that the subset I of \S,, defining wr ; consists of all ¢ € S, which are
solutions of one of the equations

satisfied (see Remark 5.8). Moreover, the space L is spanned by the residues of the

n+1/2—i=a,

for I = 1,...,r/2. Every such equation has at most one solution i € S,,. Hence, in order to have
subset I containing r/2 elements, the coefficients x; are necessarily distinct and every equation has
a solution 7 € S,,. In particular, z; is in 1/2+Z, and 1/2 < 2; < n — 1/2. However, the subset J of
Sy, defining wy s is of the form J = {i +1:4 € I} and disjoint with I. Thus, the subset I should
not contain neither n, nor a pair of consecutive integers. The former condition gives a lower bound
x; > 3/2. The latter shows that if [; # I, then

xll - wlz = 2.2 - ilv

where i and iy are solutions of the equations for z;, and x;,, and thus |z;;, — z;,| # 1, and (a3)
is proved. Since (a3) also defines the subsets I and J, (a4) follows from the formula for .. in
Proposition 7.6.

The remaining conditions in (B) are obtained in a similar way using Proposition 7.11 with £ = C,
ie. \y=0forl=1,...,n. For E = C in Proposition 7.11, we have ¢ =2 forall [ = 1,...,|r/2].
In this case the equations defining I are

n—1i=x,

forl=1,...,[r/2]. If r is odd, besides the solutions of those equations, I contains also n. Now, we
have z; € Z, all x; are distinct, and 0 < 2; < n — 1. By Proposition 7.11, J ={i+2:i € I\ {n}}.
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Thus, the lower bound for x; is obtained from i <n — 2 for ¢ € I if r is even, and from i < n — 3
for i € I'\ {n} if r is odd. The condition on the difference again follows from

xll - xlg = i2 - Z.l
for Iy # la, where i; and 72 are solutions of the above equations for x;, and z;,. Thus, (b2) is
proved, and the sets I and J are defined. Again, (b3) follows directly from Proposition 7.11. [

Remark 8.6. Theorem 8.5 is stated in such a way that given a globally ¢—generic cuspidal au-
tomorphic representation m of L,(A) satisfying either (al) or (bl), one can effectively check the
conditions on the coefficients of the infinitesimal character x . of the Archimedean component 7
of 7.

Remark 8.7. The relative Lie algebra cohomology H*(l,, Kg N L,(R); Vz ® F,,) (with 7o =
Too ® Too the Archimedean component of 7 22 7 ® o, and w € W, as above subject to the given
conditions), attached to the Levi factor L, = GL, x Sp,_,, 7 < n, obeys the Kiinneth rule [4,
Section 1.3]. Thus (non)-vanishing results for this cohomology rely on the corresponding results

for the two factors. Since T is a unitary tempered representation of GL,(R), the cohomology
H*(gl,, Kr NGL,(R); V,_ ® F) = (0) for

J & [a0(GLr(R)), qo(GLr(R)) + Lo(GLy(R))]
with

T ifrisodd,

and £o(GLy(R)) = r — 1 — [r/2] ([32, Section 3]). With regard to the other factor, one has a
vanishing result for the cuspidal cohomology H(sp,,_,, Kg N Spp—r(R); Vo, ® F') in degrees

j< Ry im {i(n—r)(n—rm)},

where {z} denotes the smallest integer larger or equal to the rational number z ([25, Section 7.2]).
The value «, is larger than i dim Xy, (r) but quite close to it. Following the line of argument as
given in the case P = P,, and using the “critical” values for {(w) = ¢(wr, s), one can determine a
range of degrees outside of which the Eisenstein cohomology classes cannot occur at all.

Remark 8.8. Write

0(GL,(R)) = { 311 if 7 is even,

o~ 9Pe,. 2 (]R)((S1 ®...®0,/2), if r is even,
Too — G(L* R)
Indj; ) )(51 Q...Q00)® X), if ris odd.

where ¢; are unitary discrete series of GLs(R) of lowest O(2)-type 2z; + 1, and x is a unitary
character of R*, as in Theorem 8.5. At infinity o, is the local component of a globally 1)—generic
cuspidal automorphic representation o, and hence a fully induced representation of the form
Spn—r(R)

P (r r4n>(R)
with 0] unitary discrete series representation of GLTQ (R), o4 a tempered representation of Sp,,() (R),
where rjy =n —1r — Zr;-, and 1/2 > x1 > 29 > ... > xy, > 0. Then, the Archimedean component
of the space spanned by the residues of the Eisenstein series attached to m at sp = 1/2 in case (A),
is isomorphic to the Langlands quotient of the standard module

0o = Ind (01| det "' @ ... ® 4, |det |"™ @ o)

,,,,,

Indlsjf”(R) , ,)(R)(51|det|1/2®...®5T/2|det|1/2®5i|det " ® ... @0 |det [ @ oy).

2,..., 2,7‘1 ,,,,, Tm

In the case (B), i.e. sop =1, the exponents 1/2 are just replaced by 1.



32

1]

NEVEN GRBAC AND JOACHIM SCHWERMER

REFERENCES

J. Arthur, An introduction to the trace formula, in: J. Arthur, D. Ellwood, R. Kottwitz (Eds.), Harmonic Anal-
ysis, the Trace Formula and Shimura Varieties, Clay Mathematics Proceedings 4, Amer. Math. Soc., Providence,
RI, 2005, pp. 1-263.

A. Borel, W. Casselman, L*-cohomology of locally symmetric manifolds of finite volume, Duke Math. J. 50
(1983), 625-647.

A. Borel, J.—P. Labesse, J. Schwermer, On the cuspidal cohomology of S—arithmetic groups of reductive groups
over number fields, Compositio Math. 102 (1996), 1-40.

A. Borel, N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups,
Ann. Math. Studies 94, Princeton University Press, Princeton, 1980.

J.W. Cogdell, H.H. Kim, II. Piatetski-Shapiro, F. Shahidi, Functoriality for the classical groups,
Publ. Math. Inst. Hautes Etudes Sci. 99 (2004), 163-233.

D. Flath, Decomposition of representations into tensor products, in: A. Borel, W. Casselman (Eds.), Automor-
phic Forms, Representations, and L—functions, Proc. Sympos. Pure Math. vol. 33, Part 1, Amer. Math. Soc.,
Providence, RI, 1979, pp. 179-183.

J. Franke, Harmonic analysis in weighted Lo—spaces, Ann. Sci. Ecole Norm. Sup. 31 (2) (1998), 181-279.

J. Franke, J. Schwermer, A decomposition of spaces of automorphic forms, and the Eisenstein cohomology of
arithmetic groups, Math. Ann. 311 (4) (1998), 765-790.

D. Ginzburg, S. Rallis, D. Soudry, Generic automorphic forms on SO(2n+1): functorial lift to G L2y, endoscopy
and base Change, Int. Math. Res. Not. 14 (2001), 729-764.

D. Goldberg, Reducibility of induced representations for Sp(2n) and SO(n), Amer. J. Math. 116 (1994), 1101
1151.

G. Harder, On the cohomology of SL(2,0), in: Lie Groups and Their Representations, Proc. Summer School
on Group Representations of the Bolyai Janos Math. Soc. (Budapest 1971), Hilger, London, 1975, pp. 139-150.
G. Harder, On the cohomology of discrete arithmetically defined groups, in: Discrete Subgroups of Lie Groups
and Applications to Moduli (Internat. Colloqg., Bombay, 1973), Oxford Univ. Press, Bombay, 1975, pp. 129-160.
G. Harder, Eisenstein cohomology of arithmetic groups. The case G L2, Invent. Math. 89 (1987), 37-118.

H. Jacquet, L.I. Piatetski-Shapiro, J.A. Shalika, Rankin—Selberg convolutions, Amer. J. Math. 105 (1983), 367—
464.

H. Jacquet, J. A. Shalika, On FEuler products and the classification of automorphic representations I,
Amer. J. Math. 103 (1981), 499-558.

H. Jacquet, J. A. Shalika, On FEuler products and the classification of automorphic representations II,
Amer. J. Math. 103 (1981), 777-815.

A.W. Knapp, E.M. Stein, Intertwining operators for semisimple groups II, Invent. Math. 60 (1980), 9-84.

B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.
R.P. Langlands, Euler Products, Yale Mathematical Monographs 1, Yale University Press, New Haven, 1971.
R.P. Langlands, On the Functional Equations Satisfied by Eisenstein Series, Lect. Notes in Maths. 544, Springer,
Berlin—Heidelberg—New York, 1976.

R.P. Langlands, letter to Armand Borel, October 25, 1972.

R.P. Langlands, On the classification of irreducible representations of real algebraic groups, in: P.J. Sally,
D. Vogan (Eds.), Representation Theory and Harmonic Analysis on Semisimple Lie Groups, Math. Surveys
Monogr. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170.

E. Lapid, G. Muié¢, M. Tadi¢, On the generic unitary dual of quasisplit classical groups, Internat. Math. Res. No-
tices 26 (2004), 1335-1354.

J.S. Li, J. Schwermer, On the Eisenstein cohomology of arithmetic groups, Duke Math. J. 123 (2004), 141-169.
J.S. Li, J. Schwermer, On the cuspidal cohomology of arithmetic groups, Amer. J. Math. 131 (2009), 1431-1464.
C. Moeglin, Formes automorphes de carré intégrable non cuspidales, Manuscripta Math. 127 (2008), 411-467.
C. Moeeglin, Holomorphie des opérateurs d’entrelacement normalisés a l’'aide des parameétres d’Arthur,
Canad. J. Math., to appear.

C. Moeeglin, J-L. Waldspurger, Décompostion spectrale et séries d’Eisenstein, Progress in Math. 113, Birkh&user,
Boston, Basel, Berlin, 1994.

LI. Piatetski-Shapiro, Multiplicity one theorems, in A. Borel, W. Casselman (Eds.), Automorphic Forms, Rep-
resentations, and L—functions, Proc. Symp. Pure Math. vol. 33, Part 1, Amer. Math. Soc., Providence, RI, 1979,
pp- 209-212.

J. Schwermer, Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen, Lect. Notes in Math. 988,
Springer, Berlin-Heidelberg-New York, 1983.



RESIDUAL COHOMOLOGY CLASSES FOR SYMPLECTIC GROUP 33

[31] J. Schwermer, On arithmetic quotients of the Siegel upper half space of dergree two, Compositio Math. 58 (1986),
233-258.

[32] J. Schwermer, Holomorphy of Eisenstein series at special points and cohomology of arithmetic subgroups of
SL,(Q), J. Reine Angew. Math. 364 (1986), 193—-220.

[33] J. Schwermer, Eisenstein series and cohomology of arithmetic groups: The generic case, Invent. Math. 116,
(1994), 481-511.

[34] J. Schwermer, On Euler products and residual Eisenstein cohomology classes for Siegel modular varieties, Forum
Math. 7 (1995), 1-28.

[35] F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), 973—-1007.

[36] F. Shahidi, On the Ramanujan conjecture and finiteness of poles for certain L—functions, Ann. of Math. 127
(1988), 547-584.

[37] F. Shahidi, A proof of Langlands’ conjecture on Plancherel measures; complementary series of p—adic groups,
Ann. of Math. 132 (1990), 273-330.

[38] J.A. Shalika, The multipilicity one theorem for Gl,,, Ann. of Maths. 100 (1974), 171-193.

[39] D. Soudry, On Langlands functoriality from classical groups to GL,, Astérisque 298 (2005), 335-390.

[40] M. Tadié¢, Structure arising from induction and Jacquet modules of representations of classical p—adic groups,
J. Algebra 177 (1995), 1-33.

[41] J. Tate, Fourier analysis in number fields and Hecke’s zeta—functions, Harvard Dissertation, 1950, in: J.W.S. Cas-
sels, A. Frohlich (Eds.), Algebraic Number Theory, Academic Press, London and New York, 1967, pp. 305-347

NEVEN GRBAC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF RIJEKA, OMLADINSKA 14, HR-51000 RIJEKA,
CROATIA
E-mail address: neven.grbac@math.uniri.hr

JOACHIM SCHWERMER, FACULTY OF MATHEMATICS, UNIVERSITY OF VIENNA, NORDBERGSTRASSE 15, A-1090
VIENNA, AUSTRIA, AND ERWIN SCHRODINGER INTERNATIONAL INSTITUTE FOR MATHEMATICAL PHYSICS, BOLTZ-
MANNGASSE 9, A-1090 VIENNA, AUSTRIA

E-mail address: Joachim.Schwermer@univie.ac.at



