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Abstract. The cohomology of an arithmetic congruence subgroup of a connected reductive al-
gebraic group defined over a number field is captured in the automorphic cohomology of that
group. The residual Eisenstein cohomology is by definition the part of the automorphic coho-
mology represented by square-integrable residues of Eisenstein series. The existence of residual
Eisenstein cohomology classes depends on a subtle combination of geometric conditions (coming
from cohomological reasons) and arithmetic conditions in terms of analytic properties of automor-
phic L-functions (coming from the study of poles of Eisenstein series). Hence, there are almost no
unconditional results in the literature regarding the very existence of non-trivial residual Eisenstein
cohomology classes. In this paper, we show the existence of certain non-trivial residual cohomology
classes in the case of the split symplectic, and odd and even special orthogonal groups of rank two,
as well as the exceptional group of type G2, defined over a totally real number field. The construc-
tion of cuspidal automorphic representations of GL2 with prescribed local and global properties is
decisive in this context.

1. Introduction

1.1. Prelude - The residual spectrum through a cohomological lens. Let G be a connected
algebraic group defined over an algebraic number field k. For simplicity of exposition, we assume
in this subsection that G is semi-simple. Let G∞ be the group of real points of the algebraic Q-
group Resk/QG obtained from G by restriction of scalars. Let Γ ⊂ G(k) be a torsion-free arithmetic

subgroup of G, viewed as a discrete subgroup of the real Lie group G∞ via the diagonal embedding.1

Let L2(Γ\G∞) be the space of square-integrable functions (modulo the centre) on Γ\G∞, viewed
as usual as a unitary G∞-module via right-translations. The theory of Eisenstein series plays a
fundamental role in the description of the spectral decomposition of L2(Γ\G∞). This space is
the direct sum of the discrete spectrum L2

dis(Γ\G∞), i.e. the span of the irreducible closed G∞-
submodules of L2(Γ\G∞), and the continuous spectrum L2

ct(Γ\G∞). The former space contains
as a G∞-invariant subspace the space L2

cusp(Γ\G∞) of cuspidal automorphic forms, the so called

cuspidal spectrum. The orthogonal complement in L2
dis(Γ\G∞) is the residual spectrum, to be

denoted L2
res(Γ\G∞), thus, there is a direct sum decomposition

(1.1) L2
dis(Γ\G∞) = L2

cusp(Γ\G∞)⊕ L2
res(Γ\G∞).

The discrete spectrum is a countable Hilbert direct sum of irreducible G∞-modules with finite mul-
tiplicities. By the work of Langlands each of the constituents of the residual spectrum L2

res(Γ\G∞)

2010 Mathematics Subject Classification. Primary 11F75; Secondary 11F67, 11F70, 22E40, 22E55.
1The group G∞ is isomorphic to the product of the Lie groups Gv = Gιv (kv) where, given an archimedean place

v ∈ V∞ of k, ιv : k → kv denotes the corresponding embedding of k into the completion with respect to v.

1



2 NEVEN GRBAC AND JOACHIM SCHWERMER

can be structurally described in terms of residues of Eisenstein series attached to irreducible repre-
sentations occuring in the discrete spectra of the Levi components of proper parabolic k-subgroups
of G.

Given a rational finite-dimensional representation (η,E) of G∞ our object of concern is the
cohomology of Γ with values in E, to be given in terms of relative Lie algebra cohomology as

H∗(Γ, E) = H∗(g∞,K∞;C∞(Γ\G∞)⊗C E)

where C∞(Γ\G∞) denotes the space of C∞-functions on Γ\G∞.2 This cohomology space contains
as a natural subspace the so-called square integrable cohomology H∗

(sq)(Γ, E) to be defined as the

image of the homomorphism

(1.2) jdis : H
∗(g∞,K∞;L2,∞

dis (Γ\G∞)⊗ E) −→ H∗(g∞,K∞;C∞(Γ\G∞)⊗ E)

induced in cohomology by the natural inclusion of the space of C∞-vectors in the discrete spec-
trum of Γ\G∞ into C∞(Γ\G∞). In general, the homomorphism jdis is not injective whereas the
homomorphism induced by the inclusion of the space of C∞-vectors in the cuspidal spectrum into
C∞(Γ\G∞) is injective [see Section 3]; its image is called the cuspidal cohomology of Γ.

We are interested in the contribution of the residual spectrum of Γ\G∞ to the cohomology groups
H∗

(sq)(Γ, E) ⊂ H∗(Γ, E), that is, we aim at

– constructing non-trivial elements in L2
res(Γ\G∞) via residues of Eisenstein series and, by

using these,
– constructing non-trivial cohomology classes in H∗(g∞,K∞, L

2,∞
res (Γ\G∞)⊗ E), and finally

– showing that the classes so constructed are carried over to non-trivial classes under the map

jres : H
∗(g∞,K∞;L2,∞

res (Γ\G∞)⊗ E) −→ H∗(g∞,K∞;C∞(Γ\G∞)⊗ E)

whose image is contained in the square integrable cohomology H∗
(sq)(Γ, E).

The general specification of the residual spectrum via residues of Eisenstein series, which in turn
depends in a recursive way on the description of the cuspidal spectra of groups of lower rank, is
dealt with in [42] and in the context of adele groups in [48]. Besides the work [47] on the detailed
description of the residual spectrum for GLn, there are only complete results for the groups G2

by Žampera [71] resp. Kim [33], the symplectic group Sp2 by Kim [35] resp. Konno [37] and the
special orthogonal group SO5 by Kim [34]. However, these latter results account which residues of
Eisenstein series can possibly occur in the residual spectrum, depending essentially on the analytic
properties of certain Euler products attached to the cuspidal automorphic forms which are used
to exhibit the Eisenstein series in question. Thus, our main focus is on the explicit construction
of residues of suitable Eisenstein series subject to the condition that these residues give rise to
non-trivial classes in H∗(g∞,K∞;L2,∞

res (Γ\G∞) ⊗ E). The quest for residues of Eisenstein series
which are cohomologically relevant puts additional constraints on the cuspidal data used for the
Eisenstein series involved. Our main results concern constructions of such non-trivial classes in
the cases of the split k-groups Sp2/k, SO5/k, and SO4/k of k-rank two and the exceptional group
G2/k, k a totally real number field. These results rely essentially on various explicit constructions
of cuspidal automorphic representations of GL2/k with prescribed local and global properties, the
latter ones expressed in terms of a specific automorphic L-function.

2For a differentiable G∞-module F we usually put H∗(g∞,K∞, F ) = H∗(g∞,K∞, FK∞) where FK∞ denotes the
space of K∞-finite vectors in F , K∞ a maximal compact subgroup in G∞.
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This work has to be carried through in the framework of adele groups. Thus, in the next
subsection, we set up the framework and describe our results in a more precise way.

1.2. Adele groups and automorphic cohomology. The cohomology of an arithmetic subgroup
Γ of a connected reductive algebraic group G defined over an algebraic number field k can be inter-
preted in terms of the automorphic spectrum of Γ. There is a sum decomposition of the cohomology
into the cuspidal cohomology (i.e. classes represented by cuspidal automorphic forms) and the so-
called Eisenstein cohomology constructed as the span of appropriate residues or derivatives of
Eisenstein series. These are attached to cuspidal automorphic forms π on the Levi components of
proper parabolic k-subgroups of G. Taking into account the cuspidal support of each of these Eisen-
stein series results in an even finer decomposition of the Eisenstein cohomology. More precisely [16,
Theorem 1.4 resp. 2.3], the automorphic cohomologyH∗(G,E) with a coefficient system originating
in an irreducible finite-dimensional algebraic representation of G has a direct sum decomposition3

(1.3) H∗(G,E) =
⊕

{P}∈C

⊕
ϕ∈ΦE,{P}

H∗(mG,K∞;AE,{P},ϕ ⊗C E)

where C denotes the set of classes of associate parabolic k-subgroups of G, and the second sum
ranges over the set ΦE,{P} of classes of associate irreducible cuspidal automorphic representations
of the Levi components of elements of {P}. The summand that is indexed by the full group {G}
accounts for the cuspidal cohomology of G with coefficients in E, to be denoted H∗

cusp(G,E). The
Eisenstein cohomology H∗

Eis(G,E) ranging over the summands indexed by {P} ∈ C, {P} ̸= {G}
exhibits a natural complement to the cuspidal cohomology.

The square integrable cohomology H∗
(sq)(G,E) is a natural subspace of H∗(G,E). Since cuspidal

automorphic forms are all square-integrable, we have for the summand indexed by {P} = {G} that
H∗

cusp(G,E) = H∗
(sq)(mG,K∞;AE,{G}⊗E). The remaining part of the square-integrable cohomology

is inside the Eisenstein cohomology, and we may write

H∗
Eis,(sq)(G,E) =

⊕
{P}∈C

{P}≠{G}

⊕
ϕ∈ΦE,{P}

H∗
(sq)(mG,K∞;AE,{P},ϕ ⊗ E),

with LE,{P},ϕ just being the (possibly trivial) subspace of square-integrable forms in AE,{P},ϕ,
the summands on the right-hand side are the images of the map induced in cohomology by the
inclusions LE,{P},ϕ ↪→ AE,{P},ϕ.

1.3. Residual Eisenstein cohomology classes. Our goal in this paper is, in the case of a
given group G of low k-rank, to carry through a construction of non-trivial cohomology classes
in H∗

(sq)(G,E) which are represented by residues of Eisenstein series whose cuspidal support is a

class of maximal proper parabolic k-subgroups {P} of G. Thereby, we exhibit explicit examples of
non-trivial classes in some of the summands H∗

(sq)(mG,K∞;AE,{P},ϕ ⊗ E) in H∗
(sq)(G,E). Given a

totally real algebraic number field k the results obtained concern the split classical k-groups Sp2/k,
SO5/k, and SO4/k of k-rank two and the exceptional group G2/k.

As a result of previous work [23], [24], [56], given a class {P} of associate maximal parabolic k-
subgroups ofG, one can describe in detail which types (in the sense of [53]) of Eisenstein cohomology

3We refer to Section 3 for details and unexplained notation.
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classes occur in H∗(mG,K∞;AE,{P},ϕ ⊗C E) and how their actual construction is related to the
analytic properties of certain Euler products (or automorphic L-functions) attached to the cuspidal
automorphic representations π one starts with. Furthermore, one can determine in which way
residues of the Eisenstein series in question may possibly give rise to non–trivial classes in the
cohomology of Γ. The very existence of these residual Eisenstein cohomology classes is subject to
a quite restrictive set of conditions, a subtle combination of arithmetic and geometric conditions.
The former assure that the Eisenstein series in question has a pole, and the latter are the necessary
conditions for the cohomology class so obtained to be non–vanishing. We refer, for example, to
the results concerning the symplectic group of k-rank n in [23]. In particular, a non-vanishing
condition on the central value of a certain Euler product attached to π plays an important role in
this discussion. These L-functions naturally appear in the constant terms of the Eisenstein series
under consideration.

In view of this general situation there are only very few scattered results concerning the actual
existence of residual Eisenstein cohomology classes, e.g. [49], [15], the other ones are all conditional,
subject to conditions on the (non)-vanishing of an automorphic L-function or the existence of a
residue of an Eisenstein series, see [23], [26], [51]. The only case in which the existence of non-trivial
residues of Eisenstein series is unconditional, is the case of the general linear group [47] and its
inner forms [1], [2]. In the case of GLn, the actual existence of non-trivial residual cohomology
classes supported in a maximal parabolic subgroup was treated in [16], see also [28]. In the case
of the inner form GL2(D), D a quaternion division algebra, of GL4/k, the existence of residual
cohomology classes was studied in [25], and for k = Q in [27].

Our construction of non-trivial residual Eisenstein cohomology classes for the groups G/k, k a
totally real number field, we deal with relies on three different results regarding the actual existence
of cuspidal automorphic representations π = ⊗′

v∈V πv of GL2(Ak) with, on one hand, very specific
local components and, on the other hand, a prescribed analytic behaviour of a specific automorphic
L-functions attached to π. We refer to Section 6 for details.

Firstly, using a result of D. Trotabas [65] regarding the non-vanishing of L-functions attached to
Hilbert modular forms at the central value we derive the following:

Proposition 1.1. Given an irreducible finite–dimensional algebraic representation (η,E) of the
real Lie group G∞ =

∏
v∈V∞

Gv with Gv
∼= GL2(R) of even highest weight µ there exists an

irreducible cuspidal automorphic representation π of GL2(Ak) whose central character ωπ is trivial,
whose archimedean components πv in π∞ = ⊗v∈V∞πv, are discrete series representations of GL2(R)
compatible with µ, and whose corresponding L–function L(s, π, ρ2) does not vanish at s = 1/2. Such
a representation π of GL2(Ak) contributes non-trivially to the cuspidal cohomology H∗

cusp(GL2, E)
in degree [k : Q].

The other two results regard the existence of specific monomial cuspidal representations of
GL2(Ak) tailored by the needs of the actual construction of residual Eisenstein cohomology classes.
Here is one of them (see Section 6):

Proposition 1.2. Suppose that the highest weight µ of (η,E) is odd, then there exists an irreducible
monomial cuspidal automorphic representation π of GL2(Ak) which is selfdual with a non-trivial
central character ωπ and whose archimedean components πv in π∞ = ⊗v∈V∞πv are discrete series
representations of GL2(R) compatible with µ. Such a representation π of GL2(Ak) contributes
non-trivially to the cuspidal cohomology H∗

cusp(GL2, E) in degree [k : Q].
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As an example we now describe in the case G = G2 one result pertaining to the actual construc-
tion of non-trivial cohomology classes in H∗

(sq)(G,E) which are represented by residues of Eisenstein

series.

1.4. The case G2. Given a totally real algebraic number field k of degree d, let G be the k-split
algebraic k-group of type G2; the k-rank of G is two. We fix a minimal parabolic k-subgroup P0

with Levi decomposition P0 = L0N0. Let Φ, Φ
+, ∆ denote the corresponding sets of roots, positive

roots, simple roots, respectively. We write ∆ = {α1, α2} where α1 resp. α2 denotes the short resp.
long root; the half sum of the positive roots is ρP0 = 5α1 + 3α2.

For r = 1, 2, the maximal proper standard parabolic k-subgroup P∆\{αr} corresponding to the
subset ∆ \ {αr} of ∆ is denoted by Pr, and its Levi decomposition by Pr = LrNr, where Lr is
the Levi subgroup containing L0, and Nr the unipotent radical. In both cases we have Lr

∼= GL2.
Observe that the parabolic subgroups Pr are self-associate.

Given the irreducible finite-dimensional representation (η,E) of the group G∞ = Resk/Q(G2)(R)
in a complex vector space its highest weight can be written as Λ = (Λ)ιv , v ∈ V∞, where ιv denotes
the embedding k −→ R which corresponds to an archimedean place v ∈ V∞ of k. For the sake
of simplicity we assume that Λιv = Λιv′ for all archimedean places v, v′ ∈ V∞. Recall that this
representation originates from an algebraic representation of the algebraic k-group G. We write
Λ = c1Λ1 + c2Λ2, with c1, c2 non-negative integers, where Λi, i = 1, 2, denote the fundamental
dominant weights.

The following result concerns the square integrable cohomology H∗
(sq)(mG2 ,K∞;AE,{P2},ϕ ⊗ E).

Theorem 1.3. Suppose that the highest weight Λ of the representation (η,E) of G is of the form
Λ = c1Λ1, that is, c2 = 0. Then there exists a selfdual unitary cuspidal automorphic representation
π of L2(A) such that the Eisenstein series E(f, s) attached to π has a pole at s = 1

2 ρ̃P2 and the
corresponding residue Ress=1/2E(f, s) gives rise to a non-trivial class in H∗(mG2 ,K∞;LE,{P2},ϕ ⊗
E), where ϕ is the associate class represented by π ⊗ e⟨

1
2
ρ̃P2

,HP2
(·)⟩.

In degree q = 3d, the map in cohomology induced by the inclusion LE,{P},ϕ ↪→ AE,{P},ϕ is
injective so that the residual Eisenstein cohomology space H∗

(sq)(mG2 ,K∞;AE,{P2},ϕ ⊗ E) does not

vanish.

Remark 1.4. By means of the global theta lifting related to the dual reductive pair (HQ, SL2),
where HQ denotes a suitable orthogonal group containing G2 as a subgroup, one finds in [45] a
construction of cuspidal automorphic representations which give rise to non-vanishing cohomology
classes in H∗

cusp(G,E). The archimedean components of these representations are non-tempered
and correspond to the irreducible unitary representations Aq1(χ1) for a suitable character χ1. The
classes so obtained are shadows of the residual cohomology classes constructed above.

We thank Don Blasius for a helpful discussion concerning monomial representations. The first
named author was supported in part by the Croatian Science Foundation [projects 3628 and 9364]
and by the University of Rijeka [research grant 13.14.1.2.02]. Both authors acknowledge the support
obtained within the frame work of the Croatian-Austrian Scientific agreement [HR 17/2014]. A large
part of the work on this paper has been done during several visits of the first named author to the
Erwin Schrödinger Institute in Vienna. He would like to thank the Institute for the hospitality and
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wonderful working environment. Both authors benefited from a stay at the MPI Mathematik in
Bonn in the fall 2014. Some research related to this paper was carried through by the second named
author during a stay at the Department of Mathematics, Ohio State University. He thanks James
Cogdell for his generous hospitality, and the Institute of Mathematics.

Notation and conventions

Let k be an algebraic number field, i.e., an arbitrary finite extension k/Q of the field Q of rational
numbers, and let Ok denote its ring of integers. The set of places of k will be denoted by Vk, and
V∞,k (resp. Vf,k) refers to the subsets of archimedean (resp. non-archimedean) places of k. Given
a place v ∈ Vk, the completion of k with respect to v is denoted kv. For a finite place v ∈ Vf,k we
write Ok,v for the valuation ring in kv. If the field k is fixed, we write V = Vk etc.

We denote by A = Ak (resp. I = Ik) the ring of adeles (resp. the group of ideles) of k. There
is the usual decomposition of A (resp. I) into the archimedean and the finite part A = A∞ × Af

(resp. I = I∞ × If ).

2. Preliminaries

2.1. The group G. LetG be a connected reductive linear algebraic group over an algebraic number
field k. Fix a minimal parabolic subgroup P0 of G defined over k and a Levi subgroup L0 of P0

defined over k. One has the Levi decomposition P0 = L0N0 with unipotent radical N0. By
definition, a standard parabolic k-subgroup P of G is a parabolic subgroup P of G defined over k
that contains P0. Analogously, a standard Levi subgroup L of G is a Levi subgroup of any standard
parabolic k–subgroup P of G such that L contains L0. A given standard parabolic k-subgroup P
of G has a unique standard Levi subgroup L. We denote by P = LN the corresponding Levi
decomposition of P over k.

By definition, the adele groupG(A) of the groupG is the restricted productG(A) =
∏′

v∈V
G(kv)

with respect to the maximal compact subgroups G(Ok,v) ⊂ G(kv), for almost all v ∈ Vf . Let G∞
denote the group Rk/Q(G)(R) of real points of the algebraic Q-group Rk/Q(G) obtained from the
k-group G by the restriction of scalars from k to Q. Then the locally compact group G(A) is
the direct product of the group G∞ and the restricted product

∏′
v∈Vf

G(kv) =: G(Af ). We fix a

maximal compact subgroup K of G(A) subject to the following condition. Since it is of the form
K =

∏
v∈V Kv, where Kv is a maximal compact subgroup of G(kv), v ∈ V , we suppose (as we may)

that Kv = G(Ok,v) for almost all finite places v ∈ Vf . We write K∞ =
∏

v∈V∞
Kv and we write

Kf =
∏

v∈Vf
Kv.

We may assume that the group K is in good position relative to P0, that is, K satisfies the
following requirements:

- G(A) = P0(A)K
- given a standard parabolic k-subgroup P = LN of G one has the decomposition P (A)∩K =
(L(A) ∩K)(N(A) ∩K), and L(A) ∩K is a maximal compact subgroup of L(A).

2.2. Parabolics, Levi subgroups and characters. Let P be a standard parabolic k-subgroup
of G. Fix the Levi decomposition P = LN where L is the unique standard Levi subgroup of P . We
denote by X∗(L) the group of k-rational characters of L. Since L is a connected group, X∗(L) is a
free Z-module of finite rank r. We put ǎP,C = X∗(L)⊗ZC. Analogously we put aP,C = X∗(AL)⊗ZC,
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where X∗(AL) denotes the group of k-rational cocharacters of the maximal k-split torus AL in the
center of L. The complex vector spaces aP,C and ǎP,C are in a natural way in duality with one
another. These spaces come equipped with a Q-structure, given by ǎP,Q = X∗(L) ⊗Z Q and
aP,Q = X∗(AL) ⊗Z Q. Then one has ǎP,Q ⊗Q C = ǎP,C resp. aP,Q ⊗Q C = aP,C. We also have to
consider the real spaces ǎP,R = X∗(L)⊗ R resp. aP,R = X∗(AL)⊗ R.

Given a place v ∈ V , a k-rational character χ ∈ X∗(L) defines an algebraic character χv :
L(kv) −→ k∗v . Then the assignment y = (yv) 7→

∏
v |χv(yv)|v defines a continuous homomorphism

L(A) −→ C∗, to be denoted |χ|. The group

L1 =
∩

χ∈X∗(L)

ker|χ|

is a normal subgroup of L(A). We denote the group of continuous homomorphisms of L(A) into C∗

which are trivial on L1 by XP . Let X
G
P be the subgroup of XP which consists of those continuous

homomorphisms of L(A)/L1 into C∗ which are trivial on the centre ZG of G. This group plays a
decisive role [as parameter space] in the final construction of Eisenstein series.

The group XP can also be described in the following way: Given λ ∈ XP there exist char-
acters χ1, . . . , χr ∈ X∗(L) and complex numbers s1, . . . , sr ∈ C such that for all l ∈ L(A)
λ(l) = |χ1|(l)s1 . . . |χr|(l)sr . This result gives rise to an isomorphism of groups

(2.1) κ : ǎP,C −→ XP .

As in [48, p.7] we put ReXP := κ(ǎP,R). This can be seen to be the group of continuous homomor-
phisms of L(A)/L1 into C∗ with values in (R∗)+.

Given the minimal parabolic k-subgroup P0 of G with Levi subgroup L0 defined over k, let T0
be the maximal split torus in the centre of L0. We denote by Φ(G,T0) the set of k-roots of G
with respect to T0. Given a root α ∈ Φ(G,T0) there is a corresponding coroot, denoted α̌, which
is a one-parameter subgroup of T0. Note that the choice of the minimal parabolic subgroup P0

determines in Φ(G,T0) a set of positive roots, to be denoted Φ+(G,T0). We denote by ∆0 the set
of simple roots in Φ(G,T0).

Let resL/T : X∗(L0) → X∗(T0) be the natural restriction map from L0 to T0. Then, using
the natural duality ⟨·, ·⟩ with values in Z between rational characters of a split torus and one-
parameter subgroups, we can define for every χ ∈ X∗(L0) and every coroot α̌ the pairing ⟨χ, α̌⟩ :=
⟨resL/Tχ, α̌⟩. By R-linear extension this pairing is also defined for all λ ∈ ReXP0

∼= ǎP0,R. In the
same way, by C-linear extension, ⟨λ, α̌⟩ is defined for all λ ∈ ǎP0,C

∼= XL0 and all coroots α̌.
Using the isomorphisms ǎP0,R

∼= X∗(L0)⊗ZR ∼= X∗(T0)⊗ZR we may (and will) interprete roots
as elements of ǎP0,R

∼= ReXP0 . In fact, roots are already contained in the underlying Q-structure
X∗(L0)⊗Z Q.

Now we compare in this context the standard parabolic k-subgroup P = LN as above with
P0 = L0N0. The intersection P0 ∩L is a minimal parabolic subgroup of L. We denote by Φ(L, T0)
the set of roots of L with respect to T0, and we define ∆L

0 := ∆0 ∩ Φ(L, T0).
The maximal split torus TL in the centre of L is contained in T0. The set Φ(G,TL) of “roots”

of G with respect to TL is in general not a root system. However, we can identify this set with a
subset of ǎP,R ∼= ReXP . Moreover, this set generates this latter space. Now consider the restriction
map

Φ(G,T0) −→ Φ(G,TL) ∪ {0};
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it is trivial on Φ(L, T0). The set of non-trivial restrictions of elements in ∆0 under this map is
denoted by ∆L. Observe that ∆L generates ǎP,R as well.

Via the restriction from L to L0, we identify ǎP,R with a subspace of the vectorspace ǎP0,R. If

ǎPP0,R denotes the subspace of ǎP0,R which is generated by Φ(L, T0), then we have a direct sum
decomposition

(2.2) ǎP0,R = ǎP,R ⊕ ǎPP0,R

In view of the identification ǎP0,R
∼= ReXP0 , we identify the elements of ǎPP0,R with the set of those

elements in ReXP0 which are trivial on the centre of L(A). This latter set is denoted by ReXP
P0
.

Given a pair P ⊂ P ′ of standard parabolic k-subgroups of G there is a generalization of the
decomposition (2.2). Fix the Levi decompositions P = LN resp. P ′ = L′N ′ where L resp. L′ is the
unique standard Levi subgroup of P resp. P ′. We define Φ(L′, TL) as the set of “roots” of L′ with
respect to TL; this is a subset of Φ(G,TL). Then we have as above the direct sum decomposition

(2.3) ǎP,R = ǎP ′,R ⊕ ǎP
′

P,R

where ǎP
′

P,R is the real subspace generated by Φ(L′, TL). We may identify the elements in the space

ǎP
′

P,R with the elements in ReXP which are trivial on the centre of L′(A). The set of these elements

is denoted by ReXP ′
P .

For a given standard parabolic subgroup P = LN of G one has the Iwasawa decomposition
G(A) = L(A)N(A)K. Then we can define the standard height function HP : G(A) → aP,R on

G(A) by |χ|(l) = e<χ,HP (lnk)> for any character χ ∈ X∗(L) ⊂ ǎP,R, where g = lnk, l ∈ L(A), n ∈
N(A), k ∈ K, is the Iwasawa decomposition of g ∈ G(A). The definition does not depend on the
choice of the Iwasawa decomposition.

2.3. Weyl group. Given the minimal parabolic k-subgroup P0 of the connected reductive k-group
G with Levi subgroup L0 defined over k, let T0 be the maximal split torus in the centre of L0.
The Weyl group of G is defined to be W := NG(k)(T0(k))/ZG(k)(T0(k)). The simple reflection in
W which corresponds to a simple root α is denoted by wα. Given w ∈ W , the length ℓ(w) of w is
defined to be the smallest number s such that w can be written as a product of s simple refections.

Let P be a standard parabolic k-subgroup of G. Fix the Levi decomposition P = LN where L
is the unique standard Levi subgroup of P . Let WP be the Weyl group of L. There exists in any
right coset of WP in W a unique element w of smallest length in the coset WPw, [7, 3.9]. Thus,
the projection W → WP \W has a canonical splitting. Let WP be its image, to be called the set
of minimal coset representatives.

2.4. We denote by MG the connected component of the intersection of the kernels of all k-rational
characters of G, and by mG the Lie algebra of the Lie group Rk/Q(MG)(R). Note that the maximal
k-split torus AG in the center of G reduces to the identity if G is a semi-simple group. In such a
case, mG = Lie(G∞). Given a k-parabolic subgroup P we denote by AP the maximal k-split torus
in the center of the Levi subgroup LP . We write AP,∞ for the group of real points Rk/Q(AP )(R)
and A0

P,∞ for its connected component of the identity.
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3. Automorphic Cohomology

3.1. The cohomology group. Let AG denote the maximal k-split torus in the center ZG of
G. We write AG,∞ for the group of real points Rk/Q(AG)(R). Let (η,E) be an irreducible finite-
dimensional algebraic representation of G∞ in a complex vector space E. We assume that this
representation originates from an algebraic representation of the algebraic k-group G. We suppose
that A0

G,∞ acts by a character on E, to be denoted by χ−1. Let JE ⊂ Z(g∞,C) be the annihilator

of the dual representation of E in the center of the universal enveloping algebra U(g∞,C) of the
complexified Lie algebra of G∞.

We denote by VG = C∞
umg(G(k)\G(A)) the space of smooth complex-valued functions f of

uniform moderate growth on G(k)\G(A), that is, f ∈ VG is K-finite, and f resp. its derivatives
have uniformly moderate growth (cf. [48, I.2.3]) Let AE ⊂ VG be the subspace of functions
f ∈ VG which are annihilated by a power of JE . The space AE ⊗C E is naturally equipped with a
(mG,K∞;G(Af ))-module structure. We define the automorphic cohomology of G with coefficients
in E by

(3.1) H∗(G,E) := H∗(mG,K∞;AE ⊗C E).

We keep in mind that these cohomology groups have an interpretation as the inductive limit of
the deRham cohomology groups H∗(XC , E) of the orbit space XC := G(k) \ G(A)/K∞C with
coefficients in the local system given by the representation (η,E), where C ranges over the open
compact subgroups of G(Af ).

Two parabolic k-subgroups P and P ′ of G are said to be associate if their Levi subgroups are
conjugate by an element in G(k). This notion induces an equivalence relation on the set P(G) of
parabolic k-subgroups of G. Given P ∈ P(G), we denote its equivalence class by {P}, to be called
the associate class of P . Let C be the set of classes of associate parabolic k-subgroups of G.

Given a class {P} ∈ C we denote by AE,{P} the subspace of elements in AE which are negligible
along Q for every parabolic k-subgroup Q in G, Q /∈ {P}. The spaces AE,{P}, {P} ∈ C, form a
direct sum, and one has a decomposition AE = ⊕{P}∈C AE,{P} as a direct sum of (mG,K∞;G(Af ))–
modules. This was first proved in [43], see [6, Theorem 2.4], for a variant of the original proof. This
direct sum decomposition induces a direct sum decomposition

(3.2) H∗(G,E) =
⊕

{P}∈C

H∗(mG,K∞;AE,{P} ⊗ E)

in cohomology. The summand in this decomposition of the cohomology H∗(G,E) that is indexed
by the full group {G} will be called the cuspidal cohomology of G with coefficients in E, to be
denoted H∗

cusp(G,E). We call the direct sum over the classes {P} ∈ C, {P} ̸= {G}, the Eisenstein
cohomology of G with coefficients in E, denoted H∗

Eis(G,E).

3.2. Decomposition along the cuspidal support. Given a class {P} ∈ C let ϕ = {ϕQ}Q∈{P}
be a class of associate irreducible cuspidal automorphic representations of the Levi subgroups of
elements of {P} as defined in [16, Section 1.2.]. Observe that the elements of the associate class
are not necessarily unitary. The set of all such collections ϕ = {ϕQ}Q∈{P} compatible with E is
denoted by ΦE,{P}. Given any ϕ ∈ ΦE,{P}, we let

AE,{P},ϕ = {f ∈ AE,{P} | fQ ∈
⊕
π∈ϕQ

L2
cusp,π(LQ(k) \ LQ(A))χπ ⊗ S(ǎGQ)}
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be the space of functions of uniform moderate growth whose constant term along each Q ∈ {P}
belongs to the isotypic components attached to the elements π ∈ ϕQ. Finally, we have the following

Theorem 3.1. The automorphic cohomology H∗(G,E) has a direct sum decomposition

H∗(G,E) =
⊕

{P}∈C

⊕
ϕ∈ΦE,{P}

H∗(mG,K∞;AE,{P},ϕ ⊗C E)

where, given {P} ∈ C, the second sum ranges over the set ΦE,{P} of classes of associate irreducible
cuspidal automorphic representations of the Levi components of elements of {P}.

For a proof of this result we refer to [16, Theorem 1.4 resp. 2.3], or [48, Theorem in III, 2.6], where
a different approach to the decomposition of the space of automorphic forms along the cuspidal
support is given.

3.3. Square-integrable cohomology. Let LE be the subspace consisting of all square-integrable
automorphic forms in AE . It is an (mG,K∞;G(Af ))-submodule and the inclusion LE ↪→ AE gives
rise to a map H∗(mG,K∞;LE ⊗ E) → H∗(mG,K∞;AE ⊗ E) in cohomology. It is the image of
this map that we call the square-integrable (automorphic) cohomology and denote by H∗

(sq)(G,E).

According to the decomposition of AE over associate classes of parabolic k-subgroups and along
the cuspidal support, we obtain a decomposition

LE =
⊕

{P}∈C

LE,{P}

=
⊕

{P}∈C

⊕
ϕ∈ΦE,{P}

LE,{P},ϕ,

where LE,{P}, resp. LE,{P},ϕ is just the (possibly trivial) subspace of square-integrable forms in
AE,{P}, resp. AE,{P},ϕ. Then, the square-integrable cohomology decomposes accordingly into

H∗
(sq)(G,E) =

⊕
{P}∈C

H∗
(sq)(mG,K∞;AE,{P} ⊗ E)

=
⊕

{P}∈C

⊕
ϕ∈ΦE,{P}

H∗
(sq)(mG,K∞;AE,{P},ϕ ⊗ E),

where the summands on the right-hand side are the images of the map induced in cohomology by
the inclusions LE,{P} ↪→ AE,{P} and LE,{P},ϕ ↪→ AE,{P},ϕ.

Since cuspidal automorphic forms are all square-integrable, we have for the summand indexed
by {P} = {G} that LE,{G} = AE,{G} and hence H∗

cusp(G,E) = H∗
(sq)(mG,K∞;AE,{G} ⊗ E). The

remaining part of the square-integrable cohomology is inside the Eisenstein cohomology and we
write

H∗
Eis,(sq)(G,E) =

⊕
{P}∈C

{P}≠{G}

⊕
ϕ∈ΦE,{P}

H∗
(sq)(mG,K∞;AE,{P},ϕ ⊗ E).

This Eisenstein part of the square-integrable cohomology is often called the residual Eisenstein
cohomology, even though there could be residues of Eisenstein series that are not square-integrable
automorphic forms.
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Our goal in this paper is to construct explicitly examples of non-trivial cohomology classes in
some of the summands H∗

(sq)(mG,K∞;AE,{P},ϕ ⊗E) in the residual Eisenstein cohomology for low

rank groups G and a class of maximal proper parabolic k-subgroups {P}.

4. Eisenstein Series of Relative Rank One

Given an asociate class {P} of maximal proper parabolic k-subgroups of G and a class ϕ =
{ϕQ}Q∈{P} ∈ ΦE,{P} of associate irreducible cuspidal automorphic representations of the Levi sub-
groups of elements of {P} as defined in [16, Section 1.2.], we would like to study the space LE,{P},ϕ
in some detail, i.e., to determine its possible constituents. Let ϕ be represented by a cuspidal
automorphic representation π ⊗ e⟨λ,HP (·)⟩ of L(A), where π is a unitary cuspidal automorphic rep-
resentation of L(A) and λ ∈ ReXG

P whose real part belongs to a suitable positive cone. The space
LE,{P},ϕ is spanned by the residues of Eisenstein series attached to π at the value of its complex
parameter ν = λ, as these residues are always square-integrable.

4.1. Eisenstein series. Let P be a standard maximal parabolic k-subgroup of G with Levi de-
composition P = LN where L is the unique standard Levi subgroup of P . Then XG

P is a one-
dimensional complex vector space. The subset ∆L of Φ(G,TL) consists of a unique reduced root
α; it is obtained as a non-trivial restriction of an element in ∆0.

Let ρP be the half-sum of k–roots which generate the unipotent radical N . As a suitable basis
for ǎP,C ∼= C we choose

ρ̃P = ⟨ρP , α̌⟩−1ρP ,

as in the work of Shahidi [60]. We always identify accordingly s ∈ C with νs = ρ̃P ⊗ s ∈ ǎP,C.

Let π be a unitary cuspidal automorphic representation of L(A).4 We denote by Vπ the space of
smooth K-finite functions in the π-isotypic component of the space of cuspidal automorphic forms
on L(k)\L(A).5

We consider the space Wπ of right K-finite smooth functions f : N(A)L(k)\G(A) → C such that
for every g ∈ G(A) the function fg(l) = f(lg) on L(k)\L(A) belongs to the subspace Vπ of the
space of cuspidal automorphic forms on L(A), see e.g. [16, Section 1.3]. Then, for f ∈ Wπ, and
ν ∈ XG

P , and for each g ∈ G(A), one defines (at least formally) the Eisenstein series as

EG
P (f, ν)(g) =

∑
γ∈P (k)\G(k)

e⟨ν+ρP ,HP (γg)⟩f(γg) =
∑

γ∈P (k)\G(k)

fν(γg),

where fν(g) = f(g)e⟨ν+ρP ,HP (g)⟩. This Eisenstein series converges absolutely and locally uniformly
in g for all ν ∈ XG

P whose real part belongs to the positive cone

(4.1) {ν ∈ XG
P | ⟨Reν, α̌⟩ > ⟨ρP , α̌⟩ for all α ∈ Φ+(G,TL)}.

4Throughout the paper we mean by a cuspidal automorphic representation of H(A), where H is a reductive
linear group defined over k, an irreducible (h,K∞;H(Af ))–module realized on a subspace of the space of cuspidal
automorphic forms on H(k)\H(A) (see [48, Section I.2.17]).

5When computing the Eisenstein cohomology, one considers only the real poles of the Eisenstein series. Hence, we
make the following convention. We assume that π is normalized in such a way that the differential of the restriction
of the central character of π to A0

P,∞ is trivial. This assumption is just a convenient choice of coordinates, which
makes the poles of the Eisenstein series attached to π real. As explained in [16, Section 1.3], it can be achieved by
replacing π by an appropriate twist. The twist just moves the poles of the Eisenstein series along the imaginary axis.
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The assignment s 7−→ EG
P (f, νs)(g) defines a map that is holomorphic in the region of absolute

convergence of the defining series and has a meromorphic continuation to all of ǎP,C. If ν ∈ XG
P

is purely imaginary then the Eisenstein series is holomorphic. Because of our normalization its
singularities all lie on the real axis; more precisely, it has a finite number of simple poles in the real
interval

(4.2) {ν ∈ ReXG
P | 0 < ⟨ν, α̌⟩ ≤ ⟨ρP , α̌⟩}.

All the remaining poles lie in the region {ν ∈ XG
P | ⟨Reν, α̌⟩ < 0}. Given a specific reductive

k-group G and a maximal parabolic k-subgroup P ⊂ G, these intervals can be made explicit in
terms of the complex parameter s ∈ C with reference to the coordinate ρ̃P .

6

The space AE,{P} introduced in Section 2 has a two–step filtration defined in [14, Section 6].
However, we use a slight modification as in [16, Section 5.2], [21]. According to the decomposition
of AE,{P} along the cuspidal support as in Section 2, it suffices to give the filtration of the spaces

AE,{P},ϕ, where ϕ is the associate class of π⊗ e⟨λ,HP (·)⟩. Then, the filtration is given by LE,{P},ϕ ⊂
AE,{P},ϕ, where LE,{P},ϕ is the subspace of AE,{P},ϕ consisting of square integrable automorphic
forms. The space LE,{P},ϕ is spanned by the residues at νs = λ of the Eisenstein series attached
to a function f such that for every g ∈ G(A) the functions fg on L(k)\L(A) defined above belong
to the π-isotypic subspace of the space of cuspidal automorphic forms on L(A). Those residues are
square–integrable automorphic forms by the Langlands criterion [48, Section I.4.11]. The quotient
AE,{P},ϕ/LE,{P},ϕ is spanned by the principal value of the derivatives of such Eisenstein series at
νs = λ.

We also consider a subspace of LE,{P},ϕ, to be denoted LE,{P},ϕ,Vπ
, spanned by the residues

at poles νs = λ of the Eisenstein series EG
P (f, νs)(g) attached as above to a fixed (irreducible)

realization Vπ of a unitary cuspidal automorphic representation π of L(A).

4.2. Intertwining operators. If the parabolic k-subgroup P in G is self–associate, the poles
of the Eisenstein series coincide with the poles of its constant term EG

P (f, νs)P along P (see [48,
Section II.1.7]). The constant term along P is given by, using the notation fs := fνs ,

(4.3) EG
P (f, νs)P (g) = fs(g) +M(νs, π, w0)fs(g),

where w0 ∈ W is the unique non–trivial Weyl group element such that w0(∆0 \ {α}) ⊂ ∆0, while
w0(α) is a negative root, and M(νs, π, w0) is the standard intertwining operator defined as the
analytic continuation from the domain of convergence of the integral

(4.4) M(νs, π, w0)fs(g) =

∫
N(A)

fs(w̃
−1
0 ng)dn,

where w̃0 is the representative for w0 in G(k) ∩ K chosen as in [59]. Away from the poles it
intertwines the induced representation

I(νs, π) = Ind
G(A)
P (A)

(
π ⊗ e⟨νs,HP (·)⟩

)
∼=

{
fs = f · e⟨νs+ρP ,HP (·)⟩ : f ∈Wπ

}
6The reference for these facts concerning Eisenstein series is [48, Section IV.1].
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and I(ν−s, w0(π)), where the action of w0 on π is given by w0(π)(l) = π(w̃−1
0 lw̃0) for l ∈ L(A).

Observe that in our notation Ind
G(A)
P (A) includes the normalization by ρP , and thus ρP does not appear

in the first line but appears in the second line of the above equation.
The poles of the constant term EG

P (f, νs)P (g) of the Eisenstein series coincide with the poles of
M(νs, π, w0)fs(g).

Let π ∼= ⊗′
vπv be the decomposition into a restricted tensor product, where πv is a unitary

irreducible representation of L(kv), v ∈ V . At almost all non–archimedean places v ∈ Vf , πv is
unramified, and we denote by f◦s,v the unique Kv–invariant vector in I(νs, πv) normalized by the
condition f◦s,v(e) = 1, where e is the identity in G(kv). Let S be the finite set of places v ∈ V of k
which contains all archimedean places and such that for v /∈ S we have G(kv) is unramified and πv
is unramified. For v /∈ S, by [41, Section 5], the standard local intertwining operator M(νs, πv, w0),
defined as the analytic continuation of the local analogue of the integral (4.4), acts on f◦s,v as

M(νs, πv, w0)f
◦
s,v = r(νs, πv, w0)f̃

◦
−s,v,

where r(νs, πv, w0) is the local normalizing factor given as a certain ratio of local L-functions, and

f̃◦−s,v is the normalized Kv-invariant vector in I(ν−s, w0(πv)). Given a place v /∈ S we write

M(νs, π, w0) = r(νs, π, w0)N(νs, π, w0)

where N(νs, π, w0) is called the normalized intertwining operator.
If fs = ⊗vfs,v is decomposable, let T (f) be the finite set of places which contains all archimedean

places V∞ and such that fs,v = f◦s,v for all v ∈ Vf \ T (f). Then the global standard intertwining
operator acts on fs as
M(νs, π, w0)fs =

rS(νs, π, w0)
[
(⊗v∈SM(νs, πv, w0)fs,v)⊗ (⊗v∈T (f)\SN(νs, πv, w0)fs,v)⊗ (⊗v ̸∈T (f)f̃

◦
−s,v)

]
,

where

(4.5) rS(νs, π, w0) =
∏
v ̸∈S

r(νs, πv, w0)

is a certain ratio of partial L-functions attached to π.

4.3. The case of a quasi–split group. We now suppose that the k-group G is quasi-split. In
[62], the local normalizing factors r(νs, πv, w0) are defined at all places for a globally ψ-generic
representation π. Let N(νs, πv, w0) be the local normalized intertwining operator defined by

M(νs, πv, w0) = r(νs, πv, w0)N(νs, πv, w0).

It intertwines the induced representations I(νs, πv) and I(ν−s, w0(πv)). Note that at a place v ∈ Vf
where πv is unramified N(νs, πv, w0) maps f◦s,v to f̃◦−s,v. Hence,

(4.6) M(νs, π, w0)fs = r(νs, π, w0)
[
⊗v∈T (f)N(νs, πv, w0)fs,v

]
⊗
[
⊗v ̸∈T (f)f̃

◦
−s,v

]
,

where
r(νs, π, w0) =

∏
v∈V

r(νs, πv, w0)

is the global normalizing factor given as a certain ratio of automorphic L-functions attached to π.
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Given a fixed connected reductive algebraic k–group, a maximal parabolic k-subgroup P ⊂ G
with Levi decomposition P = LN , and a unitary cuspidal automorphic representation of L(A) this
ratio can be made explicit under the assumption that π is global generic with respect to some ψ;
see the examples below.

4.4. L-functions. Given a connected algebraic group H defined over k we denote its L-group by
LH. It is the semidirect product of a complex group LHo and the absolute Weil group W (k/k),
where k denotes the algebraic closure of k. For every place v ∈ V of k let LHv denote the L-group
of H viewed as a group over kv. There is a natural homomorphism ιv : LHv −→ LH. Let r
be a finite–dimensional complex representation of LH. Given v ∈ V , there is the representation
rv := r ◦ ιv of LHv.

Let π ∼= ⊗′
vπv be an irreducible unitary representation of G(A), G a connected reductive group

defined over k. Given a place v ∈ V so that G(kv) and πv are both unramified at v there is the
local Langlands L–function L(s, πv, rv) attached to πv and rv with complex parameter s, see [41].
Let S be a finite set of places containing V∞ so that for every v /∈ S the group G(kv) and πv are
both unramified at v. Then one can define the global partial L–function by the infinite product

LS(s, π, r) :=
∏
v/∈S

L(s, πv, rv);

it is absolutely convergent for Re(s) sufficiently large and can be analytically continued.
Given a parabolic k-subgroup P = LPNP of G we denote the Lie algebra of the unipotent radical

LNP of the L-group LP by LnP . The L-group of LP acts on LnP by the adjoint action. If β̌ ranges
through the set of dual roots for which Xβ̌ ∈ LnP holds then the numbers ⟨ρ̃P , β̌⟩ take a string of
integers from 1 to a positive integer m. For a given j, 1 ≤ j ≤ m, we define

Vj := {Xβ̌ ∈ LnP | ⟨ρ̃P , β̌⟩ = j}.

For each j the adjoint action of the L-group of LP on LnP leaves the space Vj stable; the cor-
responding representation on Vj obtained by restriction is denoted by rj . This representation is
irreducible.

Then the ratio of partial L-functions ocurring in the formula (4.5) has the following form

rS(νs, π, w0) =

m∏
j=1

LS(js, π, rj)

LS(js+ 1, π, rj)
.

Given G and a maximal parabolic subgroup P of G, the representations rj , j = 1, . . . ,m, and
the types of the corresponding partial L-functions LS(s, π, rj) are determined by Langlands in [41],
see also [60]. Later on we will give explicit examples.

5. Construction of Eisenstein cohomology classes

Given an associate class {P} ∈ C, represented by P = LN , of maximal parabolic k-subgroups in
G and a class ϕ = {ϕQ}Q∈{P} of associate irreducible cuspidal automorphic representations of the
Levi subgroups of elements of {P}, we now analyze the actual construction of cohomology classes
in the corresponding summand

H∗(mG,K∞;AE,{P},ϕ ⊗C E)
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in the direct sum decomposition of the automorphic cohomology of G. Since all our examples
in the rest of the paper are split groups, from this point on we always assume that G is split
over k. Suppose ϕ ∈ ΦE,{P} is represented by π ⊗ e⟨λ,HP (·)⟩ ∈ ϕP , where π is an irreducible

unitary cuspidal automorphic representation of the Levi subgroup L(A) and λ ∈ ReXG
P . Let π

be realized on the subspace Vπ of the space of cuspidal forms on L(A). By carrying through the
construction of residues or derivatives of Eisenstein series attached to (π, Vπ) (as in [46], Section
3), the corresponding contribution to H∗(mG,K∞,AE,{P},ϕ ⊗C E) is embodied in the cohomology

H∗
(
mG,K∞; Ind

G(Af )

P (Af )
Ind

(g,K∞)
(g∩p,K∞∩L∞)

(
Vπ ⊗ E ⊗ S(ǎGP,C)

))
,

where S(ǎGP,C) is the symmetric algebra of ǎGP,C with the (mG,K∞)–module structure as defined on

page 218 of [14] (see also Section 3.1 of [46]).
Using Frobenius reciprocity, the study of this space is reduced to an analysis of theG(Af )–module

(5.1) Ind
G(Af )

P (Af )
H∗ (l,K∞ ∩ L∞;Vπ ⊗H∗(n, E)⊗ S(ǎGP,C)

)
.

Following Kostant ([38], Thm. 5.13), the Lie algebra cohomology H∗(n, E) of n with coefficients in
the irreducible representation (η,E) of G∞ is given as a (l,K∞ ∩ L∞)–module as the sum

H∗(n, E) =
⊕

w∈WP

Fµw

where the sum ranges over w in the set WP of the minimal coset representatives for the left cosets
of W modulo the Weyl group WP of the Levi factor L of P , and Fµw denotes the irreducible
finite-dimensional (l,K∞ ∩ L∞)–module of highest weight

(5.2) µw = w(Λ + ρP0)− ρP0 ,

where Λ ∈ ǎP0,C is the highest weight of (η,E). The weights µw are all dominant and distinct and,
given a fixed degree q, only the weights µw with length ℓ(w) = q occur in the decomposition of
Hq(n, E) into irreducibles. As in [53, Section 3.2], we call a cohomology class in (5.1) which gives
rise to a non–trivial class in

H∗ (l,K∞ ∩ L∞;Vπ∞ ⊗ Fµw)

a class of type (π,w), w ∈ WP . If the infinitesimal character χπ∞ of the archimedean component
π∞ of π does not coincide with the infinitesimal character of the representation contragredient to
Fµw , the cohomology space H∗ (l,K∞ ∩ L∞;Vπ∞ ⊗ Fµw) vanishes, that is, there are no classes of
type (π,w).

Moreover, if the module Fµw is not isomorphic to its complex conjugate contragredient F
∗
µw

, then
H∗ (l,K∞ ∩ L∞;Vπ∞ ⊗ Fµw) = (0), since this condition implies that the complex contragredient of

Fµw and Vπ have distinct infinitesimal character. Following [4, Section §1], Fµw ̸∼= F
∗
µw

is equivalent

to the condition that −wl,L(µw
∣∣
ǎPP0,R

) is distinct from µw
∣∣
ǎPP0,R

, where wl,L is the longest element in

the Weyl group WP of the Levi component L. We recall that the transformation −wl,L maps the
highest weight of an irreducible lC-module into that of the contragredient one.

Suppose there is a non–trivial cohomology class of type (π,w), w ∈WP . In order to understand
the cohomological contribution of the corresponding Eisenstein series EG

P (f, νs) or a residue of
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such in H∗(g,K∞;AE,{P},ϕ ⊗C E), following [53, Corollary 3.5], we have to analyze the analytic

behaviour of EG
P (f, νs) at the point

(5.3) λ[w] := −w(Λ + ρP0)
∣∣∣
ǎP,R

.

This evaluation point is real and uniquely determined by the datum (π,w). It only depends on
w and the highest weight Λ ∈ ǎP0,C. As a consequence of the description of the space AE,{P},ϕ
of automorphic forms in Section 1.3 of [16], only the points λ[w] with ⟨λ[w], α̌⟩ ≥ 0 matter in our
analysis. In other words, it suffices to consider only the evalution points λ[w] such that in the basis
ρ̃P of ǎP,C we have λ[w] = λsw = ρ̃P ⊗ sw with sw ≥ 0.

In the following, under the assumption that H∗ (l,K∞ ∩ L∞;Vπ∞ ⊗ Fµw) is non–trivial for a
given {P} ∈ C, and a pair (π,w), we make explicit the two necessary conditions this assumption
implies by the discussion above, namely:

(5.4) −wl,L

(
µw

∣∣∣
ǎPP0,R

)
= µw

∣∣∣
ǎPP0,R

,

and the infinitesimal character χπ∞ of π∞ is of the form

(5.5) χπ∞ = −w (Λ + ρP0)
∣∣∣
ǎPP0,R

.

6. Construction of specific cuspidal automorphic repesentations of GL2(Ak)

6.1. Existence. One can use the Langlands functoriality principle to construct specific cuspidal
automorphic representations for the genereal linear group GL2 (or variants thereof) over a given to-
tally real algebraic number field k such that these representations give rise to non–vanishing classes
in the cuspidal cohomology H∗

cusp(GL2, E) = H∗
(sq)(mGL2 ,K∞;AE,{GL2} ⊗E) with a suitable coef-

ficient system E. This result can be extended to cases of the group GL2 defined over an extension
k′ of k where the base change lift is well understood, for example, an extension k′/k of cyclic prime
degree. This non-vanishing result relies on the fact that there always exist cuspidal automorphic
representations of GL2(Ak) whose archimedean components are discrete series representations of
GL2(R) and which is special at a given finite number of places v ∈ Vf , i.e., its local component at
v ∈ Vf is the Steinberg representation. Then the base change lift is compatible with cohomology.
This result is obtained by inserting so-called pseudo-coefficients in the Selberg trace formula, see
[40, 2.5].

Another approach dates back to work of Chevalley [9] and Weil [70]; it is used in combination
with automorphic induction by Clozel in [10].

These general results are not sufficient for our purpose. It is decisive to exhibit cuspidal automor-
phic representations of GL2(Ak) which are cohomological, have specific prescribed local and global
behaviour, the latter encoded in its automorphic L-function. In view of this task it is necessary to
recall some facts which are part of the classification of irreducible admissible (gl2(R), O(2))–modules
[cf. [30] or [8, Chap. 2]].

6.2. Discrete series representations. Given an integer m ≥ 2 we denote by Dm the discrete
series representation of GL2(R) of lowest O(2)-type m, i.e., the square–integrable representation
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Dm is characterized by the fact that the restriction to the maximal compact subgroup O(2) of
GL2(R) decomposes as an algebraic sum of the form

Dm|O(2)
∼=

⊕
r∈Σ(m)

V (r), Σ(m) = {l ∈ Z | l ≡ m mod 2, l ≥ m},

where V (r), r ≥ 2, is the irreducible two-dimensional representation of O(2) fully induced by the
character kθ 7→ eirθ of the subgroup SO(2) of rotations kθ, θ ∈ [0, 2π] in O(2) of index two.

The discrete series representation Dm naturally appears as the unique irreducible subrepresenta-

tion of the representation I(m) induced from the character | · |
m−1

2 signm ⊗ | · |−
m−1

2 of the maximal
split torus in GL2(R). The quotient is irreducible and finite-dimensional. More precisely, in terms
of the underlying (gl2(R), O(2))–modules, one has a short exact sequence

0 −→ Dm −→ I(m) −→ Fm−2 −→ 0

where (σk, Fk), k ≥ 0, denotes the irreducible finite-dimensional representation of GL2(R) of highest
weight µk = k · ω [ ω denotes the fundamental dominant weight of GL2(R)], thus, dimFk = k + 1.
Consequently, the infinitesimal characters of the representations Dm and Fm−2 match. With regard
to relative Lie algebra cohomology one has Hq(mGL2(R), O(2);Dm⊗Fm−2) = C if q = 1, otherwise it
vanishes. In general, given a finite-dimensional representation (σk, Fk), k ≥ 0, of GL2(R) of highest
weight µk, the relative Lie algebra cohomology

H∗(mGL2(R), O(2);Dm ⊗ Fk)

vanishes if k ̸= m−2 since the infinitesimal character χDm differs from the one of the contragredient
representation of (σk, Fk).

Finally, one observes that in this labelling of the discrete series representations of GL2(R) the
Harish-Chandra parameter of Dm,m ≥ 2, is m− 1.

6.3. A result of Trotabas. Let k be a totally real algebraic number field of degree [k : Q] = d,
and let q ⊂ Ok be a prime ideal in its ring of integers. Let π = π∞ ⊗ πf be an irreducible unitary
cuspidal automorphic representation of GL2(Ak) with trivial central character ωπ. Given a d–tuple
κ = (k1, . . . , kd) of even non-zero integers k1, . . . , kd we denote by D(κ, q) the set of irreducible
cuspidal automorphic representation of GL2(Ak) (up to infinitesimal equivalence) so that

π∞ = ⊗d
i=1Dki

where Dki denotes as above the discrete series representation of GL2(R) of lowest O(2)–type ki
and so that π corresponds to a cuspidal Hilbert modular form of conductor q. Given κ and q, the
set D(κ, q) has finite cardinality.7 We observe that for any κ, there exists q such that D(κ, q) is
non-empty.

In the classical setting these are cuspidal automorphic representations associated to cuspidal
Hilbert modular forms of weight κ, trivial Nebentypus and level q.

The following result in due to Trotabas [65]:

Theorem 6.1. Given a d-tuple κ of even non-zero integers the following estimate for q ranging
over the prime ideals in Ok, k a totally real algebraic number field, is true

7We note that the labelling of the discrete series representation in [65] is via the corresponding Harish-Chandra
parameter, thus it differs from the one used in this paper.
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lim inf
N(q)→∞

|{π ∈ D(κ, q) | L(12 , π, ρ2) ̸= 0}|
|D(κ, q)|

≥ 1

4
.

where L(s, π, ρ2) = L(s, π) is the principal L-function.

We can derive the following result regarding the existence of cuspidal automorphic representations
of GL2(Ak) which provide non-trivial cohomology classes in the cuspidal cohomology

H∗
cusp(GL2, E) := H∗(mGL2 ,K∞;AE,{GL2} ⊗ E) = H∗

(sq)(mGL2 ,K∞;AE,{GL2} ⊗ E).

Recall that (η,E) is an irreducible finite-dimensional algebraic representation ofGL2,∞ in a complex
vector space E. We assume that this representation originates from an algebraic representation of
the algebraic k-group GL2. Its highest weight can be written as µ = (µ)ιv , v ∈ V∞, where ιv denotes
the embedding k → R which corresponds to v ∈ V∞. Each of the weights (µ)ιv is of the form kvωv,
kv ∈ Z, kv ≥ 0, where ωv denotes the fundamental dominant weight of the group Gv

∼= GL2(R),
v ∈ V∞. A weight µ is called even if all integers kv, v ∈ V∞ are even.

Given a highest weight µ = (µ)ιv , v ∈ V∞, we say that a family {Dkv}, kv ∈ Z, kv ≥ 2, of discrete
series representations of GL2(R), parametrized by v ∈ V∞, is compatible with µ if (µ)ιv = (kv−2)ωv

for all v ∈ V∞.

Proposition 6.2. Given an irreducible finite–dimensional algebraic representation (η,E) of the real
Lie group G∞ =

∏
v∈V∞

Gv with Gv
∼= GL2(R) of even highest weight µ there exists an irreducible

cuspidal automorphic representation π of GL2(Ak) whose central character ωπ is trivial, whose
archimedean components πv in π∞ = ⊗πv, v ∈ V∞, are discrete series representations of GL2(R)
compatible with µ, and whose corresponding L–function L(s, π, ρ2) does not vanish at s = 1/2. Such
a representation π of GL2(Ak) contributes non-trivially to the cuspidal cohomology H∗

cusp(GL2, E)
in degree [k : Q].

6.4. Monomial representations. We study now the existence of monomial cuspidal automor-
phic representations with a given cohomological archimedean components. By definition, a unitary
cuspidal automorphic representation π of GL2(Ak) is monomial if there exists a non-trivial Hecke
character δ of the group of ideles Ik such that

π ⊗ δ ∼= π.

Comparing the central characters, it follows that δ is quadratic.
Monomial representations arise by automorphic induction from a Hecke character of a quadratic

extension of k. Let K/k be a quadratic extension of number fields. For a unitary Hecke character
θ of the group of ideles IK of K, let π(θ) be the automorphic induction of θ to GL2(Ak). It is
defined by π(θ) = ⊗′

vπ(θ)v, where

• if v splits in K, then π(θ)v is the principal series representation of GL2(kv) induced from
the character θw1 ⊗ θw2 of the torus, where w1 and w2 are the two places of K above v;

• if v does not split in K, then π(θ)v is the local automorphic induction of θw to a represen-
tation of GL2(kv), where w is the unique place of K lying above v.

The following theorem is contained in Arthur–Clozel [3, Sect. 3.6] (see also [30] and [39]).

Theorem 6.3. Let K/k be a quadratic extension of a number field k, c the unique non-trivial
element of the Galois group Gal(K/k), and δ = δK/k the quadratic character of Ik attached to the
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extension K/k by class field theory. Let θ be a unitary Hecke character of IK . Then the automorphic
induction π(θ) of θ is an automorphic representation of GL2(Ak) and

π(θ)⊗ δ ∼= π(θ),

in particular, π(θ) is monomial. Moreover, π(θ) is cuspidal if and only if θ ̸= θc, i.e., θ does
not factor through the norm map NK/k from K to k. Conversely, for any monomial cuspidal
automorphic representation π of GL2(Ak) such that π ⊗ δK/k

∼= π, there exists a unitary Hecke
character θ of IK such that π ∼= π(θ).

We are now in position to show the existence of monomial representations with a given discrete
series representations at all archimedean places. These are required to show the existence of non-
trivial cohomology classes in the square-integrable cohomology in some of the cases. We retain
the notation of the previous subsection. In particular, k is a totally real number field of degree
[k : Q] = d.

Proposition 6.4. Given an irreducible finite-dimensional algebraic representation (η,E) of the real
Lie group G∞ =

∏
v∈V∞

Gv with Gv
∼= GL2(R) of highest weight µ = (kωv)σv , where k ∈ Z, k ≥ 0,

there exists an irreducible cuspidal automorphic representation π of GL2(Ak) which is monomial
and whose archimedean components πv in π∞ = ⊗v∈V∞πv are discrete series representations of
GL2(R) compatible with µ. Such a representation π of GL2(Ak) contributes non-trivially to the
cuspidal cohomology H∗

cusp(GL2, E) in degree [k : Q].

Proof. According to Theorem 6.3, to construct a monomial cuspidal automorphic representation
of GL2(Ak), it is sufficient to find a unitary Hecke character θ of the group of ideles IK of a
quadratic extension K/k such that π(θ) has the required properties. More precisely, θ should not
factor though the norm map NK/k, and all the archimedean components of θ should give by local
automorphic induction π(θ)v compatible with kωv, that is, π(θ)v ∼= Dk+2. The latter requirement
implies that K/k is necessarily an imaginary quadratic extension, since the discrete series Dk+2

can be obtained only if all archimedean places of k do not split in K.
The discrete series Dk+2 of GL2(R) corresponds, via the local Langlands correspondence, to the

two-dimensional irreducible representation of the Weil group WR obtained by induction from the
character of WC = C∗ given by the assignment

z 7→
(
z

|z|

)k+1

, z ∈ C∗,

where |z| =
√
z · z. Hence, Dk+2 is the local automorphic induction of that character, and we must

construct a unitary Hecke character θ of IK with that character as the archimedean component at all
archimedean places. The condition that θ does not factor through the norm map NK/k immediately
follows, because it is equivalent to the condition θ ̸= θc, where c is the unique non-trivial element
of the Galois group Gal(K/k), and this is obvious for the archimedean components.

The existence of a unitary Hecke character θ0 of IK with all the archimedean components given
by the assignment

z 7→ z

|z|
, z ∈ C∗,

is well-known. See [10, p. 479], and also [70]. Hence, if we let θ = θk+1
0 , it is a unitary Hecke

character of IK with all the required properties. �
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However, in some cases the previous result is not sufficient. We need to show the existence
of a unitary cuspidal automorphic representation π of GL2(Ak) such that the symmetric square
L-function L(s, π, Sym2ρ2) has a simple pole at s = 1. From the formula

L(s, π ⊗ π, ρ2 ⊗ ρ2) = L(s, π,∧2ρ2)L(s, π, Sym
2ρ2) = L(s, ωπ)L(s, π, Sym

2ρ2),

where ωπ is the central character of π, it follows that this happens if and only if π is selfdual with ωπ

non-trivial. Since the contragredient π̃ ∼= π ⊗ ωπ, such π is necessarily monomial with π ⊗ ωπ
∼= π.

We now show the existence of such monomial representations π with a prescribed cohomological
archimedean components.

Proposition 6.5. Given an irreducible finite-dimensional algebraic representation (η,E) of the real
Lie group G∞ =

∏
v∈V∞

Gv with Gv
∼= GL2(R) of highest weight µ = (kωv)σv , where k ∈ Z≥0, k

odd, there exists an irreducible cuspidal automorphic representation π of GL2(Ak) which is selfdual
with a non-trivial central character ωπ and whose archimedean components πv in π∞ = ⊗v∈V∞πv are
discrete series representations of GL2(R) compatible with µ. Such a representation π of GL2(Ak)
contributes non-trivially to the cuspidal cohomology H∗

cusp(GL2, E) in degree [k : Q].

Proof. As already mentioned before the statement of the theorem, π with the required properties
is necessarily monomial. Hence, by Theorem 6.3, it is an automorphic induction π(θ) from a
character θ of a quadratic extension K/k which does not factor through the norm. Since the goal
is to construct a selfdual monomial representation π with non-trivial central character, so that
π ⊗ ωπ

∼= π, we actually need a character θ such that the central character of π(θ) is the same as
the character δK/k associated to the extension K/k by class field theory. Moreover, at archimedean
places θ should be such that π(θ)v ∼= Dk+2, in particular, K/k should by an imaginary extension.

Given an imaginary quadratic extension K/k, we first construct a character θ0 of IK such that
its archimedean components are given by the assignment

z 7→ z

|z|
, z ∈ C∗,

and the restriction of θ0 to Ik equals the character δK/k associated to K/k by class field theory.
This is more subtle then in the previous theorem, but can be arranged by [13, Lemma 3.5].

Let θ = θk+1
0 . Then the archimedean components of θ are given by the assignment

z 7→
(
z

|z|

)k+1

, z ∈ C∗,

so that π(θ)v ∼= Dk+2 at all archimedean places v, as required. In particular, looking at the
archimedean places, clearly θ does not factor through the norm. Moreover, by [5, Sect. 29.2], the
central character of the automorphic induction is given by the formula

ωπ(θ) = δK/k · θ
∣∣
Ik
.

Since

θ
∣∣
Ik

=
(
θ0
∣∣
Ik

)k+1
= δk+1

K/k,

and k is odd, we obtain that ωπ(θ) = δK/k. Hence, by Theorem 6.3, π(θ) ⊗ ωπ(θ)
∼= π(θ), that is,

π(θ) is selfdual with non-trivial central character. �
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Remark 6.6. Note that for k even in the previous proposition, the representation π with the re-
quired properties does not exist. This is due to the fact that such π is necessarily a monomial
representation, that is, obtained by automorphic induction from a character θ of IK , where K/k is
the quadratic extension associated to ωπ by class field theory. However, the archimedean compo-
nents of such π are supposed to be discrete series representations Dk+2, so that K/k is imaginary
extension and thus archimedean components of ωπ are non-trivial. On the other hand, if k is even,
then Dk+2 has trivial central character, which is a contradiction.

7. The group G2

7.1. Roots, weights and parabolic subgroups of G2. Given an algebraic number field k there
is a uniquely determined Cayley algebra defined over k with divisors of zero; it is called the split
Cayley algebra C over k ([52, Lemma 3.16]). The norm form of C is non-degenerate. Let G be the
group of automorphisms of C. The Lie algebra of G, by definition, the derivation algebra of C is a
central simple Lie algebra of dimension 14; its type is G2. The group G is a simple algebraic group
defined over k; it is split over k. The k-rank of G is two.

We fix a minimal parabolic k-subgroup P0 with Levi decomposition P0 = L0N0. Let Φ, Φ+, ∆
denote the corresponding sets of roots, positive roots, simple roots, respectively. The set Φ+ can
be described as Φ+ = {α1, α2, α1+α2, 2α1+α2, 3α1+α2, 3α1+2α2} where α1 resp. α2 denotes the
short resp. long root; one has ∆ = {α1, α2}. The half sum of the positive roots is ρP0 = 5α1+3α2.

The fundamental dominant weights are Λ1 = 2α1 + α2 and Λ2 = 3α1 + 2α2. One observes that
ρP0 can also be written as Λ1 + Λ2.

For r = 1, 2, the maximal proper standard parabolic k-subgroup P∆\{αr} corresponding to the
subset ∆ \ {αr} of ∆ is denoted shortly by Pr, and its Levi decomposition by Pr = LrNr, where
Lr is the Levi factor containing L0, and Nr the unipotent radical. The characters of L0 in Nr

are exactly those positive roots which contain at least one simple root not in ∆ \ {αr}. In both
cases we have Lr

∼= GL2. Observe that the parabolic subgroups Pr are self-associate, i.e. Pr itself
is the only standard parabolic subgroup which is associate to Pr (see Section 1.6). However, Pr

is conjugate to its opposite parabolic subgroup P opp
r by a representative of the unique non-trivial

Weyl group element w0 ∈W with the property that w0(∆ \ {αr}) ⊂ ∆.
If Pr = LrNr, r = 1, 2, is one of the two maximal proper standard parabolic k-subgroups of G

we identify the roots of APr in Nr with a subset of Φ+. Then the unique reduced root of APr in
Nr can be identified with the element αr ∈ ∆ in the set of simple roots. Let ρPr be the half–sum
of k-roots which generate Nr [or, equivalently, of positive roots which are not the positive roots of
Lr]. Following the work of Shahidi [60] we choose as a suitable basis for ǎPr,C

∼= C the element

ρ̃Pr = ⟨ρPr , α̌r⟩−1ρPr ,

We obtain, as already observed in [45],

ρ̃P1 =
2

5
ρP1 = 2α1 + α2, ρ̃P2 =

2

3
ρP2 = 3α1 + 2α2.

We always identify accordingly s ∈ C with νs = ρ̃Pr ⊗ s ∈ ǎPr,C. Note that ρ̃P1 coincides with the
first fundamental weight Λ1, and ρ̃P2 coincides with the second fundamental weight Λ2.

7.2. Classes of type (π,w), w ∈WP . Given a maximal parabolic k–subgroup Pr, r = 1, 2, of G2

we are going to analyze which types (π,w), w ∈ WPr occur. First, this amounts to determine the
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Lie algebra cohomology H∗(nr, E) of nr := nPr with coefficients in the irreducible representation
(η,E) of G∞. As explained in Section 5 it is given as a (lr,K∞ ∩ Lr,∞)–module as the sum

H∗(nr, E) =
⊕

w∈WPr

Fµw

where the sum ranges over w in the set WPr of the minimal coset representatives for the left cosets
of W modulo the Weyl group WPr of the Levi factor Lr of Pr, and Fµw denotes the irreducible
finite–dimensional (lr,K∞∩Lr,∞)–module of highest weight µw = w(Λ+ρP0)−ρP0 , where Λ ∈ ǎP0,C
is the highest weight of (η,E).

As already determined in [45, 6.2.], the set WPr , r = 1, 2, of representatives for the right cosets
WPr ·w in W characterized by the condition that the minimum of the length function ℓ on WPr ·w
is attained on WPr ∩ WPr · w, and only on that element. Let wr denote the simple reflection
corresponding to αr. One has

WP1 = {1, w1, w1w2, w1w2w1, w1w2w1w2, wP1},

WP2 = {1, w2, w2w1, w2w1w2, w2w1w2w1, wP2}
where wPr denotes the uniquely determined longest element (of length 5) in WPr .

It is useful to parametrize the maximal k-split torus L0 in two convenient ways, the first one
will be adjusted to the short root α1, the second one to the long root α2. We define (as in [71])
t : k∗×k∗ −→ L0 by the assignment (a, b) 7→ t(a, b) such that α1(t(a, b)) = ab−1, α2(t(a, b)) = a−1b2.
The other positive roots take the following values on t(a, b) in this parametrization:

(α1 + α2)(t(a, b)) = b, (2α1 + α2)(t(a, b)) = a,

(3α1 + α2)(t(a, b)) = a2b−1, (3α1 + 2α2)(t(a, b)) = ab.

The second parametrization, denoted by t′ : k∗ × k∗ −→ L0, is given by the assignment (a, b) 7→
t′(a, b) such that α1(t

′(a, b)) = b, α2(t
′(a, b)) = ab−1. In this parametrization the other positive

roots take the following values on t′(a, b):

(α1 + α2)(t
′(a, b)) = a, (2α1 + α2)(t

′(a, b)) = ab,

(3α1 + α2)(t
′(a, b)) = ab2, (3α1 + 2α2)(t

′(a, b)) = a2b.

As already indicated in [45, 7.4, 7.5], the elements of length 3 in WPr are the ones which matter
for a possible existence of residues of Eisenstein series [see also below].

Proposition 7.1. Let Λ = c1Λ1+ c2Λ2 be the highest weight of the algebraic representation (η,E),
where c1, c2 ∈ Z, c1, c2 ≥ 0. For the element w1w2w1 ∈WP1 of length 3 the highest weight µw1w2w1 =
w1w2w1(Λ + ρP0)− ρP0 of the (l1,K∞ ∩ L1,∞) module Fµw1w2w1

is given by

(2c2 + c1 + 2)ω1

where ω1 denotes the fundamental dominant weight for L1.

Proof. For the sake of notational brevity we write in this computation v1 := w1w2w1. First, for
the action of v1, we have the general formula [see also [48, Appendix III, p.299]], v1(xΛ2 + yΛ1) =
(2x+ y)Λ2 + (−3x− 2y)Λ1, x, y ∈ Z. Thus, using the identity ρP0 = Λ1 + Λ2, we obtain

µv1 = v1(Λ + ρP0)− ρP0 = (2c2 + c1 + 2)Λ2 + (−3c2 − 2c1 − 6)Λ1
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Now we use the second parametrization t′ : k∗ × k∗ −→ L0 which is adjusted to the long root α2,
the unique simple root of L1. The fundamental dominant weight for L1 in this parametrization is
given by

ω1(t
′(a, b)) =

1

2
α2(t

′(a, b)) = a
1
2 b−

1
2 .

As alluded to above, Λ1 = 2α1 + α2 and Λ2 = 3α1 + 2α2. Hence it follows that

µv1(t
′(a, b)) = (a

1
2 b−

1
2 )2c2+c1+2 · (ab)

−c1−6
2 .

Thus, the highest weight of the L1-module in question is (2c2 + c1 + 2)ω1. �

Proposition 7.2. Let Λ = c1Λ1+ c2Λ2 be the highest weight of the algebraic representation (η,E),
where c1, c2 ∈ Z, c1, c2 ≥ 0. For the element w2w1w2 ∈WP2 of length 3 the highest weight µw2w1w2 =
w2w1w2(Λ + ρP0)− ρP0 of the (l2,K∞ ∩ L2,∞) module Fµw2w1w2

is given by

(3c2 + 2c1 + 4)ω2

where ω2 denotes the fundamental dominant weight for LP2.

Proof. With regard to the action of v2 := w2w1w2 in WP2 we have

v2(xΛ2 + yΛ1) = (−2x− y)Λ2 + (3x+ 2y)Λ1.

Thus, we obtain

µv2 = v2(Λ + ρP0)− ρP0 = (−2c2 − c1 − 4)Λ2 + (3c2 + 2c1 + 4)Λ1.

We use the parametrization t : k∗ × k∗ −→ L0 which is adapted to the short root α1. The
fundamental dominant weight for L2 in this parametrization is given by

ω2(t(a, b)) =
1

2
α1(t(a, b)) = a

1
2 b−

1
2 .

In terms of this parametrization we see

µv2(t(a, b)) = (ab)−2c2−c1−4 · a3c2+2c1+4 = ac2+c1 · b−2c2−c1−4.

Using the identity −c2−4
2 = (c2+c1)+(−2c2−c1−4)

2 we can write

µv2(t(a, b)) = (ab)
−c2−4

2 · (a
1
2 b−

1
2 )3c2+2c1+4.

Thus, the highest weight of the L2-module in question is (3c2 + 2c1 + 4)ω2. �

In turn we also have to determine, in terms of the complex parameter s ∈ C corresponding to
νs = ρ̃Pr ⊗ s ∈ ǎPr,C, r = 1, 2, the point of evaluation for an Eisenstein series which is attached

to a cuspidal cohomology class of Lr of type (π,w), w ∈ WPr , ℓ(w) = 3. This point is given by
−w(Λ + ρP0) ∈ ǎPr,C, obtained by restriction to ǎPr,C. If (η,E) is the trivial representation this
computation was done in [45, 6.2].

Proposition 7.3. The point of evaluation for an Eisenstein series which is attached to a cuspidal
cohomology class of Lr of type (π,w), w ∈WPr , ℓ(w) = 3 is given

(1) in the case P1 by −w1w2w1(Λ + ρP0)|ǎP1,C
= c1+1

2 ρ̃P1 .

(2) in the case P2 by −w2w1w2(Λ + ρP0)|ǎP2,C
= c2+1

2 ρ̃P2 .
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Proof. In the case of the maximal parabolic P1 we obtain

−w1w2w1(Λ + ρP0)(t
′(a, b)) = (a2b)−2c2−c1−3 · (ab)3c2+2c1+5 = a−c2−1 · bc2+c1+2.

Recall that ab = Λ1(t
′(a, b)) and Λ1 = ρ̃P1 . By rearranging the last formula we get

−w1w2w1(Λ + ρP0)(t
′(a, b)) = (ab)

c1+1
2 · a−

c1
2
−c2− 3

2 · b
c1
2
+c2+

3
2 .

It follows that the restriction of −w1w2w1(Λ + ρP0) to ǎP1,C is given by c1+1
2 ρ̃P1 .

In the case of the maximal parabolic P2 we obtain

−w2w1w2(Λ + ρP0)(t(a, b)) = (ab)2c2+c1+3 · a−3c2−2c1−5 = a−c2−c1−2 · b2c2+c1+3.

Recall that ab = Λ2(t(a, b)) and Λ2 = ρ̃P2 . By rearranging the last formula we get

−w2w1w2(Λ + ρP0)(t(a, b)) = (ab)
c2+1

2 · a−
3c2
2

−c1− 5
2 · b

3c2
2

+c1+
5
2 .

It follows that the restriction of −w2w1w2(Λ + ρP0) to ǎP2,C is given by c2+1
2 ρ̃P2 . �

7.3. Residues of Eisenstein series. In our discussion of possible residues of the Eisenstein
series attached to cohomological cuspidal automorphic representations of the Levi components of
the maximal parabolic k-subgroups of the group G2 we follow the general outline of Section 4.
Firstly, given a maximal parabolic k-subgroup Pr, r = 1, 2, of G2, we are going to describe the
adjoint action of the dual group GL2(C) of the Levi component Lr, r = 1, 2, on Lnr.

Let ρ2 denote the 2-dimensional standard representation of GL2(C). Then the exterior square
∧2ρ2 is the 1-dimensional representation of GL2(C) given by det ρ2. Let Sym3ρ2 denote the 3rd
symmetric power representation of ρ2. Then the 4–dimensional representation ro = Sym3ρ2 ⊗
(∧2ρ2)

−1 is called the adjoint cube representation. As determined in [41] resp. [61, p. 268], the
adjoint action of the L-group GL2(C) of L1 on Ln1 decomposes as r1 ⊕ r2 = ro ⊕∧2ρ2 whereas the
adjoint action of the L-groupGL2(C) of L2 on

Ln2 decomposes as r1⊕r2⊕r3 = ρ2⊕∧2ρ2⊕[ρ2⊗∧2ρ2].
Thus we obtain for the global normalizing factor in question in the case P1 the expression

rS(νs, π, w0) =
LS(s, π, ro)

LS(s+ 1, π, ro)
· LS(2s, π,∧2ρ2)

LS(2s+ 1, π,∧2ρ2)
.

In the case of the maximal parabolic k-subgroup P2 we obtain the expression

rS(νs, π, w0) =
LS(s, π, ρ2)

LS(s+ 1, π, ρ2)
· LS(2s, π,∧2ρ2)

LS(2s+ 1, π,∧2ρ2)
· LS(3s, π, ρ2 ⊗ ∧2ρ2)

LS(3s+ 1, π, ρ2 ⊗ ∧2ρ2)
.

Here L(s, π,∧2ρ2) = L(s, ωπ) is the Hecke L-function attached to the central character ωπ, and
L(s, π, ρ2 ⊗ ∧2ρ2) = L(s, π ⊗ ωπ, ρ2) the principal L-function attached to π twisted by its central
character ωπ.

Proposition 7.4. Let P be a maximal parabolic k-subgroup with Levi decomposition P = LPNP ,
i.e., LP

∼= GL2. Let ϕ be an associate class of cuspidal automorphic representations represented
by π ⊗ e⟨λ,HP (·)⟩ of LP (A) where π is a unitary cuspidal automorphic representation of LP (A) and
λ in the closure of the positive Weyl chamber associated to P . Let LE,{P},ϕ ⊂ AE,{P},ϕ denote the
subspace of the space of automorphic forms supported in ϕ which consists of all square–integrable
automorphic forms supported in ϕ, i.e., spanned by the residues of the Eisenstein series attached
to π at possible poles at λ.

The space LE,{P},ϕ is trivial except possibly if the cuspidal automorphic representation π is self-
dual, that is, w0(π) ∼= π.
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Proof. The maximal parabolic subgroup P is self-associate, thus, by [48, Sect. IV 3.12], the Eisen-
stein series EG

P (f, νs) attached to f ∈Wπ is holomorphic in the region Re(s) > 0 unless w0(π) ∼= π.
Consequently, the space LE,{P},ϕ is trivial except possibly if π is self–dual. �
Theorem 7.5 (The case P = P1). Let ϕ be an associate class of cuspidal automorphic represen-

tations represented by π ⊗ e⟨λ,HP1
(·)⟩ of L1(A) where π is a unitary self–dual cuspidal automorphic

representation of L1(A) and λ in the closure of the positive Weyl chamber associated to P1. Then
the space LE,{P1},ϕ is non–trivial if and only if one of the following two batches of assertions hold:

(1) a) λ = 1
2 ρ̃P1 i.e. s = 1

2 ,
b) the central character ωπ of π is trivial,
c) the L-function L(s, π, ro) attached to π does not vanish at s = 1

2 ,
(2) a) λ = ρ̃P1 i.e. s = 1,

b) the L-function L(s, π, ro) attached to π has a pole at s = 1.

Theorem 7.6 (The case P = P2). Let ϕ be an associate class of cuspidal automorphic represen-

tations represented by π ⊗ e⟨λ,HP (·)⟩ of L2(A) where π is a unitary self–dual cuspidal automorphic
representation of L2(A) and λ in the closure of the positive Weyl chamber associated to P2. Then
the space LE,{P2},ϕ is non–trivial if and only if the following assertions hold:

a) λ = 1
2 ρ̃P2 i.e. s = 1

2 ,
b) the central character ωπ of π is trivial,
c) the principal L-function L(s, π, ρ2) attached to π does not vanish at s = 1

2 .

Proof. The line of arguments in the proofs of the two theorems are similar. Given a cohomological
unitary cuspidal automorphic representations π of Lr(A), and given f ∈Wπ, we have to determine
the possible poles of the corresponding Eisenstein series EG

Pr
(f, νs) in the region Re(s) > 0.

The infinite component of π is a discrete series representation. By the Ramanujan conjecture,
as proved in [12], the non–archimedean components πv of π are tempered representations. Then,
by [57, Thms. 5.3, 5.4.], the local normalized intertwining operator N(νs, πv, w0) is holomorphic
for Re(s) ≥ 0, and, using [58, Prop. 3.1], the operator is non-zero. Thus the possible poles of
the standard intertwining operator M(νs, π, w0) for s ≥ 0 coincide with the poles of the global
normalizing factor r(νs, π, w0).

The L-function L(s, π, ρ2) converges absolutely for Re(s) > 1 by, for example, [31], and L(s, π, ρ2)
is non–zero in the region given by Re(s) ≥ 1, [32]. As proved in [18], L(s, π, ρ2) is holomorphic for
Re(s) = 1, and in fact entire. It is known, for example, by [64] that the Hecke L–function L(s, ωπ)
is entire if ωπ is non–trivial, while it has simple poles at s = 0 and s = 1 and is holomorphic
elsewhere if ωπ is trivial.

In the case of P2, it follows that the global normalizing factor r(νs, π, w0) does not have a pole at
all half-integral arguments s with Re(s) ≥ 1. However, the factor L(2s, ωπ) has a pole at s = 1

2 if
and only if ωπ is trivial. This pole can be possibly compensated for by a zero of the first factor in the
expression for r(νs, π, w0). Note that in the case P2 the third factor originating with L(3s, π⊗ ωπ)
is entire. This proves the second theorem.

In the case P1, we also require the analytic properties of the L–function L(s, π, ro). It is known
from [36] that this L–function is entire if π is not monomial, while if π is monomial it may possibly
have simple poles only at s = 0 and s = 1. This shows part (2) of the first theorem. For part (1) of
the first theorem, we argue as above for the second theorem, with the non-vanishing of L(s, π, ro)
at s = 1/2 playing the role of the non-vanishing of L(s, π, ρ2) at s = 1/2. �
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Now we are in a position to construct square-integrable cohomology classes which are represented
by residues of Eisenstein series supported in the associate class of the maximal parabolic subgroup
P = P2. However, in the other case, that is, P = P1, we cannot show the existence of such
classes. First of all, the representation spanned by residues at a possible pole of the Eisenstein
series at λ = ρ̃P1 , i.e., s = 1, would have the Langlands quotient J(ν1, Dm) as the archimedean
components, where Dm is a discrete series representation of GL2(R) of certain lowest O(2)-type m.
However, as shown in the Appendix, such Langlands quotient is not cohomological and thus there
is no contribution to cohomology coming from these residues. On the other hand, the Langlands
quotient that would appear as the archimedean component of the representation spanned by the
residues at λ = 1

2 ρ̃P1 , i.e., s = 1/2, is cohomological. However, we cannot prove the existence of a
unitary cuspidal automorphic representation π of GL2(A) such that the Eisenstein series attached
to π has a pole at s = 1/2. The problem is in the subtle non-vanishing condition for the adjoint cube
L-function L(s, π, ro) at s = 1/2 within the class of unitary cuspidal automorphic representations
π with trivial central character.

7.4. Existence of residual Eisenstein cohomology classes. Let k be a totally real algebraic
number field of degree d = [k : Q]. We consider the summand⊕

ϕ∈ΦE,{P2}

H∗
(sq)(g∞,K∞;AE,{P2},ϕ ⊗ E)

in the square-integrable cohomology H∗
(sq)(G,E) of G corresponding to the associate class {P2} of

maximal parabolic k-subgroups in G represented by P2.
Given the irreducible finite-dimensional representation (η,E) of the group G∞ = Resk/Q(G2)(R)

in a complex vector space, its highest weight can be written as Λ = (Λ)ιv , v ∈ V∞, where ιv denotes
the embedding k −→ R which corresponds to v ∈ V∞. For the sake of simplicity we assume that
Λιv = Λιv′ for all archimedean places v, v′ ∈ V∞. Recall that this representation originates from an
algebraic representation of the algebraic k-group G. We write Λ = c1Λ1+ c2Λ2, c1, c2 non-negative
integers, where Λi, i = 1, 2, denote the fundamental dominant weights.

Theorem 7.7. Suppose that the highest weight Λ of the representation (η,E) of G is of the form
Λ = c1Λ1, that is, c2 = 0. Then there exists a selfdual unitary cuspidal automorphic representation

π of L2(A) such that for ϕ ∈ ΦE,{P2} represented by π ⊗ e
⟨ν 1

2
,HP2

(·)⟩
we have

H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) ̸= 0.

Moreover, the residual Eisenstein cohomology space H∗
(sq)(g∞,K∞;AE,{P2},ϕ ⊗E) does not vanish.

In degree q = 3d, these classes represented by residues of Eisenstein series contribute to the total
cohomology group H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗

Eis(G,E)

Proof. First, we make sure that there exist suitable non-trivial cohomology classes of type (π,w)
with w = w2w1w2, that is, we have to analyze the space

H∗ (l2,K∞ ∩ L2,∞;Vπ∞ ⊗ Fµw) .

Following Proposition 7.2, the highest weight of the (l2,K∞ ∩ L2,∞)-module Fµw2w1w2
is given by

(3c2+2c1+4)ω2 where ω2 denotes the fundamental dominant weight for L2. Under the assumption
on the highest weight Λ of (η,E) the weight µw2w1w2 takes the form (2c1 +4)ω2. Since the integral
coefficient (2c1+4) is even, there exists, using Proposition 6.2, an irreducible cuspidal automorphic
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representation π of GL2(Ak) whose central character ωπ is trivial, whose archimedean components
πv in π∞ = ⊗πv, v ∈ V∞, are discrete series representations of GL2(R) compatible with (2c1 +
4)ω2, and whose corresponding L-function L(s, π, ρ2) does not vanish at s = 1/2. Note that the
corresponding class in H∗ (l2,K∞ ∩ L2,∞;Vπ∞ ⊗ Fµw2w1w2

)
is non-trivial.

Second, given such a cohomology class of type (π,w2w1w2) as just constructed, we consider the
corresponding Eisenstein series EG

P2
(f, νs). By Subsection 7.3, in general, the evaluation point of

interest for us is −w2w1w2(Λ+ ρP0)|aP2,C
= c2+1

2 ρ̃P2 . Since by our assumption c2 = 0, this amounts

to consider the point 1
2 ρ̃P2 . As a consequence of Theorem 7.6, the Eisenstein series EG

P2
(f, νs) in

question has a simple pole at s0 :=
1
2 . The map

f · e⟨νs0+ρP2
,HP2

(·)⟩ 7→ (s− s0)E
G
P2
(f, νs)

∣∣∣
s=s0

is an intertwining of the induced representation I(νs0 , π) and the space of automorphic forms on
G(k)\G(A). It is non-trivial and consists of square integrable automorphic forms. Recall that the
poles of the Eisenstein series coincide with the poles of the intertwining operator which accounts
for the second summand in the constant term of EG

P (f, νs) along P , given by, using the notation
fs := fνs ,

(7.1) EG
P (f, νs)P (g) = fs(g) +M(νs, π, w0)fs(g),

where w0 ∈ W is the unique non–trivial Weyl group element such that w0(∆ \ {α1}) ⊂ ∆, while
w0(α1) is a negative root. One sees that w0 equals wP2 , the longest element in WP2 . Note that the
archimedean components πv in π∞ = ⊗πv, v ∈ V∞, are discrete series representations, thus, tem-
pered representations. By the very construction of the Langlands quotients within the classification
of irreducible representations of real groups (see [44]) it follows that the image of the local opera-
tor M(ν1/2, πv, w0) coincides

8 with the unique irreducible Langlands quotient of the representation
I(ν1/2, πv). This unique irreducible quotient is usually denoted by J(ν1/2, πv). By construction
πv, v ∈ V∞, is compatible with the weight (2c1 + 4)ω2, hence J(ν1/2, πv) is a representation of
the real Lie group G2 with non-vanishing relative Lie algebra cohomology. More precisely, using
the notation in the Appendix, it is (up to infinitesimal equivalence) of the form Aq1(χ1) for a
suitable admissible character χ1. These non-tempered representations J(ν1/2, πv) have non-trivial
cohomology in degree 3 and 5; it vanishes in other degrees. We obtain as a consequence that

H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) ̸= 0.

In particular, it is non-vanishing in the minimal degree 3d. Finally, using [51, Theorem I.1 =
III.1], we can conclude that these non-vanishing square-integrable classes represented by residues
of Eisenstein series contribute non-trivially to H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗

Eis(G,E). �

Remark 7.8. By means of the global theta lifting related to the dual reductive pair (HQ, SL2)
where HQ denotes a suitable orthogonal group containing G2 as a subgroup one finds in [45] a
construction of cuspidal automorphic representations which give rise to non-vanishing cohomology
classes in H∗

cusp(G,E). The archimedean components of these representations are non-tempered
and correspond to the irreducible unitary representations Aq1(χ1) for a suitable character χ1. The
classses so obtained are shadows of the residual cohomology classes constructed above.

8as well as the image of N(ν1/2, πv, w0) because these two operators are proportional for tempered representations

πv
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8. The Symplectic Group of k-rank two

8.1. Roots, weights and parabolic subgroups. Let k be a totally real algebraic number field
of degree d = [k : Q]. We consider the k–split simple simply connected symplectic group G = Sp2
of k-rank 2. Let P0 be a minimal parabolic k-subgroup, and P0 = L0N0 its Levi decomposition,
which are fixed throughout the paper. The maximal split torus L0 is isomorphic to a product of 2
copies of Gm/k, and N0 is the unipotent radical. Let Φ, Φ+, ∆ denote the corresponding sets of
roots, positive roots, simple roots, respectively. If ei is the projection of L0 to its ith component,
then ∆ = {α1 = e1− e2, α2 = 2e2}. The fundamental dominant weights are Λ1 = α1+(1/2)α2 and
Λ2 = α1 + α2. Let W be the Weyl group of G with respect to L0, generated by the reflections wi

associated to the roots αi, i = 1, 2.
For r = 1, 2, the maximal proper standard parabolic k–subgroup P∆\{αr} corresponding to the

subset ∆ \ {αr} of ∆ is denoted shortly by Pr, and its Levi decomposition by Pr = LrNr, where
Lr is the Levi factor, and Nr the unipotent radical. For r = 1 we have L1

∼= GL1 × SL2, and for
r = 2 we have L2

∼= GL2. Observe that the parabolic subgroups Pr are self–associate. However, Pr

is conjugate to its opposite parabolic subgroup P opp
r by a representative of the unique non–trivial

Weyl group element w0 ∈W with the property that w0(∆ \ {αr}) ⊂ ∆.
As in the previous case, we choose as a suitable basis for ǎPr,C

∼= C the element ρ̃Pr =
⟨ρPr , α̌r⟩−1ρPr . We obtain, as already observed in [53],

ρ̃P1 =
1

2
ρP1 , ρ̃P2 =

2

3
ρP2 .

We always identify accordingly s ∈ C with νs = ρ̃Pr ⊗ s ∈ ǎPr,C.

8.2. Classes of type (π,w), w ∈ WP . Given a maximal parabolic k–subgroup Pr, r = 1, 2, of
Sp2 the way to analyze which types (π,w), w ∈ WPr occur is analogous to the case of the group
G2 dealt with. Based on the computations in [53], [56], we obtain the following results. First, the
Lie algebra cohomology H∗(nr, E) of nr := nPr with coefficients in the irreducible representation
(η,E) of Sp2 is given as a (lr,K∞ ∩ Lr,∞)–module as the sum

H∗(nr, E) =
⊕

w∈WPr

Fµw

where the sum ranges over w in the set WPr of the minimal coset representatives for the right
cosets of WPr in W , and Fµw denotes the irreducible finite–dimensional (lr,K∞ ∩Lr,∞)–module of
highest weight µw = w(Λ + ρP0)− ρP0 , where Λ ∈ ǎP0,C is the highest weight of (η,E).

As already proved in [56], the elements of length 2 in WPr are the ones of interest for us; only
in that case a residue of an Eisenstein series is possible. Following [56] one has

Proposition 8.1. Let Λ = c1Λ1+ c2Λ2 be the highest weight of the algebraic representation (η,E),
where c1, c2 ∈ Z, c1, c2 ≥ 0.

(1) For the element w1w2 ∈ WP1 of length 2 the highest weight µw1w2 of the (l1,K∞ ∩ L1,∞)-
module Fµw1w2

is given by (c1 + c2 + 1)ω1,

(2) For the element w2w1 ∈ WP2 of length 2 the highest weight µw2w1 of the (l2,K∞ ∩ L2,∞)-
module Fµw2w1

is given by (c1 + 2c2 + 2)ω2,

where ωr denotes the fundamental dominant weight for Lr, r = 1, 2.
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Proposition 8.2. The point of evaluation for an Eisenstein series which is attached to a cuspidal
cohomology class of Lr of type (π,w), w ∈WPr , ℓ(w) = 2 is given

(1) in the case P1 by −w1w2(Λ + ρP0)|ǎP1,C
= (c2 + 1)ρ̃P1 .

(2) in the case P2 by −w2w1(Λ + ρP0)|ǎP2,C
= c1+1

2 ρ̃P2 .

8.3. Residues of Eisenstein series. In the case of the symplectic group Sp2, the discussion of
possible residues of the Eisenstein series attached to cohomological cuspidal automorphic repre-
sentations of the Levi components of the maximal parabolic k-subgroups was essentially carried
through in the case Sp2/Q in [56]. In the general case Sp2/k, the residual spectrum was deter-
mined in [35] resp. [37]. We give the final results and briefly indicate the main points in the line of
argument.

Let P be a maximal parabolic k-subgroup with Levi decomposition P = LN . Let ϕ be an
associate class of cuspidal automorphic representations represented by π⊗ e⟨λ,HP (·)⟩ of L(A) where
π is a unitary cuspidal automorphic representation of L(A). Let LE,{P},ϕ ⊂ AE,{P},ϕ denote the
subspace of the space of automorphic forms supported in ϕ which consists of all square–integrable
automorphic forms in ϕ, i.e., spanned by the residues of the Eisenstein series attached to π at
possible poles at λ.

Theorem 8.3 (The case P = P2). Let P be a maximal parabolic k-subgroup of type P2 with Levi
decomposition P2 = L2N2, i.e., L2

∼= GL2. Then the following holds:

(1) The space LE,{P},ϕ is trivial except possibly if the cuspidal automorphic representation π is
selfdual, that is, w0(π) ∼= π.

(2) Given a cuspidal automorphic representation π ⊗ e⟨λ,HP (·)⟩ of L2(A) the space LE,{P},ϕ is
non–trivial if and only if the following assertions hold:
(a) π is self–dual, that is, w0(π) ∼= π,
(b) λ = 1

2 ρ̃P , i.e. s =
1
2 ,

(c) the central character of π is trivial
(d) the principal L-function L(s, π, ρ2) attached to π does not vanish at s = 1

2 , that is,
L(1/2, π, ρ2) ̸= 0.

Proof. The maximal parabolic group P of type P2 is self-associate, thus, by [48, Sect. IV 3.12], the

Eisenstein series ESp2
P2

(f, νs) attached to f ∈Wπ is holomorphic in the region Re(s) > 0 unless π is

selfdual. Consequently, the space LE,{P2},ϕ is trivial except possibly if w0(π) ∼= π. This proves (1).
Given a cuspidal automorphic representations π of L2(A), and given f ∈ Wπ, we have to deter-

mine the possible poles of the corresponding Eisenstein series EG
P2
(f, νs) in the region Re(s) > 0.

By [11, Thm. 11.1], in the global intertwining operator the local normalized intertwining operator
N(νs, πv, w0) is holomorphic and non–vanishing for s ≥ 0.9 Thus the possible poles of the standard
intertwining operatorM(νs, π, w0) for s ≥ 0 coincide with the poles of the global normalizing factor
r(νs, π, w0).

As determined in [41, (case(vi)] the adjoint action of the L–group GL2(C) of L2 on Ln2 de-
composes as r1 ⊕ r2 = ρ2 ⊕ ∧2ρ2 where ρ2 denotes the 2–dimensional standard representation of

9In the case of interest for us that π is cohomological one can also argue in this way: The infinite component of π
is a discrete series representation. By the Ramanujam conjecture as proved in [12] the non–archimedean components
πv of π are tempered representations. Then, by [57, Thms, 5.3, 5.4], the local intertwining operator is holomorphic
for Re(s) ≥ 0, and, using [58, Prop. 3.1], the operator is non-zero.
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GL2(C).10 Thus we obtain for the global normalizing factor the expression

r(λs, π, w0) =
L(s, π)

L(1 + s, π)
· L(2s, π,∧2ρ2)

L(1 + 2s, π,∧2ρ2)
,

where L(s, π,∧2ρ2) denotes the exterior square L–function. We note that the exterior square ∧2ρ2
is the determinant det ρ2 and hence L(s, π,∧2ρ2) = L(s, ωπ) is the Hecke L-function attached to
the central character ωπ of π.

A careful investigation of the analytic properties of this normalizing factor as in [35, Thm. 3.3]
resp. [37, Thm. 4.4] yields the assertions regarding the existence of a pole and a corresponding
residue of the Eisenstein series EG

P2
(f, νs) in the region Re(s) > 0. �

Next we deal with the case of a maximal parabolic k-subgroup of type P1. In this case one has
the Levi decomposition P1 = L1N1 with L1

∼= GL1 × SL2.
Given an irreducible unitary cuspidal automorphic representation π of L1(A) with π = χ ⊗ σ,

σ = ⊗′
vσv, v ∈ V a unitary cuspidal automorphic representation of SL2(A), χ = ⊗′

vχv, v ∈ V a
unitary Hecke character of k, and given f ∈ Wπ, we have to determine the possible poles of the
corresponding Eisenstein series EG

P1
(f, νs) in the region Re(s) > 0.

In general, following [39, 2.5], given a local component σv, v ∈ V , of the cuspidal automorphic
representation σ of SL2(A), there exists an irreducible unitary representation σ+v of GL2(kv) such
that σv is contained as a subrepresentation in σ+v |SL2(kv). One can choose the family {σ+v }v∈V in

such a way that σ+ := ⊗′
v∈V σ

+
v is a unitary cuspidal automorphic representation of GL2(A). We

denote the local Gelbart-Jacquet lift [17] of σ+v from GL2 to GL3 by Σv, v ∈ V . This lift depends
only on the representation σv, it is independent of the choice of σ+v . By an analysis of the local
L-function L(s, πv, r1), v /∈ S, (see [35, Sect.4]), one obtains the identity

(8.1) LS(s, π, r1) = LS(s,Σ⊗ χ),

where S denotes a finite set of places containing V∞ so that for every v /∈ S the group L1(kv) and πv
are both unramified at v and where r1 denotes the adjoint action of the L–group GL1(C)×SO3(C)
of L1 on Ln1, given by the tensor product of the standard representation ρ1 of GL1(C) and the
standard representation τ0 of SO3(C), as determined in [41, case (xx)]. The right hand side denotes
the principal L-function ofGL3 attached to the tensor product of Σ := ⊗′

vΣv and χ. This L-function
converges absolutely for Re(s) > 1 and is non-zero in that region. By [17, Thm. 9.3], this partial
L-function is entire for any χ if σ+ is not monomial.

By definition, if σ+ is monomial there exists a non-trivial unitary Hecke character δ of k such
that σ+ ⊗ δ ∼= σ+. Comparing the central character of both sides we see that δ2 = 1. We denote
by K/k the quadratic extension which corresponds by class field theory to δ = δK/k. As shown in

[39, Lemma 6.5.] there exists a unitary Hecke character θ of K such that σ+ = π(θ), that is, σ+

is obtained by automorphic induction. Since σ+ is a cuspidal automorphic representation we have
θ ̸= θc, c ∈ Gal(K/k), c ̸= 1, i.e., θ does not factor through the norm map from K to k. See Section
6.4 for more details. The Gelbart-Jacquet lift Σ of σ+ is described in terms of π(θ) as the induced

representation Ind
GL3(A)
Q(A) (π(θ(θc)−1)⊗ δK/k), where Q denotes the maximal parabolic subgroup of

GL3 of type (2, 1). In the sequel one has to distinguish the two cases whether π(θ(θc)−1) is a

10see also [60, Sect. 4].
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cuspidal representation or not. In the former case, one obtains

(8.2) L(s,Σ⊗ χ) = L(s, π(θ(θc)−1)⊗ χ) · L(s, χδK/k).

Thus, L(s,Σ⊗ χ) has a simple pole at s = 1 if χ = δK/k.

In the latter case, that is, π(θ(θc)−1) is not a cuspidal representation representation there are
exactly three possible choices (K/k, θ), (K ′/k, θ′), (K ′′/k, θ′′) for the quadratic extension K/k and
the unitary Hecke character θ such that σ+ = π(θ) = π(θ′) = π(θ′′), see [39, p. 774]. Thus, one
has that

(8.3) L(s,Σ⊗ χ) = L(s, χδK/k)L(s, χδK′/k)L(s, χδK′′/k)

and the left hand side has a pole at s = 1 if χ coincides with one of these three possible characters
δ.

Finally, following the discussion of the interwining operator at the places v /∈ S in [35, Sect. 4]
resp. [37, Sect. 5] we arrive at the conclusion

Theorem 8.4 (The case P = P1). Let P be a maximal parabolic k-subgroup of type P1 with Levi
decomposition P1 = L1N1, i.e., L1

∼= GL1 × SL2. Given a cuspidal automorphic representation
π ⊗ e⟨λ,HP1

(·)⟩ of L1(A) with π = χ ⊗ σ, σ a cuspidal automorphic representation of SL2(A), χ a
unitary Hecke character of k, the space LE,{P1},ϕ is non–trivial if and only if the following assertions
hold:

(a) The cuspidal representation σ is monomial, that is, with σ+ of the form π(θ) for some
quadratic extension K/k and some unitary Hecke character θ of K and χ determined by σ
either as χ = δK/k or as one of the three choices χ ∈ {δK/k, δK′/k, δK′′/k} in the notation
as above.

(b) λ = ρ̃P1, i.e. s = 1.

8.4. Existence of residual Eisenstein cohomology classes. Now we suppose that k is a
totally real algebraic number field of degree d = [k : Q]. We consider the summand⊕

ϕ∈ΦE,{P}

H∗
(sq)(g∞,K∞;AE,{P},ϕ ⊗ E)

in the square-integrable cohomology corresponding to the associate class {P} of maximal parabolic
k-subgroups inG = Sp2 represented by P . We have to distinguish the two cases P = P1 and P = P2.
Given the irreducible finite-dimensional representation (η,E) of the group G∞ = Resk/Q(Sp2)(R)
in a complex vector space its highest weight can be written as Λ = (Λ)ιv , v ∈ V∞. For the sake of
simplicity we assume that Λιv = Λιv′ for all archimedean places v, v′ ∈ V∞.

Theorem 8.5 (The case P = P2). Suppose that the highest weight Λ of the representation (η,E)
of G = Sp2 is of the form Λ = c2Λ2, that is, c1 = 0. Then there exists a selfdual unitary cuspidal

automorphic representation π of L2(A) such that for π ⊗ e
⟨ν 1

2
,HP2

(·)⟩
we have

H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) ̸= 0.

Moreover, the residual Eisenstein cohomology space H∗
(sq)(g∞,K∞;AE,{P2},ϕ ⊗E) does not vanish.

In degree q = 2d, these classes represented by residues of Eisenstein series contribute to the total
cohomology group H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗

Eis(G,E)
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Proof. The line of argument is similar to the proof of Theorem 7.7, thus we can be brief. Following
Proposition 8.1, the highest weight of the (l2,K∞∩L2,∞)-module Fµw2w1

is given by (c1+2c2+2)ω2

where ω2 denotes the fundamental dominant weight for L2. Under the assumption on the highest
weight Λ of (η,E) the weight µw2w1 takes the form (2c2+2)ω2. Since the integral coefficient (2c2+2)
is even, there exists, using Proposition 6.2, an irreducible cuspidal automorphic representation π
of GL2(Ak) whose central character ωπ is trivial, whose archimedean components πv in π∞ =
⊗v∈V∞πv, are discrete series representations of GL2(R) compatible with (2c2 + 2)ω2, and whose
corresponding L-function L(s, π, ρ2) does not vanish at s = 1/2. Note that the corresponding class
in H∗ (l2,K∞ ∩ L2,∞;Vπ∞ ⊗ Fµw2w1

)
is non-trivial.

Second, given such a cohomology class of type (π,w2w1) as constructed, we consider the cor-
responding Eisenstein series EG

P2
(f, νs). By Proposition 8.2, the evaluation point is −w2w1(Λ +

ρP0)|ǎP2,C
= c1+1

2 ρ̃P2 . Since by assumption c1 = 0, this amounts to consider the point 1
2 ρ̃P2 . By

Theorem 8.3, the Eisenstein series EG
P2
(f, νs) in question has a simple pole at s0 :=

1
2 . The map

f · e⟨νs0+ρP ,HP (·)⟩ 7→ (s− s0)E
G
P2
(f, νs)

∣∣∣
s=s0

is an intertwining of the induced representation I(νs0 , π) and the space of automorphic forms on
Sp2(k)\Sp2(A). It is non-trivial and consists of square integrable automorphic forms. Recall that
the poles of the Eisenstein series coincide with the poles of the intertwining operator which accounts
for the second summand in the constant term of EG

P2
(f, νs) along P2, given by, using the notation

fs := fνs ,

(8.4) EG
P2
(f, νs)P2(g) = fs(g) +M(νs, π, w0)fs(g),

where w0 ∈ W is the unique non–trivial Weyl group element such that w0(∆ \ {α1}) ⊂ ∆, while
w0(α1) is negative. One sees that w0 equals wP2 , the longest element in WP2 . Note that the
archimedean components πv in π∞ = ⊗v∈V∞πv, are discrete series representations, thus, tempered
representations. By the very construction of the Langlands quotients within the classification of
irreducible representations of real groups (see [44]) it follows that the image of the local opera-
tor M(ν1/2, πv, w0) coincides with the unique irreducible Langlands quotient of the representation
I(ν1/2, πv). This unique irreducible quotient is usually denoted by J(ν1/2, πv). By construction πv,
v ∈ V∞, is compatible with the weight (2c2 + 2)ω2, hence J(ν1/2, πv) is a representation of the real
Lie group Sp2(R) with non-vanishing relative Lie algebra cohomology. More precisely, it is (up
to infinitesimal equivalence) of the form Aq(χ) for a suitable admissible character χ, q a θ-stable
parabolic subalgebra. This non-tempered representation J(ν1/2, πv) has non-trivial cohomology in
degree 2 and 4; it vanishes in other degrees. We obtain as a consequence that

H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) ̸= 0.

In particular, it is non-vanishing in the minimal degree 2d. Finally, using [51, Theorem I.1 =
III.1], we can conclude that these non-vanishing square-integrable classes represented by residues
of Eisenstein series contribute non-trivally to H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗

Eis(G,E). �

Theorem 8.6 (The case P = P1). Suppose that the highest weight Λ of the representation (η,E)
of G = Sp2 is of the form Λ = c1Λ1, that is, c2 = 0. Then there exists a monomial unitary
cuspidal automorphic representation π of L1(A) such that for the associate class ϕ represented by

π ⊗ e⟨ν1,HP1
(·)⟩ we have
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H∗(g∞,K∞;LE,{P1},ϕ ⊗ E) ̸= 0.

Moreover, the residual Eisenstein cohomology space H∗
(sq)(g∞,K∞;AE,{P1},ϕ ⊗E) does not vanish.

In degree q = 2d, these classes represented by residues of Eisenstein series contribute to the total
cohomology group H∗(g∞,K∞;AE,{P1} ⊗ E) ⊂ H∗

Eis(G,E)

Proof. Though some of the ingredients are different, the line of argument is similar to the proof of
Theorem 8.5, thus we can be brief. Following Proposition 8.1, the highest weight of the (l1,K∞ ∩
L1,∞)-module Fµw1w2

is given by (c1+c2+1)ω1 where ω1 denotes the fundamental dominant weight
for L1. Under the assumption on the highest weight Λ of (η,E) the weight µw1w2 takes the form
(c1 + 1)ω1. There exists, using Proposition 6.4, an irreducible monomial cuspidal automorphic
representation σ+ of GL2(Ak) of the form π(θ) for some imaginary quadratic extension K/k and
some unitary Hecke character θ such that the archimedean components σv in σ := σ+|SL2 are
discrete series representations of SL2(R) compatible with (c1 + 1)ω1. Note that the corresponding
class attached to the cuspidal representation π = χ ⊗ σ with χ as indicated in Theorem 8.4 in
H∗ (l1,K∞ ∩ L1,∞;Vπ∞ ⊗ Fµw1w2

)
is non-trivial.

Second, given such a cohomology class of type (π,w1w2) as constructed, we consider the cor-
responding Eisenstein series EG

P1
(f, νs). By Proposition 8.2, the evaluation point is −w1w2(Λ +

ρP0)|ǎP1,C
= (c2 + 1)ρ̃P1 . Since by assumption c2 = 0, this amounts to consider the point ν1 = ρ̃P1 .

By Theorem 8.4, the Eisenstein series EG
P1
(f, νs) in question has a simple pole at s0 := 1. Thus its

residues span the space LE,{P1},ϕ.
By looking at the intertwining operator as in the previous proof, the archimedean components

of this space are isomorphic to the Langlands quotient J(ν1, πv). By construction πv, v ∈ V∞, is
compatible with the weight (c1 + 1)ω1, hence J(ν1, πv) is a representation of the real Lie group
Sp2(R) with non-vanishing relative Lie algebra cohomology. More precisely, it is (up to infinites-
imal equivalence) of the form Aq(ξ) for a suitable admissible character ξ, q a θ-stable parabolic
subalgebra. This non-tempered representation J(ν1, πv) has non-trivial cohomology in degree 2
and 4; it vanishes in other degrees. We obtain as a consequence that

H∗(g∞,K∞;LE,{P1},ϕ ⊗ E) ̸= 0.

In particular, it is non-vanishing in the minimal degree 2d. Finally, using [51, Theorem I.1 =
III.1], we can conclude that these non-vanishing square-integrable classes represented by residues
of Eisenstein series contribute non-trivally to H∗(g∞,K∞;AE,{P1} ⊗ E) ⊂ H∗

Eis(G,E). �

9. The odd special orthogonal group of k-rank two

9.1. Residues of Eisenstein series. As before let k be a totally real algebraic number field.
We now consider the k-split odd special orthogonal group G = SO5 of k-rank two. Note that at
the archimedean places SO5(R) = SO(3, 2), the special orthogonal group of signature (3, 2). The
residual spectrum for this group is studied by Kim in [34]. We retain the notation of the previous
section with minor adjustments. As before P0 is a fixed minimal parabolic k-subgroup, with the
Levi decomposition P0 = L0N0. Then L0 is isomorphic to a product of two copies of Gm/k. The
set of simple roots is

∆ = {α1 = e1 − e2, α2 = e2},
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where ei is the projection of L0 to its ith component. The fundamental weights are given by

Λ1 = e1 = α1 + α2 and Λ2 =
1

2
(e1 + e2) =

1

2
α1 + α2.

The Weyl group of SO5 is

W = {1, w1, w2, w1w2, w2w1, w1w2w1, w2w1w2, w1w2w1w2},
where wi is the simple reflection with respect to αi, i = 1, 2.

For r = 1, 2, the maximal proper standard parabolic k-subgroup P∆\{αr} is denoted by Pr, with
Levi decomposition Pr = LrNr. Then L1

∼= GL1 × SO3 and L2
∼= GL2. We have

ρ̃P1 =
2

3
ρP1 and ρ̃P2 =

1

2
ρP2 .

Both maximal parabolic subgroups Pr, r = 1, 2, are self-associate. Observe that ρ̃Pr coincides with
the fundamental weight Λr, r = 1, 2.

Theorem 9.1. Let P1 be the maximal standard parabolic k-subgroup as above, with the Levi factor
L1

∼= GL1 × SO3. Let π = χ ⊗ σ be a unitary cuspidal automorphic representation of L1(A),
where χ is a unitary Hecke character of Ik, and σ a unitary cuspidal automorphic representation
of SO3(A). Let ϕ be the associate class of cuspidal automorphic representations represented by

π ⊗ e⟨λ,HP1
(·)⟩, where λ ∈ ReXG

P1
is in the positive Weyl chamber determined by P1. Then, the

space LE,{P1},ϕ of square-integrable automorphic forms supported in ϕ is non-trivial if and only if
the following assertions hold:

(a) λ = 1
2 ρ̃P1 = 1

2e1, i.e. s =
1
2 ,

(b) χ2 is the trivial character of I,
(c) the principal L-function L(s, χ⊗σ′, ρ2) attached to χ⊗σ′ is non-zero at s = 1/2, where σ′ is

a representation of GL2(Ak) with trivial central character obtained from σ via identification
of SO3 with PGL2.

Proof. The normalizing factor that determines the poles of the Eisenstein series at s > 0 is given
by

(9.1) r(s, π, w0) =
L(s, χ⊗ σ, ρ1 ⊗ ρ2)

L(1 + s, χ⊗ σ, ρ1 ⊗ ρ2)
· L(2s, χ, Sym2ρ1)

L(1 + 2s, χ, Sym2ρ1)
.

The latter L-function is L(2s, χ, Sym2ρ1) = L(2s, χ2), the Hecke L-function attached to the Hecke
character χ2. Since SO3 may be identified with PGL2, the Rankin–Selberg L-function L(s, χ ⊗
σ, ρ1 ⊗ ρ2) is the same as the principal L-function L(s, χ ⊗ σ′), where σ′ is obtained from σ via
the identification. Hence, the conditions in the theorem follow from the properties of the principal
L-functions for GL2 and the Hecke L-functions. �

Theorem 9.2. Let P2 be the maximal standard parabolic k-subgroup as above, with the Levi factor
L2

∼= GL2. Let π be a unitary cuspidal automorphic representation of L2(Ak) Let ϕ be the associate

class of cuspidal automorphic representations represented by π ⊗ e⟨λ,HP2
(·)⟩, where λ ∈ ReXG

P2
is

in the positive Weyl chamber determined by P2. Then, the space LE,{P2},ϕ of square-integrable
automorphic forms supported in ϕ is non-trivial if and only if the following assertions hold:

(a) λ = ρ̃P2 = 1
2(e1 + e2), i.e. s = 1,

(b) the symmetric square L-function L(s, π, Sym2ρ2) attached to π has a pole at s = 1.
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w ∈ WP1 λ[w] =? · ρ̃P1
µw =? · ω′ χw

1 − 2c1+c2+3
2

c2 − c2+1
2

e2
w1 − c2+1

2
2c1 + c2 + 2 − 2c1+c2+3

2
e2

w1w2
c2+1

2
2c1 + c2 + 2 2c1+c2+3

2
e2

w1w2w1
2c1+c2+3

2
c2

c2+1
2

e2

Table 9.1. The evaluation points λ[w], highest weights µw and infinitesimal char-

acters χw for w ∈ WP1 in the case G = SO5, where ω
′ is the fundamental weight

for GL2 under the identification of SO3 and PGL2

w ∈ WP2 λ[w] =? · ρ̃P2 µw =? · ω2 χw

1 −(c1 + c2 + 2) c1 − c1+1
2

e1 + c1+1
2

e2
w2 −(c1 + 1) c1 + c2 + 1 − c1+c2+2

2
e1 + c1+c2+2

2
e2

w2w1 c1 + 1 c1 + c2 + 1 − c1+c2+2
2

e1 + c1+c2+2
2

e2
w2w1w2 c1 + c2 + 2 c1 − c1+1

2
e1 + c1+1

2
e2

Table 9.2. The evaluation points λ[w], highest weights µw and infinitesimal char-

acters χw for w ∈ WP2 in the case G = SO5, where ω2 is the fundamental weight
for the Levi factor L2

∼= GL2

Proof. The poles of Eisenstein series for s > 0 are determined by the normalizing factor

r(s, π, w0) =
L(s, π, Sym2ρ2)

L(1 + s, π, Sym2ρ2)
.

The properties of the symmetric square L-function L(s, π, Sym2ρ2) are known from [20]. �
9.2. Existence of residual Eisenstein cohomology classes. As explained before, we now
have to analyze which types (π,w), w ∈ WPr , may possibly contribute to the square-integrable
cohomology spaces supported in Pr, r = 1, 2. Therefore, given w ∈ WPr , we need to compute the
highest weight µw and the evaluation point λ[w]. Besides µw, we provide the infinitesimal character
χw of the unitary cuspidal automorphic representation π of Lr(A) at every archimedean place.
Since π must be cohomological, this forces the archimedean components of π to be the discrete
series representations compatible with µw, i.e., of infinitesimal character χw as explained in Section
5. The results are given in Table 9.1 for P1 and Table 9.2 for P2. The highest weight of E is written
in terms of the fundamental weights Λ1,Λ2 as

Λ = c1Λ1 + c2Λ2,

where c1, c2 ∈ Z and c1, c2 ≥ 0. The evaluation point λ[w] is given in the basis ρ̃Pr , and the
infinitesimal character χw in the basis {e1, e2}.

Theorem 9.3. Let P1 be the maximal standard parabolic k-subgroup as above, with the Levi factor
L1

∼= GL1×SO3. Let π = χ⊗σ be a unitary cuspidal automorphic representation of L1(A), where χ
is a unitary Hecke character of I, and σ a unitary cuspidal automorphic representation of SO3(A).
Let ϕ be the associate class of cuspidal automorphic representations represented by π ⊗ e⟨λ,HP1

(·)⟩,
where λ ∈ ReXG

P1
is in the positive Weyl chamber determined by P1. Then the cohomology space

H∗(g∞,K∞;LE,{P1},ϕ ⊗ E)

is non-trivial if and only if the following assertions are satisfied:
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(a) λ = 1
2 ρ̃P1 = 1

2e1, i.e. s =
1
2 ,

(b) χ2 is the trivial character of I,
(c) the principal L-function L(s, χ⊗ σ′) is non-zero at s = 1/2, where σ′ is a representation of

GL2(A) with trivial central character obtained from σ via identification of SO3 with PGL2,
(d) the highest weight Λ of the coefficient system E is of the form Λ = c1Λ1 with c1 ∈ Z≥0, i.e.,

c2 = 0,
(e) the local component of σ′ at every archimedean place is the discrete series representation

D2c1+4 of GL2(R) of lowest O(2)-type 2c1 + 4.

The type (π,w), w ∈WP1, giving non-trivial cohomology classes has the minimal coset representa-
tive w = w1w2 ∈WP1 of length two.

Proof. Comparing the tables with the theorems in the previous subsection we identify the possible
types (π,w) that may contribute to the square-integrable cohomology as follows. For P1 the only
possibility is that the evaluation point is λ[w] = (1/2)ρ̃P1 , i.e. sw = 1/2, because this is the only
point at which the Eisenstein series may have a pole in the positive Weyl chamber. This gives
condition (a). From Table 9.1, we see that the conditions for existence of non-trivial cohomology
classes imply that this may only happen for the minimal coset representative w = w1w2 ∈ WP1 of
length two, provided that c2 = 0 and that the infinitesimal character of σ is (c1 +

3
2)e2. The first

condition implies the form of Λ in assertion (d). The infinitesimal character of SO3 corresponds via
the identification with PGL2 to the infinitesimal character

(
c1 +

3
2 ,−c1 −

3
2

)
for GL2. Thus, we

obtain condition (e) for the archimedean components of σ′. Furthermore, π ∼= χ⊗ σ should satisfy
the conditions of Theorem 9.3, so that the Eisenstein series has a pole. This gives assertions (b)
and (c). �

Corollary 9.4. In the notation of Theorem 9.3, suppose that the highest weight Λ of the represen-
tation (η,E) of G = SO5 is of the form Λ = c1Λ1 with c1 ∈ Z≥0, i.e., c2 = 0. Then there exists a
unitary cuspidal automorphic representation π ∼= χ ⊗ σ of L1(A) such that for the associate class

ϕ represented by π ⊗ e⟨ν1/2,HP1
(·)⟩ we have

H∗(g∞,K∞;LE,{P1},ϕ ⊗ E) ̸= 0.

Moreover, the residual cohomology space H∗
(sq)(g∞,K∞;AE,{P1},ϕ ⊗ E) does not vanish. In the

lowest possible degree q = 2d, these classes represented by residues of Eisenstein series contribute
to the total cohomology group H∗(g∞,K∞;AE,{P1} ⊗ E) ⊂ H∗

Eis(G,E).

Proof. For the first part of the corollary, we must show that there exist a unitary cuspidal auto-
morphic representation π ∼= χ ⊗ σ satisfying assertions b), c) and e) of Theorem 9.3. Note that
assertion a) on the evaluation point and assertion d) on the highest weight Λ are the assumptions
in the corollary.

The representation σ′ of GL2(A), with trivial central character, satisfying assertion e) exists,
as we may take σ′ ∈ D(κ, q) for κ = (2c1 + 4, . . . , 2c1 + 4), and any level q such that D(κ, q)
is non-empty. See Section 6.3. Taking any such representation σ′, the existence of a quadratic
Hecke character χ of I such that L(1/2, χ⊗ σ′) ̸= 0 follows from the work of Waldspurger [69], [50,
Theorem A.2], since σ′v is a discrete series representation at all archimedean places. Thus, for such
χ assertions b) and c) are satisfied.

Finally, to show that the residual cohomology does not vanish, we observe that the lowest possible
degree in which the non-tempered representation J(ν1/2, χv ⊗D2c1+4) has non-trivial cohomology
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is degree 2. Hence, H∗(g∞,K∞;LE,{P1},ϕ ⊗ E) is non-vanishing in degree 2d. Invoking again [51,
Theorem I.1 = III.1] we conclude that these non-vanishing square-integrable classes contribute non-
trivially to H∗

(sq)(g∞,K∞;AE,{P1},ϕ ⊗ E) in degree 2d, and thus, to the total cohomology group

H∗(g∞,K∞;AE,{P1} ⊗ E) ⊂ H∗
Eis(G,E). �

Theorem 9.5. Let P2 be the maximal standard parabolic k-subgroup as above, with the Levi factor
L2

∼= GL2. Let π be a unitary cuspidal automorphic representation of L2(Ak) Let ϕ be the associate

class of cuspidal automorphic representations represented by π ⊗ e⟨λ,HP2
(·)⟩, where λ ∈ ReXG

P2
is in

the positive Weyl chamber determined by P2. Then the cohomology space

H∗(g,K∞;LE,{P2},ϕ ⊗ E)

is non-trivial if and only if the following assertions are satisfied:

(a) λ = ρ̃P2 = 1
2(e1 + e2), i.e. s = 1,

(b) the symmetric square L-function L(s, π, Sym2ρ2) has a pole at s = 1,
(c) the highest weight Λ of the coefficient system E is of the form Λ = c2Λ2 with c2 ∈ Z≥0, i.e.,

c1 = 0,
(d) the local component of π at every archimedean place is the discrete series representation

Dc2+3 of GL2(R) of lowest O(2)-type c2 + 3.

The type (π,w), w ∈WP2, giving non-trivial cohomology classes has the minimal coset representa-
tive w = w2w1 ∈WP2 of length two.

Proof. We compare Theorem 9.5 with the possible types (π,w) in Table 9.2, and argue in a similar
way as in the proof of Theorem 9.3. �
Corollary 9.6. In the notation of Theorem 9.5, suppose that the highest weight Λ of the repre-
sentation (η,E) of G = SO5 is of the form Λ = c2Λ2 with c2 ∈ Z≥0 and c2 even. Then there
exists a unitary cuspidal automorphic representation π of L2(A) such that for the associate class ϕ

represented by π ⊗ e⟨ν1,HP2
(·)⟩ we have

H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) ̸= 0.

Moreover, the residual cohomology space H∗
(sq)(g∞,K∞;AE,{P2},ϕ ⊗ E) does not vanish. In the

lowest possible degree q = 2d these classes represented by residues of Eisenstein series contribute to
the total cohomology group H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗

Eis(G,E).

Proof. As in the proof of Corollary 9.4, we need to show that there exists a unitary cuspidal
automorphic representation π of GL2(A) such that assertions b) and d) of Theorem 9.5 are satisfied.
Note that assertion a) on the evaluation point is among assumptions of the corollary. The highest
weight Λ satisfies assertion c) by the assumption c2 ∈ Z≥0 and c2 even in the corollary. Note
that there is a wider class of Λ satisfying assertion c), namely those with c2 odd. These are not
considered in the corollary. See the remark below.

Since c2 is even, the discrete series Dc2+3 is of odd lowest O(2)-type. Hence, the existence of π
satisfying assertions b) and d) is proved in Theorem 6.5.

Finally, the minimal degree in which the non-tempered representation J(ν1, Dc2+3) has non-
trivial cohomology is degree 2. Hence, H∗(g∞,K∞;LE,{P2},ϕ ⊗ E) is non-vanishing in degree 2d,
and invoking again [51, Theorem I.1 = III.1] we conclude that these non-vanishing square-integrable
classes contribute non-trivially to H∗

(sq)(g∞,K∞;AE,{P2},ϕ⊗E) in degree 2d, and thus, to the total

cohomology group H∗(g∞,K∞;AE,{P2} ⊗ E) ⊂ H∗
Eis(G,E). �
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Remark 9.7. The case of highest weight Λ = c2Λ2 such that c2 ∈ Z≥0 and c2 odd is not covered
by the previous corollary. The point is that in that case there is no π with the required properties,
as already explained in Remark 6.6. More precisely, in that case the archimedean components of π
should be the discrete series representations Dc2+3 of even lowest O(2)-type. However, according
to Remark 6.6, there is no π such that L(s, π, Sym2ρ2) has a pole at s = 1 with the discrete series
of even lowest O(2)-type as archimedean local components.

10. The even special orthogonal group of k-rank two

10.1. Residues of Eisenstein series. Finally, we consider the k-split even special orthogonal
group G = SO4 of k-rank two. Note that at the archimedean places SO4(R) = SO(2, 2), the
special orthogonal group of signature (2, 2). The residual spectrum for this group was partially
determined in [19]. We retain the notation of the previous section with minor adjustments. As
before P0 is a fixed minimal parabolic k-subgroup, with the Levi decomposition P0 = L0N0. Then
L0 is isomorphic to a product of two copies of Gm/k. The set of simple roots is

∆ = {α1 = e1 − e2, α2 = e1 + e2},

where ei is the projection of L0 to its ith component. The fundamental weights are given as

Λ1 =
1

2
(e1 − e2) and Λ2 =

1

2
(e1 + e2).

For r = 1, 2, the maximal proper standard parabolic k-subgroup P∆\{αr} is denoted by Pr, with
Levi decomposition Pr = LrNr. We have L1

∼= GL2 and L2
∼= GL2, but they are not associate. In

fact, both Pr are self-associate [63, Lemma 3.4]. We have

ρ̃P1 = ρP1 and ρ̃P2 = ρP2 .

Observe that the ρ̃Pr coincides with the fundamental weight Λr, r = 1, 2.

Theorem 10.1. Let Pr be the maximal standard parabolic k-subgroup as above, with the Levi factor
Lr

∼= GL2. Let π be a unitary cuspidal automorphic representation of Lr(A) ∼= GL2(A) Let ϕ be

the associate class of cuspidal automorphic representations represented by π ⊗ e⟨λ,HPr (·)⟩, where λ
in the closure of the positive Weyl chamber associated to Pr. Then, the space LE,{Pr},ϕ of square-
integrable automorphic forms supported in ϕ is non-trivial if and only if the following assertions
hold:

a) λ = ρ̃Pr =

{
1
2(e1 − e2), for r = 1,
1
2(e1 + e2), for r = 2,

i.e. s = 1,

b) the central character ωπ of π is trivial.

Proof. In both r = 1 and r = 2 cases, the normalizing factor is of the form

r(s, π, w0) =
L(s, π,∧2ρ2)

L(1 + s, π,∧2ρ2)
=

L(s, ωπ)

L(1 + s, ωπ)
,

so the analytic properties of the Eisenstein series follow from the properties of the Hecke L-function
L(s, ωπ) attached to the central character ωπ of π. �
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w ∈ WP1 λ[w] =? · ρ̃P1
µw =? · ω1 χw

1 −(c1 + 1) c2 − c2+1
2

e1 + c2+1
2

(−e2)

w1 c1 + 1 c2 − c2+1
2

e1 + c2+1
2

(−e2)

Table 10.1. The evaluation points λ[w], highest weights µw and infinitesimal char-

acters χw for w ∈ WP1 in the case G = SO4, where ω1 is the fundamental weight
for the Levi factor L1

∼= GL2

w ∈ WP2 λ[w] =? · ρ̃P2
µw =? · ω2 χw

1 −(c2 + 1) c1 − c1+1
2

e1 + c1+1
2

e2
w2 c2 + 1 c1 − c1+1

2
e1 + c1+1

2
e2

Table 10.2. The evaluation points λ[w], highest weights µw and infinitesimal char-

acters χw for w ∈ WP2 in the case G = SO4, where ω2 is the fundamental weight
for the Levi factor L2

∼= GL2

10.2. Existence of residual Eisenstein cohomology classes. As in the previous section, we
provide the evaluation points, highest weights, and the infinitesimal character for possible types
(π,w), w ∈WPr , that may contribute to square-integrable cohomology supported in Pr. The Weyl
group of SO4 is

W = {1, w1, w2, w1w2},
where wi is the simple reflection with respect to the simple root αi, i = 1, 2. We write the highest
weight of E in terms of fundamental weights as Λ = c1Λ1 + c2Λ2, where c1, c2 ∈ Z and c1, c2 ≥ 0.
The results of the computation are given in Table 10.1 for P1 and Table 10.2 for P2.

Theorem 10.2. Let Pr be the maximal standard parabolic k-subgroup as above, with the Levi factor
Lr

∼= GL2. Let π be a unitary cuspidal automorphic representation of Lr(A) ∼= GL2(A). Let ϕ be

the associate class of cuspidal automorphic representations represented by π ⊗ e⟨λ,HPr (·)⟩, where λ
is in the closure of the positive Weyl chamber with respect to Pr. Then the cohomology space

H∗(g∞,K∞;LE,{Pr},ϕ ⊗ E)

is non-trivial if and only if the following assertions hold:

a) λ = ρ̃Pr =

{
1
2(e1 − e2), for r = 1,
1
2(e1 + e2), for r = 2,

i.e. s = 1,

b) the central character ωπ of π is trivial,
c) the highest weight Λ of the coefficient system E is of the form

Λ =

{
cΛ2, for r = 1,
cΛ1, for r = 2,

where c ∈ Z≥0,
d) the local component of π at every archimedean place is the discrete series representation

Dc+2 of GL2(R) of lowest O(2)-type c+ 2.

The type (π,w), w ∈WPr , giving non-trivial cohomology classes has the minimal coset representa-
tive w = wr ∈WPr of length one.

Proof. In the same way as for G = SO5, this follows comparing Theorem 10.1 with Table 10.1 and
Table 10.2. �
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Corollary 10.3. In the notation of Theorem 10.2, suppose that the highest weight Λ of the repre-
sentation (η,E) of G = SO4 is of the form

Λ =

{
cΛ2, for r = 1,
cΛ1, for r = 2,

with c ∈ Z≥0 and c even. Then there exists a unitary cuspidal automorphic representation π of

Lr(A) such that for the associate class ϕ represented by π ⊗ e⟨ν1,HPr (·)⟩ we have

H∗(g∞,K∞;LE,{Pr},ϕ ⊗ E) ̸= 0.

Moreover, the residual cohomology space H∗
(sq)(g∞,K∞;AE,{Pr}⊗E) does not vanish. In the lowest

possible degree q = d these classes represented by residues of Eisenstein series contribute to the
total cohomology group H∗(g∞,K∞;AE,{Pr},ϕ ⊗ E) ⊂ H∗

Eis(G,E).

Proof. The assertion a) of Theorem 10.2 is the assumption of the corollary. The form of the highest
weight satisfies assertion c). Hence, it remains to show the existence of π satisfying assertions b)
and d). That is, the central character ωπ of π should be trivial and the archimedean components
of π should be the discrete series Dc+2 of even lowest O(2)-type. However, such π exist, as we may
take π ∈ D(κ, q) for κ = (c + 2, . . . , c + 2) and any q such that D(κ, q) is non-empty, see Section
6.3. This shows the first claim of the corollary.

To show that the residual cohomology classes contribute non-trivially to the residual cohomology
space H∗

(sq)(g,K∞;AE,{Pr},ϕ ⊗ E), observe that in the lowest possible degree 1 the cohomology of

the Langlands quotient J(λ1, Dc+2) is non-trivial. Hence, using [51, Theorem I.1 = III.1], we
conclude that these cohomology classes contribute non-trivially to the total cohomology group
H∗(g,K∞;AE,{Pr} ⊗ E) ⊂ H∗

Eis(G,E) in degree d. �

Remark 10.4. In Corollary 10.3, we assume that the highest weight Λ is of the form Λ = cΛi with
c even. However, in Theorem 10.2, there is another form of Λ that may possibly contribute to the
residual cohomology, namely, the case of c odd. But in that case, there is no π satisfying the required
properties for a non-trivial cohomology class in Theorem 10.2. More precisely, the central character
ωπ of π should be trivial according to assertion b), while the archimedean components should at the
same time be the discrete series representations Dc+2 of odd lowest O(2)-type according to assertion
d). But this is impossible because the central character of such discrete series representation is non-
trivial.

Appendix A. Unitary representations with non-zero cohomology

It is a fundamental problem to determine (up to infinitesimal equivalence) all irreducible uni-
tary representations (π,Hπ) of a real Lie group G with non-vanishing Lie algebra cohomology. A
complete solution to this classification problem was given in a constructive approach by Vogan–
Zuckerman [66]. An outgrowth of this is the computation of the relative Lie algebra cohomology
groups H∗(g,K,Hπ,K ⊗ F ) where g denotes the complexified Lie algebra of the given connected
real reductive Lie group, K ⊂ G a maximal compact subgroup.

Following [45], [68], we briefly review in this appendix the classification in the case where G is
the exceptional split real Lie group of type G2. It is a connected group of rkRG = 2. The Weyl
group WG of G is isomorphic to the dihedral group D6 of order 12. Let K be a maximal compact
subgroup of G; its Lie algebra k0 is isomorphic to sp(1)⊕ sp(1).
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Let θK be the corresponing Cartan involution and let g0 = k0 ⊕ p0 be the corresponding Cartan
decomposition of the Lie algebra g0 of G2. Given an irreducible unitary representation (π,Hπ) of G
with non-vanishing cohomology with respect to a finite-dimensional representation space F , there
is a θK-stable parabolic subalgebra q of g. By definition, q is a parabolic subalgebra of g such that
θKq = q, and q ∩ q = l is a Levi subalgebra of q where q refers to the image of q under complex
conjugation with respect to the real form g0 of g. Write u for the nilradical of q. Then l is the
complexification of a real subalgebra l0 of g0. The normalizer of q in G is connected since G is,
and it coincides with the connected Lie subgroup L of G with Lie algebra l0. Then F/uF is a one-
dimensional unitary representation of L. Write −λ : l → C for its differential. Via cohomological
induction, the data (q, λ) determine a unique irreducible unitary representation Aq(λ) of G so that
the Harish-Chandra module of (π,Hπ) is equivalent to the one of Aq(λ).

It is worth noting that the Levi subgroup L has the same rank as G, is preserved by the Cartan
involution θK , and the restriction of θK to L is a Cartan involution. Moreover, the group L contains
a maximal torus T ⊂ K. This result serves as a guideline to construct all possible θK-stable
parabolic subalgebras q in g up to conjugation by K. There are only finitely many K-conjugacy
classes of θK-stable parabolic subalgebras q in g.

In the given case the construction runs as follows: Fix non-zero elements x, y in k0, the first
one belonging to the first summand, the second to the second, and let it be the real vector space
spanned by ix, iy. Then t is a Cartan subalgebra of k0, and t ∼= C2. We denote the evaluation in the
first and second coordinate by e1 and e2 respectively, and we write α1 = e2− e1 and α2 = 3e1− e2.
Taking αi, i = 1, 2, as simple roots, the set ∆+(g, t) of positive roots of g with respect to t is given
as the set

∆+(g, t) = ∆+(k, t) ∪∆+(p, t)

where

∆+(k, t) = {α1 + α2, 3α1 + α2}, ∆+(p, t) = {α1, α2, 2α1 + α2, 3α1 + 2α2}.

Note that α1 is the short simple root, and α2 is the long simple root. The fundamental dominant
weights are Λ1 := 2α1 + α2 and Λ2 := 3α1 + α2.

Starting off from an element z ∈ t, there is an associated θ-stable parabolic subalgebra q of gC
with Levi decomposition q = lC⊕uC defined by qC = sum of non-negative eigenspaces of ad(z), lC =
centralizer of z, and uC = sum of positive eigenspaces of ad(z). Let λ be the differential of a unitary
character of L, the connected subgroup of G with Lie algebra lC∩g, such that ⟨α, λ|tC⟩ ≥ 0 for each
root α of u with respect to tC. One refers to such a one dimensional representation λ : lC −→ C as
an admissible character. A pair (q, λ) of a θ-stable parabolic subalgebra q of gC and an admissible
character λ determines a unique irreducible unitary representation Aq(λ) of G with non-vanishing
cohomology with respect to a suitable finite-dimensional representation (ν, F ) of G.

Up to infinitesimal equivalence, if lC ⊂ kC, one obtains discrete series representations, and there
are exactly three of them up to infinitesimal equivalence having the same infinitesimal character for
a given admissible character λ. Recall that this number is generally given as the ratio |WG/WK |
where WK denotes the Weyl group of K. The only degree in which these three discrete series
representations πi, i = 1, 2, 3, have Hj(g,K,Hπi ⊗ F ) ̸= 0 with a suitable coefficient system is
j = 4.

The trivial representation of G only matters if the coefficient system F is trivial as well. One
has Hj(g,K,C) = C if j = 0, 4, 8 and Hj(g,K,C) = 0 otherwise.
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The most interesting irreducible unitary representations of G = G2 are (up to infinitesimal
equivalence) the ones originating in the following way: Consider two elements zj ∈ t, j = 1, 2, with
αj(zj) > 0 and αk(zj) = 0 for k ̸= j. We denote the corresponding θ-stable parabolic subalgebra as
constructed by qj , j = 1, 2. The connected subgroup Lj , j = 1, 2, is isomorphic to SL2(R)× U(1).
These two algebras qj , j = 1, 2, are the only θ-stable parabolic subalgebras of g with R(qj) = 3. Let
λ : lj −→ C be an admissible character. Then the corresponding irreducible unitary representation
Aqj (λ) of G is non-tempered. We summarize this classification result in the case of an arbitrary
coefficient system, see [45], [67], [68].

Proposition A.1. Let G be the split simple real Lie group of type G2, g its complexified Lie
algebra, and K ⊂ G a maximal compact subgroup. Let (ν, F ) be an irreducible finite-dimensional
representation of G with highest weight Λ = c1Λ1 + c2Λ2, c1, c2 non-negative integers. Then we
have

- Fix the index j ∈ {1, 2}. If the integral coefficient ci = 0, i ̸= j, then there exists an
admissible character χj : lj −→ C with regard to qj such that the corresponding irreducible
non-tempered representation Aqj (χj), as constructed above, occurs with

Hq(g,K,Aqj (χj)⊗ F ) =

{
C if q = 3, 5
0 otherwise

- If both integral coefficients c1 ̸= 0, c2 ̸= 0 then there is no irreducible unitary representation
(π,H) of G with Hq(g,K, π ⊗ F ) ̸= 0 for q = 3, 5.

Remark A.2. Observe the shift in indices: This occurs as well if we describe the two non-tempered
representation as Langlands quotients of principal series representations (see [45, 7.7.(3)]) We have

J(P2, σ,
1

2
ρ̃P2) = Aq1(χ1), J(P1, σ,

1

2
ρ̃P1) = Aq2(χ2).

Here we use the notation used in Section 7 for the principal series representations.
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