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Abstract. The double Pareto-lognormal distribution, and the closely related normal-

Laplace distribution, are probability distributions with a wide range of applications,

which were introduced in the paper [Reed, W. J., & Jorgensen, M. (2004). The double

Pareto-lognormal distribution—a new parametric model for size distributions. Commu-

nications in Statistics – Theory and Methods, 33 (8), 1733–1753] mentioned in the title.

The purpose of this paper is to put an end to the confusion regarding the correctness of

the formulas for the probability density function and the cumulative distribution func-

tion of the double Pareto-lognormal distribution and the normal-Laplace distribution

in loc. cit., in view of the correction published in the paper [Amini, Z., & Rabbani, H.

(2017). Letter to the editor: Correction to “The Normal-Laplace distribution and its

relatives”. Communications in Statistics – Theory and Methods, 46 (4), 2076–2078]. It

is shown that the formulas in the original paper and its correction are in fact equal, so

that both are correct, except for a minor typographical error in the formulas for the

cumulative distribution functions in the original paper. The source of confusion is the

incorrect formula for the Mills ratio in terms of the complementary error function in the

correction paper, which makes the impression that the formulas are different.
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1. Introduction

The double Pareto-lognormal distribution and the normal-Laplace distribution are the

probability distributions introduced in the paper by Reed and Jorgensen (2004), men-

tioned in the title of this paper. These distributions proved to be very useful and were

already applied in a wide range of applications. It is also important in applications that

both probability distributions are naturally generated, so that the parameters of the gen-

erative model may be estimated from the context and thus the distribution parameters

predicted in advance.

In particular, the double Pareto-lognormal distribution appears as the best choice for

modelling the distribution of various phenomena, often related with the size growth.

It is very flexible in describing the power-law behavior in both tails, and at the same

time the lognormal body of the distribution. The transition between different regimes is

smooth, which is one of the reasons for its wide applicability. Some of the applications

in which the double Pareto-lognormal distribution exhibits excellent fit to the empirical

data are the distribution of earnings and income (Akhundjanov & Toda, 2020; Gabaix,

2009; Reed, 2003; Reed & Jorgensen, 2004), stock price return (Gabaix, 2009; Reed &

Jorgensen, 2004), consumption size (Toda, 2017), degree in financial networks (Sun &

Chan-Lau, 2017), human settlements size (Gabaix, 1999, 2009; Giesen, Zimmermann, &

Suedekum, 2010; González-Val, Ramos, Sanz-Gracia, & Vera-Cabello, 2015; Reed, 2001,

2002; Reed & Jorgensen, 2004), particle size (Reed & Jorgensen, 2004), oil-field size (Reed

& Jorgensen, 2004), size of web sites and computer files (Mitzenmacher, 2003; Reed &

Jorgensen, 2004), latency in mobile edge computing (Volos, Bando, & Konishi, 2018),

node degree of the web browsing session graph (Brown & Doran, 2018), call frequency

and duration of mobile phone users (Seshadri et al., 2008), initial mass of stars (Zaninetti,

2017), magnetic field curvature in space plasma (Bandyopadhyay et al., 2020), frequency
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of oligonucleotides in a genomic sequence (Csűrös, Noé, & Kucherov, 2007), phenotypic

variation in single-gene knockouts (Graham, Robb, & Poe, 2012), frequency of protein,

metabolite and messenger ribonucleic acids (mRNA) in protein synthesis (Chikashige et

al., 2015; Lu & King, 2009), fatigue life of rope wire under different impact loads (Zhiqian

& Xun, 2017).

In the recent preprint by Galinac Grbac, Huljenić, and Grbac (2022), we have applied

the double Pareto-lognormal distribution to the distribution of software faults among

software modules in software systems. It was a great surprise to realize that there is a

paper by Amini and Rabbani (2017) with the correction of the formulas by Reed and

Jorgensen (2004) for the probability density function and the cumulative distribution

function of the normal-Laplace distribution, which would imply that the formulas for

the double Pareto-lognormal distribution are incorrect as well. It seemed very unlikely

that the distributions with so many applications would contain an error. This is the

motivation for digging deeper and writing the present paper.

Careful reading of the original paper (Reed & Jorgensen, 2004), and its correction

(Amini & Rabbani, 2017), revealed that they are both correct. In fact, the formulas for

the probability density function and the cumulative distribution function of the normal-

Laplace distribution of Reed and Jorgensen (2004) and of Amini and Rabbani (2017)

are equal. In the original paper they are expressed in terms of the Mills ratio and the

probability density function of the standard normal distribution. In the latter the same

formulas are expressed in terms of the error function and the complementary error func-

tion. However, as we point out in the paper, it is the matter of elementary transformation

to show that the two expressions are equal, except for the typographical error in the for-

mula for the cumulative distribution function of Reed and Jorgensen (2004). The error

in question is just an incorrect sign. The authors of the cited paper are certainly aware
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of this minor imprecision, as the correct sign is given in the formula for the cumulative

distribution function of the normal-Laplace distribution by Reed (2006).

The source of the confusion regarding the correctness of the probability density func-

tion and the cumulative distribution function of the normal-Laplace distribution of Reed

and Jorgensen (2004) lies in the incorrect expression for the Mills ratio in terms of the

complementary error function, which was used by Amini and Rabbani (2017) to compare

the formulas. This error makes the impression that the formulas of Reed and Jorgensen

(2004) and of Amini and Rabbani (2017) are different, which is not true, except for the

sign mentioned above.

Since the formulas for the probability density function and the cumulative distribution

function of the double Pareto-lognormal distribution of Reed and Jorgensen (2004) are

derived from those for the normal-Laplace distribution, they are also correct, except for

the sign in the formula for the cumulative distribution function. Although the double

Pareto-lognormal distribution is not mentioned by Amini and Rabbani (2017), we include

the formulas here to avoid any further confusion.

At the end of this introduction, we sketch out the content of the paper. It begins with

Section 2 in which the notation is introduced and basic facts recalled. In particular, the

inconsistencies in notation of Reed and Jorgensen (2004) and Amini and Rabbani (2017)

are pointed out for convenience of the reader. Section 3 is devoted to comparison of the

formulas for the probability density function of the normal-Laplace distribution of Reed

and Jorgensen (2004) and of Amini and Rabbani (2017). Similarly, the two formulas for

the cumulative distribution function of the normal-Laplace distribution are compared in

Section 4, in which the formula is carefully derived from the probability density function

in order to capture the correct sign. Finally, in Section 5, the formulas for the probability

density function and the cumulative distribution function of the double Pareto-lognormal
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distribution are derived. Although all calculations are elementary, we tend to include

more details than usual, in order to put a definitive end to the confusion regarding the

correctness of considered formulas.

2. Notation and preliminaries

The notation in the correction by Amini and Rabbani (2017) and the original paper by

Reed and Jorgensen (2004) are not fully consistent. Hence, we start by carefully fixing

the notation, following Reed and Jorgensen (2004), and pointing out the differences with

Amini and Rabbani (2017).

• N(ν, τ 2) denotes the normal distribution with mean ν ∈ R and variance τ 2, where

τ > 0 is the standard deviation. Amini and Rabbani (2017) denote the same

distribution by N(ν, τ ).

• ϕ(z) is the probability density function (pdf) of the standard normal distribution

N(0, 1) given by

ϕ(z) =
1√
2π

e−
1
2
z2 . (1)

• Φ(z) is the cumulative distribution function (cdf) of the standard normal distri-

bution given by

Φ(z) =

∫ z

−∞
ϕ(t) dt (2)

=
1√
2π

∫ z

−∞
e−

1
2
t2 dt.

• Φc(z) is the complementary cdf of the standard normal distribution given by

Φc(z) =

∫ +∞

z

ϕ(t) dt (3)

= 1− Φ(z).
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Since ϕ(t) is an even function, the change of variables s = −t in the defining

integral of Φc implies that

Φc(z) = Φ(−z). (4)

• R(z) is the Mills ratio of the standard normal distribution given by

R(z) =
Φc(z)

ϕ(z)
. (5)

• erf(z) is the Gauss error function given by

erf(z) =
2√
π

∫ z

0

e−t2 dt, (6)

This function is used only in the correction by Amini and Rabbani (2017). It is

related to Φ(z) by the equations

Φ(z) =
1

2

[
1 + erf

(
z√
2

)]
, (7)

erf(z) = 2Φ
(
z
√
2
)
− 1. (8)

• erfc(z) is the complementary error function given as

erfc(z) = 1− erf(z). (9)

It is used only by Amini and Rabbani (2017), and related to the complementary

cdf Φc(z) by

Φc(z) =
1

2

[
1− erf

(
z√
2

)]
=

1

2
erfc

(
z√
2

)
, (10)

erfc(z) = 2Φc
(
z
√
2
)
. (11)

6



Thus erfc is also related to the Mills ratio as

R(z) =

1
2
erfc

(
z√
2

)
1√
2π
e−

1
2
z2

(12)

=

√
2π

2
e

1
2
z2 erfc

(
z√
2

)
.

At this point, there is an error in the correction by Amini and Rabbani (2017),

because the Mills ratio is incorrectly expressed in terms of erfc. This is the

main source of confusion regarding the correctness of the formulas by Reed and

Jorgensen (2004).

• fW (w) is the pdf of the asymmetric Laplace distribution given by the formula

fW (w) =


αβ
α+β

eβw, for w ≤ 0,

αβ
α+β

e−αw, for w > 0,

(13)

with parameters α > 0 and β > 0.

• NL(α, β, ν, τ 2) denotes the normal-Laplace distribution, with parameters α > 0,

β > 0, ν ∈ R and τ > 0, introduced by Reed and Jorgensen (2004). Amini and

Rabbani (2017) denote the same distribution by NL(α, β, ν, τ ).

• g(y) denotes the pdf of the normal-Laplace distribution NL(α, β, ν, τ 2). Amini

and Rabbani (2017) denote the same function by f(y), but we stick to the original

notation to avoid confusion with the double Pareto-lognormal distribution.

• G(y) denotes the cdf of the normal-Laplace distribution NL(α, β, ν, τ 2). Amini

and Rabbani (2017) denote the same function by F (y), but we stick to the original

notation for reasons mentioned above.

• dP lN(α, β, ν, τ 2) denotes the double Pareto-lognormal distribution, with param-

eters α > 0, β > 0, ν ∈ R and τ > 0, introduced by Reed and Jorgensen (2004).

• f(x), where x > 0, denotes the pdf of the double Pareto-lognormal distribution

dP lN(α, β, ν, τ 2).
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• F (x), where x > 0, denotes the cdf of the double Pareto-lognormal distribution

dP lN(α, β, ν, τ 2).

In the sequel, we show that the formula for the pdf g(y) of the normal-Laplace dis-

tribution of Reed and Jorgensen (2004), expressed in terms of the Mills ratio and the

pdf of the standard normal distribution, is equal to the formula for g(y) obtained by

Amini and Rabbani (2017) in terms of the complementary error function. The confusion

arose because the Mills ratio is incorrectly expressed in terms of the complementary er-

ror function by Amini and Rabbani (2017). Hence, there is no error in the formula for

g(y) of Reed and Jorgensen (2004). The same then holds for the pdf f(x) of the double

Pareto-lognormal distribution.

Regarding the cdf G(y) of the normal-Laplace distribution and the cdf F (x) of the

double Pareto-lognormal distribution, the formulas of Reed and Jorgensen (2004) are

also essentially correct, except for the typographical error, which is the incorrect sign in

the second term, as explained below.

3. Calculation of the normal-Laplace pdf

In this section we show that the formulas for the pdf g(y) of the normal-Laplace

distribution of Reed and Jorgensen (2004) and of Amini and Rabbani (2017) are in fact

equal.

The normal-Laplace distribution is introduced by Reed and Jorgensen (2004) as the

probability distribution of the random variable Ŷ given as the final state of an ordinary

Brownian motion after an exponentially distributed time with the initial state following

the normal distribution. However, it is shown in the Appendix of Reed (2003), that the

distribution of the random variable Ŷ can be decomposed as the sum of two independent

random variables Z and W , where Z follows the normal distribution N(ν, τ 2) and W
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the asymmetric Laplace distribution with parameters α and β, defined by its pdf fW (w)

in equation (13). The parameters are determined by the coefficients in the stochastic

differential equation of the Brownian motion and its initial condition.

It is well-known that the pdf of the sum of two independent random variables is given

by the convolution of their densities. In the notation as above, we have

g(y) = ϕ

(
y − ν

τ

)
∗ fW (y)

=

∫ +∞

−∞
ϕ

(
t− ν

τ

)
fW (y − t) dt (14)

=

∫ +∞

−∞
ϕ

(
y − t− ν

τ

)
fW (t) dt

This convolution is expressed in equation (5) of Reed and Jorgensen (2004) in terms of

the Mills ratio and the pdf of the standard normal distribution as

g(y) =
αβ

α + β
ϕ

(
y − ν

τ

)[
R

(
ατ − y − ν

τ

)
+R

(
βτ +

y − ν

τ

)]
. (15)

The same convolution is calculated in the Appendix of Amini and Rabbani (2017) and

expressed in equation (3) of loc. cit. in terms of the complementary error function as

g(y) = (16)

αβ

2(α + β)

[
e

1
2
α(−2y+2ν+ατ2) erfc

(
ατ√
2
− y − ν

τ
√
2

)
+ e

1
2
β(2y−2ν+βτ2) erfc

(
βτ√
2
+

y − ν

τ
√
2

)]
.

The calculation is correct and hence we omit it here. The goal is to prove that the two

expressions for g(y) are equal. However, we begin with a simple lemma exhibiting an

identity of exponential functions.

Lemma 3.1. The following identity

e
1
2
θ(2ξ+θτ2) =

ϕ
(
ξ
τ

)
ϕ
(
θτ + ξ

τ

)
holds for any θ, ξ ∈ R and τ > 0.
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Proof. Rewriting the exponent of the exponential function on the left-hand side gives

θ(2ξ + θτ 2) = 2θξ + θ2τ 2

=
ξ2

τ 2
+ 2θξ + θ2τ 2 − ξ2

τ 2

=

(
θτ +

ξ

τ

)2

−
(
ξ

τ

)2

.

Hence, the exponential function can be expressed in terms of the pdf of the standard

normal distribution as

e
1
2
θ(2ξ+θτ2) = e

1
2

[
(θτ+ ξ

τ )
2
−( ξ

τ )
2
]

=
e−

1
2(

ξ
τ )

2

e−
1
2(θτ+

ξ
τ )

2

=
ϕ
(
ξ
τ

)
ϕ
(
θτ + ξ

τ

) ,
as claimed. �

Proposition 3.2. Equation (15), which is equation (5) of Reed and Jorgensen (2004),

and equation (16), which is equation (3) of Amini and Rabbani (2017), expressing the pdf

g(y) of the normal-Laplace distribution, are equal.

Proof. In equation (11) the complementary error function erfc is expressed in terms of

the complementary cdf Φc of the standard normal distribution as

erfc(z) = 2Φc
(
z
√
2
)
.

Inserting this in equation (16) for the pdf of the normal-Laplace distribution of Amini

and Rabbani (2017), we obtain

g(y) =
αβ

α + β

[
e

1
2
α(−2y+2ν+ατ2)Φc

(
ατ − y − ν

τ

)
+ e

1
2
β(2y−2ν+βτ2)Φc

(
βτ +

y − ν

τ

)]
.

(17)
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Applying Lemma 3.1 with θ = α and ξ = −(y − ν) and using the fact that the pdf ϕ of

the standard normal distribution is an even function, the first exponential function can

be written as

e
1
2
α(−2y+2ν+ατ2) =

ϕ
(
y−ν
τ

)
ϕ
(
ατ − y−ν

τ

) .
For the second exponential function, Lemma 3.1 with θ = β and ξ = y − ν is applied to

obtain

e
1
2
β(2y−2ν+βτ2) =

ϕ
(
y−ν
τ

)
ϕ
(
βτ + y−ν

τ

) .
Inserting these expressions for the exponential functions into g(y), we obtain

g(y) =
αβ

α + β

[
ϕ
(
y−ν
τ

)
ϕ
(
ατ − y−ν

τ

)Φc

(
ατ − y − ν

τ

)
+

ϕ
(
y−ν
τ

)
ϕ
(
βτ + y−ν

τ

)Φc

(
βτ +

y − ν

τ

)]

=
αβ

α + β
ϕ

(
y − ν

τ

)[
Φc

(
ατ − y−ν

τ

)
ϕ
(
ατ − y−ν

τ

) +
Φc

(
βτ + y−ν

τ

)
ϕ
(
βτ + y−ν

τ

) ]

=
αβ

α + β
ϕ

(
y − ν

τ

)[
R

(
ατ − y − ν

τ

)
+R

(
βτ +

y − ν

τ

)]
,

which is exactly equation (15) for the pdf of the normal-Laplace distribution of Reed and

Jorgensen (2004), as claimed. �

4. Calculation of the normal-Laplace cdf

Since the formulas for the pdf g(y) of the normal-Laplace distribution of Reed and

Jorgensen (2004) and of Amini and Rabbani (2017) are equal by Proposition 3.2, it is

now clear that the formulas for the cdf G(y) should also be equal. Equation (4) for

G(y) of Amini and Rabbani (2017) can be rewritten in terms of the Mills ratio to obtain

equation (15) for G(y) of Reed and Jorgensen (2004). However, we include here the

calculation of the cdf to show that Reed and Jorgensen (2004) have a typographical error

in the formula for G(y). The sign in the numerator of the second term in incorrect. The
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corrected formula is given in Proposition 4.2 below. It coincides with the correct formula

for G(y) given in equation (1) of Reed (2006).

We begin the calculation of the cdf G(y) of the normal-Laplace distribution with a

technical lemma required to compute the integral of the pdf g(y).

Lemma 4.1. Let

Iθ(y) =

∫ y

−∞
eθtΦ

(
θτ +

t− ν

τ

)
dt,

where θ, ν ∈ R, θ ̸= 0, and τ > 0. Then, the following identity

Iθ(y) =
eθy

θ
Φ

(
θτ +

y − ν

τ

)
− eθν−

θ2τ2

2

θ
Φ

(
y − ν

τ

)
holds for any θ, ν ∈ R, θ ̸= 0, and τ > 0.

Proof. This is an elementary calculation. The first step is to make the change of variables

s =
t− ν

τ

in the integral Iθ(y). One obtains

Iθ(y) = τeθν
∫ y−ν

τ

−∞
eθτsΦ (θτ + s) ds.

Integration by parts of the latter integral, with

u = Φ(θτ + s) ,

dv = eθτs ds,

gives

Iθ(y) =
eθν

θ

eθτsΦ (θτ + s)

∣∣∣∣∣
y−ν
τ

−∞

−
∫ y−ν

τ

−∞
eθτsϕ (θτ + s) ds

 ,

where we used the fact that Φ′(z) = ϕ(z) holds by definition.

Observe that the first summand tends to zero as s → −∞, because Φ(θτ + s) decays

to zero as fast as es
2
, while the exponential function eθτs grows to infinity only as fast as
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es in the case of θ > 0 and decays to zero in the case of θ < 0. In the second summand,

we use the formula (1) for ϕ(θτ + s) and the definition (2) of the cdf Φ(z). Thus, the

integral Iθ(y) becomes

Iθ(y) =
eθν

θ

[
eθ(y−ν)Φ

(
θτ +

y − ν

τ

)
− 1√

2π

∫ y−ν
τ

−∞
eθτse−

1
2
(θτ+s)2 ds

]

=
eθy

θ
Φ

(
θτ +

y − ν

τ

)
− eθνe−

θ2τ2

2

θ
√
2π

∫ y−ν
τ

−∞
e−

1
2
s2 ds

=
eθy

θ
Φ

(
θτ +

y − ν

τ

)
− eθν−

θ2τ2

2

θ
Φ

(
y − ν

τ

)
,

as required. �

Proposition 4.2. The cdf G(y) of the normal-Laplace distribution is given by the formula

G(y) = Φ

(
y − ν

τ

)
− ϕ

(
y − ν

τ

)
βR

(
ατ − y−ν

τ

)
− αR

(
βτ + y−ν

τ

)
α + β

,

which is the same as equation (15) of Reed and Jorgensen (2004), except for the sign in

the numerator of the second term.

Proof. By definition the cdf G(y) is given as the integral

G(y) =

∫ y

−∞
g(t) dt,

where g(t) is the pdf of the normal-Laplace distribution. The formula (17) for g(y) in

terms of the exponential function and the complementary cdf of the standard normal

distribution is the most convenient for the calculation of the integral. We have

G(y) = (18)

αβ

α + β

[
eαν+

α2τ2

2

∫ y

−∞
e−αtΦc

(
ατ − t− ν

τ

)
dt+ e−βν+β2τ2

2

∫ y

−∞
eβtΦc

(
βτ +

t− ν

τ

)
dt

]
,

and we must compute the two integrals. The idea is to reduce them to the integral Iθ(y)

calculated in Lemma 4.1.
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Let I and J denote the first and the second integral, respectively. Using the property

(4) of the cdf Φ(z), and applying Lemma 4.1 with θ = −α, we rewrite I as

I =

∫ y

−∞
e−αtΦc

(
ατ − t− ν

τ

)
dt

=

∫ y

−∞
e−αtΦ

(
−ατ +

t− ν

τ

)
dt

= I−α(y)

= −e−αy

α
Φ

(
−ατ +

y − ν

τ

)
+

e−αν−α2τ2

2

α
Φ

(
y − ν

τ

)

=
e−αν−α2τ2

2

α
Φ

(
y − ν

τ

)
− e−αy

α
Φc

(
ατ − y − ν

τ

)
,

and using the definition (3) of the complementary ccdf Φc(z), and applying again Lemma

4.1 with θ = β, we rewrite J as

J =

∫ y

−∞
eβtΦc

(
βτ +

t− ν

τ

)
dt

=

∫ y

−∞
eβt

[
1− Φ

(
βτ +

t− ν

τ

)]
dt

=

∫ y

−∞
eβt dt−

∫ y

−∞
eβtΦ

(
βτ +

t− ν

τ

)
dt

=
eβt

β

∣∣∣∣∣
y

−∞

− Iβ(y)

=
eβy

β
−

[
eβy

β
Φ

(
βτ +

y − ν

τ

)
− eβν−

β2τ2

2

β
Φ

(
y − ν

τ

)]

=
eβν−

β2τ2

2

β
Φ

(
y − ν

τ

)
+

eβy

β

[
1− Φ

(
βτ +

y − ν

τ

)]

=
eβν−

β2τ2

2

β
Φ

(
y − ν

τ

)
+

eβy

β
Φc

(
βτ +

y − ν

τ

)
.
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Inserting the expressions for I and J in equation (18) for G(y), we obtain

G(y) =
αβ

α + β

{
eαν+

α2τ2

2

[
e−αν−α2τ2

2

α
Φ

(
y − ν

τ

)
− e−αy

α
Φc

(
ατ − y − ν

τ

)]

+ e−βν+β2τ2

2

[
eβν−

β2τ2

2

β
Φ

(
y − ν

τ

)
+

eβy

β
Φc

(
βτ +

y − ν

τ

)]}

=
β

α + β
Φ

(
y − ν

τ

)
− β

α + β
e

1
2
α(−2y+2ν+ατ2)Φc

(
ατ − y − ν

τ

)
+

α

α + β
Φ

(
y − ν

τ

)
+

α

α + β
e

1
2
β(2y−2ν+βτ2)Φc

(
βτ +

y − ν

τ

)

= Φ

(
y − ν

τ

)
−

βe
1
2
α(−2y+2ν+ατ2)Φc

(
ατ − y−ν

τ

)
− αe

1
2
β(2y−2ν+βτ2)Φc

(
βτ + y−ν

τ

)
α + β

.

(19)

The exponential functions in the numerator can be expressed in terms of the pdf ϕ(z)

of the standard normal distribution using Lemma 3.1 in the same way as in the proof of

Proposition 3.2. Thus,

G(y) = Φ

(
y − ν

τ

)
−

β
ϕ( y−ν

τ )
ϕ(ατ− y−ν

τ )
Φc

(
ατ − y−ν

τ

)
− α

ϕ( y−ν
τ )

ϕ(βτ+ y−ν
τ )

Φc
(
βτ + y−ν

τ

)
α + β

= Φ

(
y − ν

τ

)
− ϕ

(
y − ν

τ

)
βR

(
ατ − y−ν

τ

)
− αR

(
βτ + y−ν

τ

)
α + β

,

as claimed. �

In equation (4) of Amini and Rabbani (2017), the cdf G(y) of the normal-Laplace

distribution is expressed in terms of the error function erf and the complementary error

function erfc as follows

G(y) =
1

2(α + β)

[
α + β − 2βe

1
2
α(−2y+2ν+ατ2) + (α + β) erf

(
y − ν

τ
√
2

)
(20)

+ βe
1
2
α(−2y+2ν+ατ2) erfc

(
−ατ√

2
+

y − ν

τ
√
2

)
+ αe

1
2
β(2y−2ν+βτ2) erfc

(
βτ√
2
+

y − ν

τ
√
2

)]
.

We now show that this formula is equal to the one obtained in Proposition 4.2.
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Proposition 4.3. The formula in Proposition 4.2, which is equation (15) of Reed and

Jorgensen (2004) up to the sign in the numerator of the second term, and equation (20),

which is equation (4) of Amini and Rabbani (2017), expressing the cdf G(y) of the normal-

Laplace distribution, are equal.

Proof. We use the relation of erf(z) and erfc(z) to the cdf Φ(z) and complementary cdf

Φc(z) of the standard normal distribution given in equations (8) and (11). Associating

together the first two summands and the fourth one, and putting on the same denominator

the remaining summands, equation (20) can be written as

G(y) =
1

2

[
1 + erf

(
y − ν

τ
√
2

)]

−
2βe

1
2
α(−2y+2ν+ατ2) − βe

1
2
α(−2y+2ν+ατ2) erfc

(
− ατ√

2
+ y−ν

τ
√
2

)
− αe

1
2
β(2y−2ν+βτ2) erfc

(
βτ√
2
+ y−ν

τ
√
2

)
2(α + β)

= Φ

(
y − ν

τ

)

−
βe

1
2
α(−2y+2ν+ατ2) − βe

1
2
α(−2y+2ν+ατ2)Φc

(
−ατ + y−ν

τ

)
− αe

1
2
β(2y−2ν+βτ2)Φc

(
βτ + y−ν

τ

)
α + β

.

Using equation (4) and definition (3), the first two summands in the numerator can be

transformed into

βe
1
2
α(−2y+2ν+ατ2) − βe

1
2
α(−2y+2ν+ατ2)Φc

(
−ατ +

y − ν

τ

)
= βe

1
2
α(−2y+2ν+ατ2)

[
1− Φ

(
ατ − y − ν

τ

)]
= βe

1
2
α(−2y+2ν+ατ2)Φc

(
ατ − y − ν

τ

)
,

so that the formula for G(y) becomes

G(y) = Φ

(
y − ν

τ

)
−

βe
1
2
α(−2y+2ν+ατ2)Φc

(
ατ − y−ν

τ

)
− αe

1
2
β(2y−2ν+βτ2)Φc

(
βτ + y−ν

τ

)
α + β

,
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which is the same formula as in the proof of Proposition 4.2. It remains to apply Lemma

3.1 to the exponential functions in the numerator to get the formula for G(y) given in

Proposition 4.2. Thus, the two formulas are equal, as claimed. �

5. The pdf and cdf of the double Pareto-lognormal distribution

For completeness and to avoid any further confusion, we derive here the formulas for

the pdf f(x) and cdf F (x) of the double Pareto-lognormal distribution. These are not

mentioned in the correction by Amini and Rabbani (2017), but as they are determined by

the pdf g(y) and cdf G(y) of the normal-Laplace distribution, we decided to include them.

As in the case of the normal-Laplace distribution, equation (8) for the pdf and equation

(23) for the cdf of the double Pareto-lognormal distribution of Reed and Jorgensen (2004)

are correct, except for the sign in the square-brackets of (23) which is corrected below.

The double Pareto-lognormal distribution is introduced by Reed and Jorgensen (2004)

as the probability distribution of the random variable X̂, given as the final state of the

geometric Brownian motion after an exponentially distributed time, with the initial state

following the lognormal distribution. As explained by Reed and Jorgensen (2004), the

random variable X̂ is related to the random variable Ŷ defined in Section 3 as

Ŷ = log X̂.

Hence, the random variable X̂ is obtained as the function of the random variable Ŷ , so

that the pdf f(x) of the double Pareto-lognormal distribution is given in terms of the pdf

g(y) of the normal-Laplace distribution by

f(x) = g(y)

∣∣∣∣dydx
∣∣∣∣ (21)

=
1

x
g(log x),

where y = log x.
17



The formula for g(y), which is the most convenient for the calculation of f(x), is given

by equation (17) in the proof of Proposition 4.2. Inserting y = log x in the exponential

functions gives

e
1
2
α(−2y+2ν+ατ2) = e−α log xeαν+

α2τ2

2

= A(α, ν, τ )x−α,

e
1
2
β(2y−2ν+βτ2) = eβ log xe−βν+β2τ2

2

= A(−β, ν, τ )xβ,

where

A(θ, ν, τ ) = eθν+
θ2τ2

2 .

Note that there is a minor typesetting error in equation (9) of Reed and Jorgensen (2004)

defining A(θ, ν, τ ), in which α should be replaced by θ. Then, inserting these in equation

(21), with g(y) expressed as in equation (17), and using equation (4), the pdf f(x) equals

f(x) =
αβ

α + β

[
A(α, ν, τ )x−α−1Φc

(
ατ − log x− ν

τ

)
+ A(−β, ν, τ )xβ−1Φc

(
βτ +

log x− ν

τ

)]
=

αβ

α + β

[
A(α, ν, τ )x−α−1Φ

(
log x− ν − ατ 2

τ

)
(22)

+ A(−β, ν, τ )xβ−1Φc

(
log x− ν + βτ 2

τ

)]
,

which is equal to equation (8) of Reed and Jorgensen (2004).

Instead of integrating f(x), we use the relation between X̂ and Ŷ to determine the cdf

F (x) of the double Pareto-lognormal distribution. It is given by

F (x) = G(log x).
18



Note a minor typographical error just above equation (23) of Reed and Jorgensen (2004),

where ex should be replaced with log x as here. The formula for G(y), which is the most

convenient for computing F (x), is given by equation (19) in the proof of Proposition 4.2.

Inserting y = log x in that equation, using expressions for exponential functions obtained

above, and equation (4), we obtain

F (x) =

Φ

(
log x− ν

τ

)
−

βA(α, ν, τ )x−αΦc
(
ατ − log x−ν

τ

)
− αA(−β, ν, τ )xβΦc

(
βτ + log x−ν

τ

)
α + β

= Φ

(
log x− ν

τ

)
− 1

α + β

[
βA(α, ν, τ )x−αΦ

(
log x− ν − ατ 2

τ

)
(23)

− αA(−β, ν, τ )xβΦc

(
log x− ν + βτ 2

τ

)]
,

which is equal to equation (23) of Reed and Jorgensen (2004), except for the sign in the

square-brackets.
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