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Abstract. In this paper we generalize the local Jacquet–Langlands corres-
pondence to all unitary irreducible representations. We prove the global
Jacquet–Langlands correspondence in characteristic zero. As consequences
we obtain the multiplicity one and strong multiplicity one theorems for
inner forms of GL(n) as well as a classification of the residual spectrum and
automorphic representations in analogy with results proved by Mœglin–
Waldspurger and Jacquet–Shalika for GL(n).
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1. Introduction

The aim of this paper is to prove the global Jacquet–Langlands correspond-
ence and its consequences for the theory of representations of the inner
forms of GLn over a global field of characteristic zero. In order to define
the global Jacquet–Langlands correspondence, it is not sufficient to transfer

� with an appendix by Neven Grbac
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only square integrable representations as in the classical local theory [JL],
[Fl2], [Ro], [DKV]. It would be necessary to transfer at least the local
components of global discrete series. This results are already necessary to
the global correspondence with a division algebra (which can be locally
any inner form). Here we prove, more generally, the transfer of all unitary
representations. Then we prove the global Jacquet–Langlands correspond-
ence, which is compatible with this local transfer. As consequences we
obtain for inner forms of GLn the multiplicity one theorem and strong
multiplicity one theorem, as well as a classification of the residual spectrum
à la Mœglin–Waldspurger and unicity of the cuspidal support à la Jacquet–
Shalika. Using these classifications we give counterexamples showing that
the global Jacquet–Langlands correspondence for discrete series does not
extend well to all unitary automorphic representations.

We give here a list of the most important results, starting with the local
study. We would like to point out that the local results in this paper have
already been obtained by Tadić in [Ta6] in characteristic zero under the
assumption that his conjecture U0 holds. After we proved these results here
independently of his conjecture (and some of them in any characteristic),
Sécherre announced the proof of the conjecture U0 ([Se]). The approach
is completely different and we insist on the fact that we do not prove the
conjecture U0 here but more particular results which are enough to show
the local transfer necessary for the global correspondence.

Let F be a local non-Archimedean field of characteristic zero and D
a central division algebra over F of dimension d2. For n ∈ N∗ set Gn =
GLn(F) and G′

n = GLn(D). Let ν generically denote the character given by
the absolute value of the reduced norm on groups like Gn or G′

n.
Let σ ′ be a square integrable representation of G′

n . If σ ′ is a cuspidal rep-
resentation, then it corresponds by the local Jacquet–Langlands correspond-
ence to a square integrable representation σ of Gnd. We set s(σ ′) = k, where
k is the length of the Zelevinsky segment of σ . If σ ′ is not cuspidal, we set
s(σ ′) = s(ρ), where ρ is any cuspidal representation in the cuspidal support
of σ ′, and this does not depend on the choice. We set then νσ ′ = νs(σ ′).
For any k ∈ N∗ we denote then by u′(σ ′, k) the Langlands quotient of the

induced representation from ⊗k−1
i=0 (ν

k−1
2 −i

σ ′ σ ′), and if α ∈ ]0, 1
2 [, we denote

π ′(u′(σ ′, k), α) the induced representation from να
σ ′ u′(σ ′, k)⊗ν−α

σ ′ u′(σ ′, k).
The representation π ′(u′(σ ′, k), α) is irreducible ([Ta2]). Let U′ be the set
of all representations of type u′(σ ′, k) or π ′(u′(σ ′, k), α) for all G′

n, n ∈ N∗.
Tadić conjectured in [Ta2] that

(i) all the representations in U′ are unitary;
(ii) an induced representation from a product of representations in U′ is

always irreducible and unitary;
(iii) every irreducible unitary representation of G′

m , m ∈ N∗, is an induced
representation from a product of representations in U′.

The fact that the u′(σ ′, k) are unitary has been proved in [BR1] if the
characteristic of the base field is zero. In the third section of this paper
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we complete the proof of the claim (i) (i.e. π ′(u′(σ ′, k), α) are unitary; see
Corollary 3.6) and prove (ii) (Proposition 3.9).

We also prove the Jacquet–Langlands transfer for all irreducible unitary
representations of Gnd. More precisely, let us write g′ ↔ g if g ∈ Gnd,
g′ ∈ G′

n and the characteristic polynomials of g and g′ are equal and have
distinct roots in an algebraic closure of F. Denote Gnd,d the set of elements
g ∈ Gnd such that there exists g′ ∈ G′

n with g′ ↔ g. We denote χπ the func-
tion character of an admissible representation π. We say a representation π
of Gnd is d-compatible if there exists g ∈ Gnd,d such that χπ(g) �= 0. We
have (Proposition 3.9):

Theorem. If u is a d-compatible irreducible unitary representation of Gnd,
then there exists a unique irreducible unitary representation u′ of G′

n and
a unique sign ε ∈ {−1, 1} such that

χu(g) = εχu′(g′)

for all g ∈ Gnd,d and g′ ↔ g.

It is Tadić who first pointed out ([Ta6]) that this should hold if his
conjecture U0 were true. The sign ε and an explicit formula for u′ may be
computed. See for instance Subsect. 3.3.

The fifth section contains global results. Let us use the theorem above to
define a map |LJ| : u �→ u′ from the set of irreducible unitary d-compatible
representations of Gnd to the set of irreducible unitary representations of G′

n.
Let now F be a global field of characteristic zero and D a central division

algebra over F of dimension d2. Let n ∈ N∗. Set A = Mn(D). For each
place v of F let Fv be the completion of F at v and set Av = A ⊗ Fv. For
every place v of F, Av 	 Mrv

(Dv) for some positive integer rv and some
central division algebra Dv of dimension d2

v over Fv such that rvdv = nd.
We will fix once and for all an isomorphism and identify these two algebras.
We say that Mn(D) is split at a place v if dv = 1. The set V of places where
Mn(D) is not split is finite. We assume in the sequel that V does not contain
any infinite place.

Let Gnd(A) be the group of adèles of GLnd(F), and G′
n(A) the group of

adèles of GLn(D). We identify Gnd(A) with Mnd(A)×and G′
n(A) with A(A)×.

Let Z(A) be the center of Gnd(A). If ω is a smooth unitary character
of Z(A) trivial on Z(F), let L2(Z(A)Gnd(F)\Gnd(A);ω) be the space of
classes of functions f defined on Gnd(A) with values in C such that f
is left invariant under Gnd(F), f(zg) = ω(z) f(g) for all z ∈ Z(A) and
almost all g ∈ Gnd(A) and | f |2 is integrable over Z(A)Gnd(F)\Gnd(A). The
group Gnd(A) acts by right translations on L2(Z(A)Gnd(F)\Gnd(A);ω).
We call a discrete series of Gnd(A) an irreducible subrepresentation of
such a representation (for any smooth unitary character ω of Z(A) trivial
on Z(F)). We adopt the analogous definition for the group G′

n(A).
Denote DSnd (resp. DS′

n) the set of discrete series of Gnd(A) (resp.
G′

n(A)). If π is a discrete series of Gnd(A) or G′
n(A), and v is a place of F,
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we denote πv the local component of π at the place v. We will say that
a discrete series π of Gnd(A) is D-compatible if πv is dv-compatible for all
places v ∈ V .

If v ∈ V , the Jacquet–Langlands correspondence between dv -compatible
unitary representations of GLnd(Fv) and GLrv(Dv) will be denoted |LJ|v.
Recall that if v /∈ V , we have identified the groups GLrv(Dv) and GLnd(Fv).
We have the following (Theorem 5.1):

Theorem. (a) There exists a unique injective map G : DS′
n → DSnd such

that, for all π ′ ∈ DS′
n, we have G(π ′)v = π ′

v for every place v /∈ V. For
every v ∈ V, G(π ′)v is dv-compatible and we have |LJ|v(G(π ′)v) = π ′

v.
The image of G is the set of D-compatible elements of DSnd.

(b) One has multiplicity one and strong multiplicity one theorems for the
discrete spectrum of G′

n(A).

Since the original work of [JL] (see also [GeJ]), global correspondences
with division algebras under some conditions (on the division algebra or on
the representation to be transferred) have already been carried out (some-
times not explicitly stated) at least in [Fl2], [He], [Ro], [Vi], [DKV], [Fli]
and [Ba4]. They were using simple forms of the trace formula. For the
general result obtained here these formulas are not sufficient. Our work is
heavily based on the comparison of the general trace formulas for G′

n(A) and
Gnd(A) carried out in [AC]. The reader should not be misled by the fact that
here we use directly the simple formula Arthur and Clozel obtained in their
over 200 pages long work. Their work overcomes big global difficulties and
together with methods from [JL] and [DKV] reduces the global transfer of
representations to local problems.

Let us explain now what are the main extra ingredients required for
application of the spectral identity of [AC] in the proof of the theorem. The
spectral identity as stated in [AC] is roughly speaking (and after using the
multiplicity one theorem for Gnd(A)) of the type

∑
tr(σI )( f ) +

∑
λJ tr(MJπJ )( f )

=
∑

m′
i tr(σ ′

i )( f ′) +
∑

λ′
j tr(M′

jπ
′
j)( f ′)

where λJ and λ′
j are certain coefficients, σI (resp. σ ′

i ) are discrete series of
Gnd(A) (resp. of G′

n(A) of multiplicity m′
i), πJ (resp. π ′

j) are representations
of Gnd(A) (resp. of G′

n(A)) which are induced from discrete series of proper
Levi subgroups and MJ and M′

j are certain intertwining operators. As for f
and f ′, they are functions with matching orbital integrals.

The main step in proving the theorem is to choose a discrete series σ ′
of G′

n(A) and to use the spectral identity to define G(σ ′). The crucial result
is the local transfer of unitary representations (Proposition 3.9(c) of this
paper) which allows to “globally” transfer the representations from the left
side to the right side. This gives the correspondence when n = 1 as in
[JL] or [Vi]. The trouble when n > 1 is that we do not know much about
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the operators M′
j . We overcome this by induction over n. Then the Prop-

osition 3.9(b) shows that π ′
j are irreducible. This turns out to be enough

to show that the contribution of σ ′ to the equality cannot be canceled by
contributions from properly induced representations.

In the sequel of the fifth section we give a classification of representations
of G′

n(A). We define the notion of a basic cuspidal representation for groups
of type G′

k(A) (see Proposition 5.5 and the sequel). These basic cuspidal
representations are all cuspidal. Neven Grbac will show in his appendix
that these are actually the only cuspidal representations. Then the residual
discrete series of G′

n(A) are obtained from cuspidal representations in the
same way the residual discrete series of GLn(A) are obtained from cuspidal
representations in [MW2]. This classification is obtained directly by transfer
from the Mœglin–Waldspurger classification for Gn .

Moreover, for any (irreducible) automorphic representation π ′ of G′
n,

we know that ([La]) there exists a couple (P′, ρ′) where P′ is a parabolic
subgroup of G′

n containing the group of upper triangular matrices and ρ′
is a cuspidal representation of the Levi factor L ′ of P′ twisted by a real
non-ramified character such that π ′ is a constituent (in the sense of [La])
of the induced representation from ρ′ to G′

n with respect to P′. We prove
(Proposition 5.7(c)) that this couple (ρ′, L ′) is unique up to conjugation.
This result is an analogue for G′

n of Theorem 4.4 of [JS].
The last section is devoted to the computation of L-functions, ε′-factors

(in the sense of [GJ]) and their behavior under the local transfer of irre-
ducible (especially unitary) representations. The behavior of the ε-factors
then follows. These calculations are either well known or trivial, but we
feel it is natural to give them explicitly here. The L-functions and ε′-factors
in question are preserved under the correspondence for square integrable
representations. In general, ε′-factors (but not L-functions) are preserved
under the correspondence for irreducible unitary representations.

In the appendix Neven Grbac completes the classification of the discrete
spectrum by showing that all the representations except the basic cuspidal
ones are residual. His approach applies the Langlands spectral theory.

The essential part of this work has been done at the Institute for Advanced
Study, Princeton, during the year 2004 and I would like to thank the Institute
for the warm hospitality and support. They were expounded in a preprint
from the beginning of 2006. The present paper contains exactly the same
local results as that preprint. Two major improvements obtained in 2007
concern the global results. The first one is the proof of the fact that any
discrete series of the inner form transfers (based on a better understanding
of the trace formula from [AC]). The second is a complete classification of
the residual spectrum thanks to the appendix of Neven Grbac.

The research at the IAS has been supported by the NSF fellowship no.
DMS-0111298. I would like to thank Robert Langlands and James Arthur
for useful discussions about global representations; Marko Tadić and David
Renard for useful discussions on the local unitary dual; Abderrazak Bouaziz
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who explained to me the intertwining operators. I would like to thank Guy
Henniart and Colette Mœglin for the interest they showed for this work
and their invaluable advices. I thank Neven Grbac for his appendix where
he carries out the last and important step of the classification, and for his
remarks on the manuscript. Discussions with Neven Grbac have been held
during our stay at the Erwin Schrödinger Institute in Vienna and I would
like to thank here Joachim Schwermer for his invitation.

2. Basic facts and notation (local)

In the sequel N will denote the set of non-negative integers and N∗ the set
of positive integers. A multiset is a set with finite repetitions. If x ∈ R, then
[x] will denote the biggest integer inferior or equal to x.

Let F be a non-Archimedean local field and D a central division algebra
of a finite dimension over F. Then the dimension of D over F is a square
d2, d ∈ N∗. If n ∈ N∗, we set Gn = GLn(F) and G′

n = GLn(D). From now
on we identify a smooth representation of finite length with its equivalence
class, so we will consider two equivalent representations as being equal.
By a character of Gn we mean a smooth representation of dimension
one of Gn. In particular a character is not unitary unless we specify it.
Let σ be an irreducible smooth representation of Gn . We say σ is square
integrable if σ is unitary and has a non-zero matrix coefficient which
is square integrable modulo the center of Gn . We say σ is essentially
square integrable if σ is the twist of a square integrable representation by
a character of Gn . We say σ is cuspidal if σ has a non-zero matrix coefficient
which has compact support modulo the center of Gn. In particular a cuspidal
representation is essentially square integrable.

For all n ∈ N∗ let us fix the following notation:

Irrn is the set of smooth irreducible representations of Gn ,

Dn is the subset of essentially square integrable representations in Irrn,

Cn is the subset of cuspidal representations in Dn ,

Irru
n (resp. Du

n , Cu
n ) is the subset of unitary representations in Irrn (resp. Dn ,

Cn),

Rn is the Grothendieck group of admissible representations of finite length
of Gn ,

ν is the character of Gn defined by the absolute value of the determinant
(notation independent of n – this will lighten the notation and cause no
ambiguity in the sequel).

For any σ ∈ Dn, there is a unique couple (e(σ), σu) such that e(σ) ∈ R,
σu ∈ Du

n and σ = νe(σ)σu.
We will systematically identify π ∈ Irrn with its image in Rn and

consider Irrn as a subset of Rn. Then Irrn is a Z-basis of the Z-module Rn .
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If n ∈ N∗ and (n1, n2, . . ., nk) is an ordered set of positive integers such
that n = ∑k

i=1 ni then the subgroup L of Gn consisting of block diagonal
matrices with blocks of sizes n1, n2, . . ., nk in this order from the left upper
corner to the right lower corner is called a standard Levi subgroup of Gn.
The group L is canonically isomorphic with the product ×k

i=1Gni , and we
will identify these two groups. Then the notation Irr(L), D(L), C(L),
Du(L), Cu(L), R(L) extend in an obvious way to L . In particular Irr(L)
is canonically isomorphic to ×k

i=1Irrni and so on.
We denote indGn

L the normalized parabolic induction functor where it
is understood that we induce with respect to the parabolic subgroup of Gn

containing L and the subgroup of upper triangular matrices. Then indGn
L

extends to a group morphism iGn
L : R(L) → Rn. If πi ∈ Rni for i ∈

{1, 2, . . ., k} and n = ∑k
i=1ni , we denote π1 × π2 × . . . × πk or abridged∏k

i=1 πi the representation

indGn

×k
i=1Gni

⊗ k
i=1σi

of Gn . Let π be a smooth representation of finite length of Gn . If distinction
between quotient, subrepresentation and subquotient of π is not relevant,
we consider π as an element of Rn (identification with its class) with no
extra explanation.

If g ∈ Gn for some n, we say g is regular semisimple if the characteristic
polynomial of g has distinct roots in an algebraic closure of F. If π ∈ Rn,
then we let χπ denote the function character of π, as a locally constant map,
stable under conjugation, defined on the set of regular semisimple elements
of Gn .

We adopt the same notation adding a sign ′ for G′
n: Irr ′

n , D ′
n , C ′

n, Irr
′u
n ,

D
′u
n , C

′u
n , R′

n.
There is a standard way of defining the determinant and the characteristic

polynomial for elements of G′
n , in spite of D being non-commutative (see

for example [Pi, Sect. 16]). If g′ ∈ G′
n, then the characteristic polynomial

of g′ has coefficients in F, it is monic and has degree nd. The definition of
a regular semisimple element of G′

n is then the same as for Gn . If π ∈ R′
n,

we let again χπ be the function character of π. As for Gn, we will denote ν
the character of G′

n given by the absolute value of the determinant (there
will be no confusion with the one on Gn).

2.1. Classification of Irrn (resp. Irr ′
n) in terms of D l (resp. D ′

l), l ≤ n.
Let π ∈ Irrn. There exists a standard Levi subgroup L = ×k

i=1Gni of Gn

and, for all 1 ≤ i ≤ k, ρi ∈ Cni , such that π is a subquotient of
∏ k

i=1ρi .
The non-ordered multiset of cuspidal representations {ρ1, ρ2, . . ., ρk} is
determined by π and is called the cuspidal support of π.

We recall the Langlands classification which takes a particularly nice
form on Gn . Let L = ×k

i=1Gni be a standard Levi subgroup of Gn and
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σ ∈ D(L) = ×k
i=1Dni . Let us write σ = ⊗k

i=1σi with σi ∈ Dni . For each i,
write σi = νeiσu

i , where ei ∈ R and σu
i ∈ Du

ni
. Let p be a permuta-

tion of the set {1, 2, . . ., k} such that the sequence ep(i) is decreasing. Let
L p = ×k

i=1Gn p(i) and σp = ⊗k
i=1σp(i). Then indGn

Lp
σp has a unique irreducible

quotient π and π is independent of the choice of p under the condition
that (ep(i))1≤i≤k is decreasing. So π is defined by the non-ordered multiset
{σ1, σ2, . . ., σk}. We write then π = Lg(σ). Every
hack π ∈ Irrn is obtained in this way. If π ∈ Irrn and L = ×k

i=1Gni and
L ′ = ×k ′

j=1Gn′
j

are two standard Levi subgroups of Gn , if σ = ⊗k
i=1σi , with

σi ∈ Dni , and σ ′ = ⊗k ′
j=1σ

′
j , with σ ′

j ∈ Dn′
j
, are such that π = Lg(σ) =

Lg(σ ′), then k = k ′ and there exists a permutation p of {1, 2, . . ., k} such that
n′

j = n p(i) and σ ′
j = σp(i). So the non-ordered multiset {σ1, σ2, . . ., σk} is

determined by π and it is called the essentially square integrable support
of π which we abridge as the esi-support of π.

An element S = iGn
L σ of Rn, with σ ∈ D(L), is called a standard

representation of Gn. We will often write Lg(S) for Lg(σ). The set Bn of
standard representations of Gn is a basis of Rn and the map S �→ Lg(S)
is a bijection from Bn onto Irrn . All these results are consequences of the
Langlands classification (see [Ze] and [Rod]). We also have the following
result: if for all π ∈ Irrn we write π = Lg(S) for some standard repre-
sentation S and then for all π ′ ∈ Irrn\{π} we set π ′ < π if and only if π ′
is a subquotient of S, then we obtain a well defined partial order relation
on Irrn .

The same definitions and theory, including the order relation, hold for G′
n

(see [Ta2]). The set of standard representations of G′
n is denoted here by B ′

n.
For Gn or G′

n we have the following proposition, where σ1 and σ2 are
essentially square integrable representations:

Proposition 2.1. (a) The representation Lg(σ1) × Lg(σ2) contains
Lg(σ1 × σ2) as a subquotient with multiplicity 1.

(b) If π is another irreducible subquotient of Lg(σ1) × Lg(σ2), then π <
Lg(σ1 × σ2). In particular, if Lg(σ1) × Lg(σ2) is reducible, it has at
least two different subquotients.

For Gn , Assertion (a) is proven in its dual form in [Ze, Proposition 8.4].
It is proven in its present form in [Ta2, Proposition 2.3] for the more general
case of G′

n . Assertion (b) is then obvious because of the definition (here) of
the order relation, and since any irreducible subquotient of Lg(σ1)×Lg(σ2)
is also an irreducible subquotient of σ1 × σ2.

2.2. Classification of Dn in terms of Cl, l|n. Let k and l be two positive
integers and set n = kl. Let ρ ∈ Cl. Then the representation

∏k−1
i=0 νiρ

has a unique irreducible quotient σ . σ is an essentially square integrable
representation of Gn . We write then σ = Z(ρ, k). Every σ ∈ Dn is obtained
in this way and l, k and ρ are determined by σ . This may be found in [Ze].
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In general, a set X = {ρ, νρ, ν2ρ, . . ., νa−1ρ}, ρ ∈ Cb, a, b ∈ N∗, is call-
ed a segment, a is the length of the segment X and νa−1ρ is the ending of X.

2.3. Local Jacquet–Langlands correspondence. Let n ∈ N∗. Let g ∈ Gnd
and g′ ∈ G′

n. We say that g corresponds to g′ if g and g′ are regular
semisimple and have the same characteristic polynomial. We shortly write
then g ↔ g′.

Theorem 2.2. There is a unique bijection C : Dnd → D ′
n such that for

all π ∈ Dnd we have

χπ(g) = (−1)nd−nχC(π)(g
′)

for all g ∈ Gnd and g′ ∈ G′
n such that g ↔ g′.

For the proof, see [DKV] if the characteristic of the base field F is zero
and [Ba2] for the non-zero characteristic case. I should quote here also
the particular cases [JL], [Fl2] and [Ro] which contain some germs of the
general proof in [DKV].

We identify the centers of Gnd and G′
n via the canonical isomorphism.

Then the correspondence C preserves central characters so in particular
σ ∈ Du

nd if and only if C(σ) ∈ D ′u
n .

If L ′ = ×k
i=1G′

ni
is a standard Levi subgroup of G′

n we say that the
standard Levi subgroup L = ×k

i=1Gdni of Gnd corresponds to L ′. Then the
Jacquet–Langlands correspondence extends in an obvious way to a bijective
correspondence D(L) to D ′(L ′) with the same properties. We will denote
this correspondence by the same letter C. A standard Levi subgroup L of Gn
corresponds to a standard Levi subgroup or G′

r if and only if it is defined
by a sequence (n1, n2, . . ., nk) such that each ni is divisible by d. We then
say that L transfers.

2.4. Classification of D ′
n in terms of C′

l, l|n. The invariant s(σ ′). Let l
be a positive integer and ρ′ ∈ C ′

l . Then σ = C−1(ρ′) is an essentially square
integrable representation of Gld . We may write σ = Z(ρ, p) for some
p ∈ N∗ and some ρ ∈ C ld

p
. Set then s(ρ′) = p and νρ′ = νs(ρ′).

Let k and l be two positive integers and set n = kl. Let ρ′ ∈ C ′
l . Then

the representation
∏k−1

i=0 νi
ρ′ρ′ has a unique irreducible quotient σ ′. σ ′ is

an essentially square integrable representation of G′
n. We write then σ ′ =

T(ρ′, k). Every σ ′ ∈ D ′
n is obtained in this way and l, k and ρ′ are determined

by σ ′. We set then s(σ ′) = s(ρ′). For this classification see [Ta2].
A set S′ = {ρ′, νρ′ρ′, ν2

ρ′ρ′, . . ., νa−1
ρ′ ρ′}, ρ′ ∈ C ′

b, a, b ∈ N∗, is called

a segment, a is the length of S′ and νa−1
ρ′ ρ′ is the ending of S′.

2.5. Multisegments, order relation, the function l and rigid represen-
tations. Here we will give the definitions and results in terms of groups Gn,
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but one may replace Gn by G′
n. We have seen (Sects. 2.2 and 2.4) that to

each σ ∈ Dn one may associate a segment. A multiset of segments is called
a multisegment. If M is a multisegment, the multiset of endings of its
elements (see Sects. 2.2 and 2.4 for the definition) is denoted E(M).

If π ∈ Gn, the multiset of the segments of the elements of the esi-support
of π is a multisegment; we will denote it by Mπ . Mπ determines π. The
reunion with repetitions of the elements of Mπ is the cuspidal support of π.

Two segments S1 and S2 are said to be linked if S1 ∪ S2 is a segment
different from S1 and S2. If S1 and S2 are linked, we say they are adjacent
if S1 ∩ S2 = Ø.

Let M be a multisegment, and assume S1 and S2 are two linked segments
in M. Let M′ be the multisegment defined by

– M′ = (M ∪ {S1 ∪ S2} ∪ {S1 ∩ S2})\{S1, S2} if S1 and S2 are not adjacent
(i.e. S1 ∩ S2 �= Ø), and

– M′ = (M ∪ {S1 ∪ S2})\{S1, S2} if S1 and S2 are adjacent (i.e. S1 ∩ S2
= Ø).

We say that we made an elementary operation on M to get M′, or
that M′ was obtained from M by an elementary operation. We then say M′
is inferior to M. It is easy to verify this extends by transitivity to a well
defined partial order relation < on the set of multisegments of Gn. The
following proposition is a result of [Ze, Theorem 7.1] for Gn and [Ta2,
Theorem 5.3] for G′

n .

Proposition 2.3. If π, π ′ ∈ Irrn, then π < π ′ if and only if Mπ < Mπ′ .

If π < π ′, then the cuspidal support of π equals the cuspidal support
of π ′.

Define a function l on the set of multisegments as follows: if M is
a multisegment, then l(M) is the maximum of the lengths of the segments
in M. If π ∈ Irrn , set l(π) = l(Mπ). The following Lemma is obvious:

Lemma 2.4. If M′ is obtained from M by an elementary operation then
l(M) ≤ l(M′) and E(M′) ⊆ E(M). As a function on Irrn, l is decreasing.

The next important proposition is also a result from [Ze] and [Ta2]:

Proposition 2.5. Let π ∈ Irrk and π ′ ∈ Irrl. If for all S ∈ Mπ and S′ ∈ Mπ′
the segments S and S′ are not linked, then π × π ′ is irreducible.

There is an interesting consequence of this last proposition. Let l ∈ N∗
and ρ ∈ Cl. We will call the set X = {νaρ}a∈Z a line, the line generated by ρ.
Of course X is also the line generated by νρ for example. If π ∈ Irrn, we
say π is rigid if the set of elements of the cuspidal support of π is included
in a single line. As a consequence of the previous proposition we have the

Corollary 2.6. Let π ∈ Irrn. Let X be the set of the elements of the cuspidal
support of π. If {D1, D2, . . ., Dm} is the set of all the lines with which X
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has a non-empty intersection, then one may write in the unique (up to
permutation) way π = π1 ×π2 × . . .×πm with πi rigid irreducible and the
set of elements of the cuspidal support of πi included in Di, 1 ≤ i ≤ m.

We will say π = π1×π2×. . .×πm is the standard decomposition of π
in a product of rigid representations (this is only the shortest decomposition
of π in a product of rigid representations, but there might exist finer ones).

The same holds for G′
n.

2.6. The involution. Aubert defined in [Au] an involution (studied too by
Schneider and Stuhler in [ScS]) of the Grothendieck group of smooth repre-
sentations of finite length of a reductive group over a local non-Archimedean
field. The involution sends an irreducible representation to an irreducible
representation up to a sign. We specialize this involution to Gn, resp. G′

n,
and denote it in , resp. i ′n . We will write i and i ′ when the index is not
relevant or it is clearly understood. With this notation we have the relation
i(π1)× i(π2) = i(π1 ×π2), i.e. “the involution commutes with the parabolic
induction”. The same holds for i ′. The reader may find all these facts in [Au].

If π ∈ Irrn, then one and only one among i(π) and −i(π) is an irreducible
representation. We denote it by |i(π)|. We denote |i| the involution of Irrn
defined by π �→ |i(π)|. The same facts and definitions hold for i ′.

The algorithm conjectured by Zelevinsky for computing the esi-support
of |i(π)| from the esi-support of π when π is rigid (and hence more generally
for π ∈ Irrn , cf. Corollary 2.6) is proven in [MW1]. The same facts and
algorithm hold for |i ′| as explained in [BR2].

2.7. The extended correspondence. The correspondence C−1 may be ex-
tended in a natural way to a correspondence LJ between the Grothendieck

groups. Let S′ = iG ′
n

L ′ σ ′ ∈ B ′
n, where L ′ is a standard Levi subgroup

of G′
n and σ ′ an essentially square integrable representation of L ′. Set

Mn(S′) = iGnd
L C−1(σ ′), where L is the standard Levi subgroup of Gnd cor-

responding to L ′. Then Mn(S′) is a standard representation of Gnd and Mn
realizes an injective map from B ′

n into Bnd. Define Qn : Irr′
n → Irrnd by

Qn(Lg(S′)) = Lg(Mn(S′)). If π ′
1 < π ′

2, then Qn(π
′
1) < Qn(π

′
2). So Qn

induces on Irr(G′
n), by transfer from Gnd, an order relation � which is

stronger than <.
Let LJn : Rnd → R′

n be the Z-morphism defined on Bnd by setting
LJn(Mn(S′)) = S′ and LJn(S) = 0 if S is not in the image of Mn .

Theorem 2.7. (a) For all n ∈ N∗, LJn is the unique map from Rnd to R′
n

such that for all π ∈ Rnd we have

χπ(g) = (−1)nd−nχLJn(π)(g
′)

for all g ↔ g′.
(b) The map LJn is a surjective group morphism.
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(c) One has

LJn(Qn(π
′)) = π ′ +

∑

π′
j�π′

bjπ
′
j

where bj ∈ Z and π ′
j ∈ Irr ′

n.
(d) One has

LJn ◦ ind = (−1)nd−ni ′n ◦ LJn.

See [Ba4]. We will often drop the index and write only Q, M and LJ.
LJ may be extended in an obvious way to standard Levi subgroups. For
a standard Levi subgroup L ′ of G′

n which correspond to a standard Levi

subgroup L of Gnd we have LJ ◦ iGnd
L = iG ′

n
L ′ ◦ LJ.

We will say that π ∈ Rnd is d-compatible if LJn(π) �= 0. This means
that there exists a regular semisimple element g of Gnd which corresponds
to an element of G′

n and such that χπ(g) �= 0. A regular semisimple element
of Gnd corresponds to an element of G′

n if and only if its characteristic poly-
nomial decomposes into irreducible factors with the degrees divisible by d.
So our definition depends only on d, not on D. A product of representations
is d-compatible if and only if each factor is d-compatible.

2.8. Unitary representations of Gn . We are going to use the word unitary
for unitarizable. Let k, l be positive integers and set kl = n.

Let ρ ∈ Cl and set σ = Z(ρ, k). Then σ is unitary if and only if ν
k−1

2 ρ is
unitary. We set then ρu = ν

k−1
2 ρ ∈ Cu

l and we write σ = Zu(ρu, k). From
now on, anytime we write σ = Zu(ρ, k), it is understood that σ and ρ are
unitary.

Now, if σ ∈ Du
l , we set

u(σ, k) = Lg
( k−1∏

i=0

ν
k−1

2 −iσ
)
.

The representation u(σ, k) is an irreducible representation of Gn .
If α ∈ ]0, 1

2 [, we moreover set

π(u(σ, k), α) = ναu(σ, k) × ν−αu(σ, k).

The representation π(u(σ, k), α) is an irreducible representation of G2n (by
Proposition 2.5).

Let us recall the Tadić classification of unitary representations in [Ta1].
Let U be the set of all the representations u(σ, k) and π(u(σ, k), α)

where k, l range over N∗, σ ∈ Cl and α ∈ ]0, 1
2 [. Then any product of elem-

ents of U is irreducible and unitary. Every irreducible unitary representation
π of some Gn , n ∈ N∗, is such a product. The non-ordered multiset of the
factors of the product are determined by π.
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The fact that a product of irreducible unitary representations is irre-
ducible is due to Bernstein ([Be]).

Tadić computed the decomposition of the representation u(σ, k) in the
basis Bn of Rn.

Proposition 2.8. ([Ta4]) Let σ = Z(ρ, l) and k ∈ N∗. Let Wl
k be the set

of permutations w of {1, 2, . . ., k} such that w(i) + l ≥ i for all i ∈
{1, 2, . . ., k}. Then we have:

u(σ, k) = ν− k+l
2

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

Z(νiρ,w(i) + l − i)
)
.

One can also compute the dual of u(σ, k).

Proposition 2.9. Let σ = Zu(ρu, l) and k ∈ N∗. If τ = Zu(ρu, k), then

|i(u(σ, k))| = u(τ, l).

This is the Theorem 7.1 iii) [Ta1], and also a consequence of [MW1].

2.9. Unitary representations of G′
n . Let k, l ∈ N∗ and set n = kl. Let

ρ ∈ C ′
l and σ ′ = T(ρ′, k) ∈ D ′

n . As for Gn , one has σ ′ ∈ D ′u
n if and only if

ν
k−1

2
ρ′ ρ′ is unitary; we set then ρ′u = ν

k−1
2 ρ′ and write σ ′ = T u(ρ′u, k).

If now σ ′ ∈ D
′u
l , we set

u′(σ ′, k) = Lg
( k−1∏

i=0

ν
k−1

2 −i
σ ′ σ ′)

and

ū(σ ′, k) = Lg
( k−1∏

i=0

ν
k−1

2 −iσ ′).

The representations u′(σ ′, k) and ū(σ ′, k) are irreducible representations
of G′

n .
If moreover α ∈ ]0, 1

2 [, we set

π(u′(σ ′, k), α) = να
σ ′u′(σ ′, k) × ν−α

σ ′ u′(σ ′, k).

The representation π(u′(σ ′, k), α) is an irreducible representation of G′
2n

(cf. [Ta2]; a consequence of the (restated) Proposition 2.5 here).
We have the formulas:

ū(σ ′, ks(σ ′)) =
s(σ ′)∏

i=1

νi− s(σ ′)+1
2 u′(σ ′, k);(2.1)



396 A.I. Badulescu

and, for all integers 1 ≤ b ≤ s(σ ′) − 1,

ū(σ ′, ks(σ ′) + b)(2.2)

= ( b∏

i=1

νi− b+1
2 u′(σ ′, k + 1)

) × ( s(σ ′)−b∏

j=1

ν j− s(σ ′)−b+1
2 u′(σ ′, k)

)
,

with the convention that we ignore the second product if k = 0.
The products are irreducible, by Proposition 2.5, because the segments

appearing in the esi-support of two different factors are never linked. The
fact that the product is indeed ū(σ ′, ks(σ ′)) (and resp. ū(σ ′, ks(σ ′) + b)) is
then clear by Proposition 2.1. This kind of formulas has been used (at least)
in [BR1] and [Ta6].

The representations u′(σ ′, k) and ū(σ ′, k) are known to be unitary at
least in zero characteristic ([Ba4] and [BR1]).

One has

Proposition 2.10. Let σ ′ = Zu(ρ′u, l) and k ∈ N∗. If τ ′ = Zu(ρ′u, k), then
(a) |i ′(u′(σ ′, k))| = u′(τ ′, l) and (b) |i ′(ū(σ ′, ks(σ ′)))| = ū(τ ′, ls(σ ′)).

Proof. The claim (a) is a direct consequence of [BR2]. For the claim (b),
it is enough to use the relation (2.1), the claim (a) here and the fact that i ′
commutes with parabolic induction. ��

2.10. Hermitian representations and an irreducibility trick. If π ∈ Irr ′
n ,

write h(π) for the complex conjugated representation of the contragredient
of π. A representation π ∈ Irr′

n is called hermitian if π = h(π) (we
recall, to avoid confusion, that here we use “=” for the usual “equivalent”).
A unitary representation is always hermitian. If A = {σi}1≤i≤k is a multiset
of essentially square integrable representations of some G′

li
, we define the

multiset h(A) by h(A) = {h(σi)}1≤i≤k. If π ∈ Irr′
n and x ∈ R, then

h(ν xπ) = ν−xh(π), so if σ ′ ∈ D ′
l and we write σ ′ = νeσ ′u with e ∈ R and

σ ′u ∈ D ′u
l , then h(σ ′) = ν−eσ ′u ∈ D ′

l . An easy consequence of Propos-
ition 3.1.1 in [Ca] is the

Proposition 2.11. If π ∈ Irr′
n, and A is the esi-support of π, then h(A)

is the esi-support of h(π). In particular, π is hermitian if and only if the
esi-support A of π satisfies h(A) = A.

Let us give a lemma.

Lemma 2.12. Let π1 ∈ Irr′
n1

and π2 ∈ Irr′
n2

and assume h(π1) �= π2.
Then there exists ε > 0 such that for all x ∈ ]0, ε[ the representation
ax = ν xπ1 × ν−xπ2 is irreducible, but not hermitian.

Proof. For all x ∈ R let Ax be the esi-support of ν xπ1 and Bx be the esi-
support of ν−xπ2. Then the set X of x ∈ R such that Ax ∩ h(Ax) �= ∅
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or Bx ∩ h(Bx) �= ∅ is finite (it is enough to check the central char-
acter of the representations in these multisets). The set Y of x ∈ R
such that the cuspidal supports of Ax and Bx have a non-empty inter-
section is finite too. Now, if x ∈ R\Y , ax is irreducible by the Propos-
ition 2.5. Assume moreover x /∈ X. As ax is irreducible, if it were hermi-
tian one should have h(Ax) ∪ h(Bx) = Ax ∪ Bx (where the reunions are
to be taken with multiplicities, as reunions of multisets) by the Propos-
ition 2.11. But if Ax ∩ h(Ax) = ∅ and Bx ∩ h(Bx) = ∅, then this would
lead to h(Ax) = Bx , and hence to h(π1) = π2 which contradicts the
hypothesis. ��

We now state our irreducibility trick.

Proposition 2.13. Let u′
i ∈ Irr′u

ni
, i ∈ {1, 2, . . ., k}. If, for all i ∈ {1, 2,

. . ., k}, u′
i × u′

i is irreducible, then
∏k

i=1 u′
i is irreducible.

Proof. There exists ε > 0 such that for all i ∈ {1, 2, . . ., k} the cuspidal
supports of ν xu′

i and ν−xu′
i are disjoint for all x ∈ ]0, ε[. Then, for all i ∈

{1, 2, . . ., k}, for all x ∈ ]0, ε[, the representation ν xu′
i ×ν−xu′

i is irreducible.
As, by hypothesis, u′

i ×u′
i is irreducible and unitary, the representation ν x u′

i×
ν−xu′

i is also unitary for all x ∈ ]0, ε[ (see for example [Ta3, Sect. (b)]). So∏ k
i=1ν

xu′
i × ν−xu′

i is a sum of unitary representations. But we have (in the
Grothendieck group)

k∏

i=1

(
ν xu′

i × ν−xu′
i

) = (
ν x

k∏

i=1

u′
i

) × (
ν−x

k∏

i=1

u′
i

)
.

If
∏ k

i=1u′
i were reducible, then it would contain at least two different

unitary subrepresentations π1 and π2 (Proposition 2.1). But then, for some
x ∈ ]0, ε[, (ν x

∏ k
i=1u′

i ) × (ν−x
∏ k

i=1u′
i ) contains an irreducible, but not

hermitian, subquotient of the form ν xπ1 × ν−xπ2 (by Lemma 2.12). This
subquotient would be non-unitary which contradicts our assumption. ��

3. Local results

3.1. First results. Let σ ′ ∈ D ′u
n and set σ = C−1(σ ′) ∈ Du

nd. Write
σ ′ = T u(ρ′, l) for some l ∈ N∗, l|n and ρ′ ∈ Cu

n
l
. As C−1(ρ′) ∈ Du

nd
l

we

may write C−1(ρ′) = Zu(ρ, s(σ ′)) for some ρ ∈ Cu
nd

ls(σ ′)
. We set l′ = ls(σ ′).

Then we have σ = Zu(ρ, l′) (means one can recover the cuspidal support
of σ from the cuspidal support of σ ′; it is a consequence of the fact that the
correspondence commutes with the Jacquet functor; the original proof for
square integrable representations is [DKV, Theorem B.2.b]).

Let k be a positive integer and set k ′ = ks(σ ′). Let H be the group
of permutations w of {1, 2, . . ., k ′} such that s(σ ′)|w(i) − i for all i ∈
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{1, 2, . . ., k ′}. For the meaning of Wl
k and Wl′

k ′ in the following, see Propos-
ition 2.8.

This is Lemma 3.1 in [Ta5]:

Lemma 3.1. If w ∈ H, then for each j ∈ {1, 2, . . ., s(σ ′)}, the set of elem-
ents of {1, 2, . . ., k ′} equal to j mod s(σ ′) is stable under w, and w induces
a permutation wj of {1, 2, . . ., k} defined by the fact that, if w(as(σ ′)+ j) =
bs(σ ′) + j then wj(a + 1) = b + 1. The map w �→ (w1, w2, . . ., ws(σ ′)) is
an isomorphism of groups from H to (Sk)

s(σ ′). One has w ∈ H ∩ Wl′
k ′ if and

only if for all j, wj ∈ Wl
k. Moreover, sgn(w) = ∏s(σ ′)

j=1 sgn(wj).

We have the following:

Theorem 3.2. (a) One has

LJ(u(σ, k ′)) = ū(σ ′, k ′).

(b) The induced representation ū(σ ′, k ′) × ū(σ ′, k ′) is irreducible.
(c) We have the character formula

ū(σ ′, k ′) = ν− k ′+l′
2 + s(σ ′)−1

2

( ∑

w∈H∩Wl′
k ′

(−1)sgn(w)

k ′∏

i=1

T

(
νiρ′,

w(i) − i

s(σ ′)
+ l

))
.

Proof. (a) Let τ ′ = T u(ρ′, k) and set τ = C−1(τ ′). For the same reasons as
explained for σ , we have τ = Zu(ρ, k ′).

We apply Theorem 2.7(c) to ū(σ ′, k ′) and ū(τ ′, l′). We get

LJ(u(σ, k ′)) = ū(σ ′, k ′) +
∑

π′
j�ū(σ ′,k ′)

bjπ
′
j(3.1)

and

LJ(u(τ, l′)) = ū(τ ′, l′) +
∑

τ ′
q�ū(τ ′,l′)

cqτ
′
q.(3.2)

We want to show that all the bj vanish.
Let us write the dual equation to (3.1) (cf. Theorem 2.7(d)). As |i(u(σ, k ′))|

= u(τ, l′) (Proposition 2.9) and |i ′(ū(σ ′, k ′))| = ū(τ ′, l′) (Proposition 2.10),
we obtain:

LJ(u(τ, l′)) = ε1ū(τ ′, l′) + ε2

∑

π′
j�ū(σ ′,k ′)

bji
′(π ′

j)(3.3)

for some signs ε1, ε2 ∈ {−1, 1}. The equations (3.2) and (3.3) imply then
the equality:

ū(τ ′, l′) +
∑

τ ′
q�ū(τ ′,l′)

cqτ
′
q = ε1ū(τ ′, l′) + ε2

( ∑

π′
j�ū(σ ′,k ′)

bji
′(π ′

j)
)
.(3.4)
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First, observe that since π ′
j �= ū(σ ′, k ′) for all j, we also have |i ′(π ′

j)| �=
ū(τ ′, l′) for all j. So by the linear independence of irreducible representa-
tions in the Grothendieck group, ε1 = 1 and the term ū(τ ′, l′) cancels.

We will now show that the remaining equality
∑

τ ′
q�ū(τ ′,l′)

cqτ
′
q = ε2

( ∑

π′
j�ū(σ ′,k ′)

bji
′(π ′

j)
)

implies that all the coefficients bj vanish. The argument is the linear inde-
pendence of irreducible representations and the lemma:

Lemma 3.3. If π ′
j � ū(σ ′, k ′), it is impossible to have |i ′(π ′

j)| � ū(τ ′, l′).

Proof. The proof is complicated by the fact that we do not have in general
equality < = � between the order relations. But this does not really matter.
Recall that π ′

j � ū(σ ′, k ′), means by definition Q(π ′
j) < Q(ū(σ ′, k ′)), i.e.

there exists πj < u(σ, k ′) such that the esi-support of π ′
j corresponds to the

esi-support of πj element by element by Jacquet–Langlands. This implies
the only two properties we need:

(*) the cuspidal support of π ′
j equals the cuspidal support of ū(σ ′, k ′) and

(**) we have the inclusion relation E(Mπ′
j
) ⊂ E(Mū(σ ′,k ′)) (Lemma 2.4).

The property (*) implies that, if

π ′
j = a1 × a2 × . . . × ax

is a standard decomposition of π ′
j in a product of rigid representations, then:

– x = s(σ ′),
– we may assume that for 1 ≤ t ≤ s(σ ′) the line of at is generated by νtρ′

and
– the multisegment Mt of at has at most k elements.

So, if one uses the Zelevinsky–Mœglin–Waldspurger algorithm to compute
the esi-support M#

t of |i ′(at)| (cf. [BR2]), one finds that l(M#
t ) ≤ k, since

each segment in M#
t is constructed by picking up at most one cuspidal

representation from each segment in Mt . This implies that l(|i ′(at)|) ≤ k. As

|i ′(π ′
j)| = |i ′(a1)| × |i ′(a2)| × . . . × |i ′(ax)|

we eventually have l(|i ′(π ′
j)|) ≤ k.

Assume now |i ′(π ′
j)| � ū(τ ′, l′). We will show that l(|i ′(π ′

j)|) > k. Set
Q(|i ′(π ′

j)|) = γ and we know that γ < u(τ, l′). We obviously have in our
particular situation l(γ) = s(σ ′)l(|i ′(π ′

j)|). So we want to prove l(γ) > k ′.
The multisegment of γ is obtained by a sequence of elementary operation
from the multisegment of u(τ, l′): at the first elementary operation on the
multisegment of u(τ, l′) we get a multisegment M′ such that l(M′) > k ′ and
then we apply Lemma 2.4. We get, indeed, l(γ) > k ′.

So our assumption leads to a contradiction. ��
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(b) The proof uses the claim (a) and is similar to its proof. Let τ and τ ′
be defined like in (a). By the part (a) we know now that

LJ(u(σ, k ′)) = ū(σ ′, k ′) and LJ(u(τ, l′)) = ū(τ ′, l′),

so

LJ(u(σ, k ′) × u(σ, k ′)) = ū(σ ′, k ′) × ū(σ ′, k ′)

and

LJ(u(τ, l′) × u(τ, l′)) = ū(τ ′, l′) × ū(τ ′, l′).

Let us call K1 the Langlands quotient of the esi-support of ū(σ ′, k ′) ×
ū(σ ′, k ′) and K2 the Langlands quotient of the esi-support of ū(τ ′, l′) ×
ū(τ ′, l′). Using [BR2] it is easy to see that |i ′(K1)| = K2. Then we may
write, using Theorem 2.7(c) and Proposition 2.1:

LJ(u(σ, k ′) × u(σ, k ′)) = K1 +
∑

πj�K1

bjπ
′
j(3.5)

and

LJ(u(τ, l′) × u(τ, l′)) = K2 +
∑

ξ ′
m�K2

cmξ ′
m.(3.6)

We want to prove that all the bj vanish. Let us take the dual in the equa-
tion (3.5) (cf. Proposition 2.7 (d)):

LJ(i(u(σ, k ′) × u(σ, k ′))) = ±(
i ′(K1) +

∑

πj�K1

bji
′(π ′

j)
)
.(3.7)

We know that |i(u(σ, k ′)×u(σ, k ′))| = u(τ, l′)×u(τ, l′) because i commutes
with the induction functor and we have |i(u(σ, k ′))| = u(τ, l′) by Propos-
ition 2.9. As |i ′(K1)| = K2, we get from Equations (3.6) and (3.7) after
cancellation of K2 (as in the equation (3.4)):

∑

πj�K1

bji
′(π ′

j) = ±( ∑

ξ ′
m�K2

cmξ ′
m

)
.

To show that all the bj vanish, it is enough, by the linear independence of
irreducible representations, to show the following:

Lemma 3.4. If π ′ � K1 it is impossible to have |i ′(π ′)| � K2.

Proof. The proof of Lemma 3.3 applies here with a minor modification. We
write again

π ′ = a1 × a2 × . . . × as(σ ′)

such that the line of at , 1 ≤ t ≤ s(σ ′), is generated by νtρ′. The difference
here is that the multisegment M of at may have up to 2k elements. We will
prove though, that in this case again:
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Lemma 3.5. The multisegment m# of |i ′(at)| verifies l(m#) ≤ k.

This implies that l(π ′) ≤ k and the rest of the proof goes the same way
as for (a).

Proof. Let us denote m the multisegment of at (m and m# respect the nota-
tion in [MW1]). The multisegment m# is obtained from m using the algo-

rithm in [MW1] (cf. [BR2]). As π ′ � K1, one has E(m) ⊂ {ν l−k
2 +1

ρ′ ρ′,
ν

l−k
2 +2

ρ′ ρ′, . . ., ν
l+k

2
ρ′ ρ′} (it is the property (**) given at the beginning of

the proof of Lemma 3.3). One constructs all the segments of m# ending

with ν
l+k

2
ρ′ ρ′ using only cuspidal representations in E(m) (Remark II.2.2 in

[MW1]). So the length of the constructed segments is at most k. Let m− be
the multisegment obtained from m after we dropped from each segment of m
the cuspidal representations used in this construction. We obviously have

then E(m−) ⊂ {ν l−k
2

ρ′ ρ′, ν
l−k

2 +1
ρ′ ρ′, . . ., ν

l+k
2 −1

ρ′ ρ′} which has again k elements.
So going through the algorithm we will find that all the segments of m#

have length at most k. ��
(c) The claim (a) we have just proven allows us to transfer the formula

of the Proposition 2.8 by LJ.
We have

LJ(u(σ, k ′)) = ν− k ′+l′
2

( ∑

w∈Wl′
k ′

(−1)sgn(w)LJ
( k ′∏

i=1

Z(νiρ,w(i) + l′ − i)
))

.

The representations
∏k ′

i=1 Z(νiρ,w(i) + l′ − i) are standard. If w is such
that, for some i, s(σ ′) does not divide w(i)− i, then LJ(

∏k ′
i=1 Z(νiρ,w(i)+

l′ − i)) = 0.
If w satisfies s(σ ′)|w(i) − i for all i, i.e. w ∈ H , then

LJ
( k ′∏

i=1

Z(νiρ,w(i) + l′ − i)
) =

k ′∏

i=1

T

(
νi+ s(σ ′)−1

2 ρ′,
w(i) − i

s(σ ′)
+ l

)
.

Hence the formula of (c). ��
Corollary 3.6. Let n, k ∈ N∗ and σ ′ ∈ D ′u

n.

(a) u′(σ ′, k) × u′(σ ′, k) is irreducible. π(u′(σ ′, k), α) are unitary for α ∈
]0, 1

2 [.
(b) Write σ ′ = T u(ρ′, l) for some unitary cuspidal representation ρ′. Let

Wl
k be the set of permutation w of {1, 2, . . ., k} such that w(i) + l ≥ i

for all i ∈ {1, 2, . . ., k}. Then we have:

u′(σ ′, k) = ν
− k+l

2
σ ′

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

T(νi
σ ′ρ′, w(i) + l − i)

)
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Proof. (a) It is clear that u′(σ ′, k)×u′(σ ′, k) is irreducible from the part (b)
of Theorem 3.2 and the formula (2.1). The fact that this implies that all the
π(u′(σ ′, k), α) are unitary is explained in [Ta2].

(b) We want to show that

u′(σ ′, k) = ν
− k+l

2
σ ′

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

T
(
νi

σ ′ρ′, w(i) + l − i
))

.

We use the equality

ū(σ ′, ks(σ ′)) =
s(σ ′)∏

j=1

ν j− s(σ ′)+1
2 u′(σ ′, k)

and the character formula for ū(σ ′, ks(σ ′)) obtained in Theorem 3.2(c).
Set

U = ν
− k+l

2
σ ′

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

T
(
νi

σ ′ρ′, w(i) + l − i
)) ∈ R′

n.

We have

s(σ ′)∏

j=1

ν j− s(σ ′)+1
2 U

= ν− k+l
2 s(σ ′)

s(σ ′)∏

j=1

ν j− s(σ ′)+1
2

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

T
(
νi

σ ′ρ′, w(i) + l − i
))

= ν− k ′+l′
2 + s(σ ′)−1

2

s(σ ′)∏

j=1

( ∑

w∈Wl
k

(−1)sgn(w)

k∏

i=1

T
(
ν(i−1)s(σ ′)+ jρ′, w(i) + l − i

))

= ν− k ′+l′
2 + s(σ ′)−1

2

×
∑

w1,w2,...,ws(σ ′)∈Wl
k

s(σ ′)∏

j=1

(−1)sgn(wj )

k∏

i=1

T
(
ν(i−1)s(σ ′)+ jρ′, wj(i) + l − i

)
.

Using Lemma 3.1 we find that this last formula is equal to the character
formula of ū(σ ′, ks(σ ′)) (Theorem 3.2(c)). As ū(σ ′, ks(σ ′)) is irreducible,
we will show that so is U .

The formula defining U is an alternated sum of |Wl
k| terms which are

distinct elements of B ′
n. The term

∏k
i=1 ν

i− k+1
2

σ ′ σ ′, corresponding to the
trivial w, is maximal. To prove that, one may use Lemma 2.4 and the fact

that one has l(
∏k

i=1 ν
i− k+1

2
σ ′ σ ′) = l, while l(t) > l for any other term t in
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the sum. The Langlands quotient of this maximal term
∏k

i=1 ν
i− k+1

2
σ ′ σ ′ is

u′(σ ′, k) and appears then in the sum with coefficient 1. So we may write:

U = π ′
0 +

m∑

t=1

btπ
′
t

where π ′
0 = u′(σ ′, k), bt are non-zero integers, π ′

t ∈ Irr ′
n and the π ′

t ,
0 ≤ t ≤ m, are distinct, with the convention m = 0 if U = u′(σ ′, k).
The representations π ′

t are rigid and supported on the same line L (gen-

erated by ν
− k+l

2
ρ′ ρ′). For different j in {1, 2, . . ., s(σ ′)}, the lines ν j− s(σ ′)+1

2 L
are different. So, as the π ′

t are distinct (and have distinct esi-support),
∏s(σ ′)

j=1 ν j− s(σ ′)+1
2 U is a linear combination of exactly (m + 1)s(σ ′) irreducible

distinct representations each appearing with non-zero coefficient. As it is
irreducible, we have m = 0. ��
3.2. Transfer of u(σ, k). Let k, l, q be positive integers, set n = klq and
let ρ ∈ Cu

q and σ = Zu(ρ, l) ∈ Du
lq , τ = Zu(ρ, k) ∈ Du

kq . Let s be the
smallest positive integer such that d|sq. In the next proposition we give
the general result of the transfer of u(σ, k). The question has no meaning
unless d|n (i.e. s|kl) which we shall assume.

Proposition 3.7. (a) If d|lq (i.e. s|l), then σ ′ = C(σ) is well defined; we
have s = s(σ ′) and

LJ(u(σ, k)) = ū(σ ′, k).

(b) If d|kq (i.e. s|k), then τ ′ = C(τ) is well defined; we have s = s(τ ′) and

LJ(u(σ, k)) = ε|i ′(ū(τ ′, l))|
where ε = 1 if s is odd and ε = (−1)

kl
s if s is even.

(c) If d does not divide neither lq, nor kq (i.e. s does not divide neither l
nor k), then LJ(u(σ, k)) = 0.

Proof. (a) We have the formula for the decomposition of u(σ, k) in the
standard basis Bn (Proposition 2.8) so we may compute the formula for
the decomposition of LJ(u(σ, k)) in the standard basis B ′

n by transfer. On
the other hand, we have the formula for the decomposition of ū(σ, k) in
the standard basis B ′

n using the formula (2.2) and the Corollary 3.6(b).
The equality of the two decompositions in the basis B ′

n leads again to the
combinatorial Lemma 3.1 in [Ta5].

(b) Up to the sign ε, this is a consequence of the claim (a) and the dual
transform, Theorem 2.7(d), since |i(u(τ, l))| = u(σ, k). For the sign ε, see
Proposition 4.1, b) in [Ba4].

(c) The proof is in [Ta6]. It is a consequence of Proposition 2.8 here,
which is also due to Tadić, and the following lemma for which we give here
a more straightforward proof.
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Lemma 3.8. Let k, l, s ∈ N∗. Assume there is a permutation w of {1, 2,
. . ., k} such that for all i ∈ {1, 2, . . ., k} one has s|l + w(i) − i. Then s|k
or s|l.
Proof. Let [x] denote the biggest integer less than or equal to x. If y ∈ N∗,
let Ny denote the set {1, 2, . . ., y}.

Assume s does not divide l. Summing up all the k relations s|l +w(i)− i
we find that s|kl. So, if (s, l) = 1, then s|k. Assume (s, l) = p. Then
for all i ∈ {1, 2, . . ., k}, p|w(i) − i. Let w0 be the natural permuta-
tion of N[ k

p ] induced by the restriction of w to {p, 2p, . . ., [ k
p ]p} and w1

the natural permutation of N[ k−1
p ]+1 induced by the restriction of w to

{1, p + 1, . . ., [ k−1
p ]p + 1}. Then for all i ∈ N[ k

p ] one has s
p | l

p + w0(i) − i,

and for all j ∈ N[ k−1
p ]+1 one has s

p | l
p + w1( j) − j. As now ( s

p ,
l
p ) = 1

we have already seen that one has s
p |[ k

p ] and s
p |[ k−1

p ] + 1. This implies

[ k
p ] = [ k−1

p ] + 1 and so p|k. It follows s
p | k

p , i.e. s|k. ��

3.3. New formulas. The reader might have noticed that the dual of rep-
resentations u(τ, l) and u′(τ ′, l) are of the same type, while the dual of
representations ū(τ ′, l) are in general more complicated. This is why the
claim (b) of Proposition 3.7 looks awkward. We could not express i ′(ū(τ ′, l))
in terms of σ ′ = C(σ), and for the good reason that C(σ) is not defined
since the group on which σ lives does not have the appropriate size (div-
isible by d). Recall the hypothesis was s(σ ′)|k. We explain here that one
can get a formula though, in terms of u′(σ ′+, k

s(σ ′) ) and u′(σ ′−, k
s(σ ′) ), where

σ ′+ = C(σ+) and σ ′− = C(σ−), and the representations σ+ and σ− are
obtained from σ by stretching and shortening it to get an appropriate size
for the transfer. The formulas we will give here are required for the global
proofs.

Let τ ′ ∈ D ′
n and l = as(τ ′) + b with a, b ∈ N, 1 ≤ b ≤ s(τ ′) − 1. We

start with the formula (2.2):

ū(τ ′, l) =
b∏

i=1

νi− b+1
2 u′(τ ′, a + 1) ×

s(τ ′)−b∏

j=1

ν j− s(τ ′)−b+1
2 u′(τ ′, a).

So one may compute the dual of ū(τ ′, l) using Proposition 2.9; if τ ′ =
T u(ρ′, k), we set σ ′+ = T u(ρ′, a + 1) and, if a �= 0, σ ′− = T u(ρ′, a); then

|i ′(ū(τ ′, l))| =
b∏

i=1

νi− b+1
2 u′(σ ′

+, k) ×
s(τ ′)−b∏

j=1

ν j− s(τ ′)−b+1
2 u′(σ ′

−, k)(3.8)

with the convention that if a = 0 we ignore the second product.
In particular the dual of a representation of type ū(σ ′, k) is of the same

type (i.e. some ū(γ, p)) if and only if s(σ ′)|k or σ ′ is cuspidal and k < s(σ ′).
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One can see that comparing the formula (3.8) with the formula (2.1) and
using the fact that a product of representations of the type ναu′(σ ′, k) deter-
mines its factors up to permutation ([Ta2]).

This gives a formula for LJ(u(σ, k)) when s divides k but s does not
divide l (case (b) of Proposition 3.7). Let |LJ|(u(σ, k)) stand for the ir-
reducible representation among {LJ(u(σ, k)),−LJ(u(σ, k))}. Let ρ ∈ Cu

p,
σ = Zu(ρ, l) ∈ Du

lp and let s be the smallest positive integer such that
d|ps. Assume s �= 1 and l = as + b, a, b ∈ N, 1 ≤ b ≤ s − 1. Set
σ+ = Zu(ρ, (a + 1)s) and, if a �= 0, σ− = Zu(ρ, as). Let σ ′+ = C(σ+) and,
if a �= 0, σ ′− = C(σ−). If s|k and k = k ′s, then

|LJ|(u(σ, k)) =
b∏

i=1

νi− b+1
2 u′(σ ′

+, k ′) ×
s(σ ′)−b∏

j=1

ν j− s(σ ′)−b+1
2 u′(σ ′

−, k ′),(3.9)

with the convention that if a = 0 we ignore the second product.
The following formula for the transfer is somehow artificial, but it has the

advantage of being symmetric in k and l and adapted to the both cases (a) and
(b) of Proposition 3.7. Let ρ ∈ Cp for some p ∈ N∗, and let s be the smallest
positive integer such that d|ps. Set ρ′ = C(Zu(ρ, s)) (in particular ρ′ is
cuspidal and s(ρ′) = s). Let k, l ∈ N∗. Set b = k − s[ k

s ] + l − s[ l
s ] and

define a sign ε by ε = 1 if s is odd and ε = (−1)
kl
s if s is even. Make

the convention that a product
∏0

i=1 has to be ignored in a formula. The
representation u(Zu(ρ, l), k) is d-compatible if and only if s|k or s|l. In this
case we have

(3.10) LJ(u(Zu(ρ, l), k)) = ε

b∏

i=1

νi− b+1
2 u′

(
T u

(
ρ′,

[
l

s

])
,

[
k − 1

s

]
+1

)

×
s−b∏

j=1

ν j− s−b+1
2 u′

(
T u

(
ρ′,

[
l − 1

s

]
+1

)
,

[
k

s

])
,

with the convention that in this formula we ignore the first product if [ l
s ] = 0

and the second product if [ k
s ] = 0. (As s divides either l or k we cannot have

[ l
s ] = [ k

s ] = 0.)

3.4. Transfer of unitary representations. Let U′ be the set of all the
representations u′(σ ′, k) and π(u′(σ ′, k), α) where k, l range over N∗,
σ ′ ∈ D ′

l and α ∈ ]0, 1
2 [. Here we will use the fact that the representa-

tions u′(σ ′, k) are unitary so we will assume the characteristic of the base
field F is zero. As Henniart pointed out to me it is not difficult to lift the re-
sult to the non-zero characteristic case by the Kazhdan’s close fields theory
([Ka]), but it has not been written yet.

The next proposition has been proven in [Ta6] under the assumption of
the U0 conjecture of Tadić. We prove it here without this assumption.
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Proposition 3.9. (a) All the representations in U′ are irreducible and uni-
tary.

(b) If π ′
i ∈ U′, i ∈ {1, 2, . . ., k}, then the product

∏ k
i=1π

′
i is irreducible

and unitary.
(c) If u ∈ Irru

nd, then LJ(u) = 0 or LJ(u) is an irreducible unitary repre-
sentation u′ of G′

n up to a sign.
(d) Let u′ be an irreducible unitary representation of G ′

n. If u′ × u′ is
irreducible, then u′ is a product of representations in U′.

Proof. The claim (a) is a part of the Tadić conjecture U2 in [Ta2]. It has
already been solved for s(σ ′) ≥ 3 in [BR1, Remark 4.3], which is actually
a remark due to Tadić, not to the authors. The only problem, as explained
in [Ta2], is to show that the product u′(σ ′, k) × u′(σ ′, k) is irreducible. This
is just our Corollary 3.6(a).

(b) This follows from the irreducibility trick (Proposition 2.13) and the
Corollary 3.6(a).

(c) This is a consequence of the Proposition 3.7, the formula (3.9) and
of the parts (a) and (b) here.

(d) Assume u′ × u′ is irreducible. Then any product containing u′ and
representations in U′ is irreducible (by Proposition 2.13). As u′(σ ′, k) are
prime elements [Ta2, 6.2], the same proof as for GL(n) (Tadić, [Ta1]) shows
that u′ is a product of representations in U′. ��

If u′ is like in the second situation of the part (c) we write u′ = |LJu|(u).
Let ΠU′ be the set of products of representations in U′ . Then ΠU′ is a set

of irreducible unitary representations containing the ū(σ ′, k) (2.2). We have:

Proposition 3.10. (a) The set ΠU′ is stable under |i ′|.
(b) If π is a d-compatible unitary representation of Gnd, then |LJu|(π) ∈

ΠU′.

Proof. (a) is implied by Proposition 2.10(a).
(b) is implied by Proposition 3.7, the fact that ū(σ ′, k) ∈ ΠU′ and the

part (a). ��
So we have a map |LJu| from the set of unitary irreducible d-compatible

representations of Gnd to the set ΠU′. We prove here a lemma we will need
later to construct automorphic unitary representations of the inner form
which do not transfer to the split form.

Lemma 3.11. Assume dimF D = 16. Let St ′
3 be the Steinberg representation

of GL3(D) and St′4 the Steinberg representation of GL4(D). Let

π = ν− 3
2 u′(St′3, 4) × ν− 1

2 u′(St′4, 3) × ν
1
2 u′(St′4, 3) × ν

3
2 u′(St′3, 4).

Then π is a representation of GL48(D). We have

(i) π is unitary irreducible,
(ii) we have π < ū(St′3, 16) and
(iii) π is not in the image of |LJu|.
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Proof. (i) If 11 is the trivial representation of D×, we have s(11) = 4. So
s(St′3) = s(St′4) = 4. By definition of ΠU′ it is clear then that π ∈ ΠU′.

(ii) By the formula (2.1) we get

ū(St′3, 16) = ν− 3
2 u′(St′3, 4) × ν− 1

2 u′(St′3, 4) × ν
1
2 u′(St′3, 4) × ν

3
2 u′(St′3, 4).

It is easy to prove that the esi-support of u′(St′4, 3) is obtained from the
esi-support of u′(St′3, 4) by elementary operations. So π < ū(St′3, 16).

(iii) Any unitary representation of Gnd decomposes in the unique way up
to permutation of factors in a product of representations of type ναu(σ, k)
and any unitary representation of G′

n decomposes in a unique way up to per-
mutation of factors in a product of representations of type ναu′(σ ′, k) ([Ta2]).
The formula (3.10) implies that if ν− 3

2 u′(St′3, 4) appear in the decomposition
of an element of the image of |LJu |, then ν− 1

2 u′(St′3, 4) should appear too.
So π is not in the image of |LJu|. ��

It is natural to ask how big are the fibers of |LJu| over a given element
u′ ∈ ΠU′. A product of representations of type ū(σ ′, k) and |i ′|ū(σ ′, k) may
be equal to several different similar products and it does not seem to exist
a manageable formula for the number of possibilities. They are of course
finite since the cuspidal support is fixed.

3.5. Transfer of local components of global discrete series. Let γ ∈ Irru
n

be a generic representation. Then one may write

γ =
m∏

i=1

νeiσi

where σi are square integrable and ei ∈ ]− 1
2 ,

1
2 [ ([Ze]). As it is explained

in [Ba4, Sect. 4.1], for all k ∈ N∗, the representation
∏k−1

i=0 (ν
k−1

2 −iγ) is
a standard representation and if we call Lg(γ, k) its Langlands quotient,
then we have

Lg(γ, k) =
m∏

i=1

νei u(σi, k).

One may show that, as γ was unitary, Lg(γ, k) is unitary. γ is tempered if
and only if all ei are zero. As the local component of global cuspidal rep-
resentations are generic (see the next section), by the Mœglin–Waldspurger
classification, all local components of the global discrete series of GLn are
of the type Lg(γ, k). So it is important to know when do they transfer to
a non-zero representation under LJ.

Write σi = Zu(ρi, li ), ρi ∈ Cu
pi

. Let J be the set of integers j ∈ {1, 2,

. . ., m} such that d|pjlj . Let sγ,d be the smallest positive integer s such that
for all i ∈ {1, 2, . . ., m}\J , d|pis. Then LJ(Lg(γ, k)) �= 0 if and only if
for all i ∈ {1, 2, . . ., m} we have LJ(u(σi, k)) �= 0 if and only if sγ,d|k
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(by Proposition 3.7). Then

LJ(Lg(γ, k)) =
m∏

i=1

νei LJ(u(σi, k)).

4. Basic facts and notation (global)

Let F be a global field of characteristic zero and D a central division algebra
over F of dimension d2. Let n ∈ N∗. Set A = Mn(D). For each place v
of F let Fv be the completion of F at v and set Av = A ⊗ Fv. For every
place v of F, Av 	 Mrv (Dv) for some positive integer rv and some central
division algebra Dv of dimension d2

v over Fv such that rvdv = nd. We will
fix once and for all an isomorphism and identify these two algebras. We say
that Mn(D) is split at a place v if dv = 1. The set V of places where Mn(D)
is not split is finite. We assume in the sequel V does not contain any infinite
place. For each v, dv divides d, and moreover d is the smallest common
multiple of the dv over all the places v.

Let G′(F) be the group A× = GLn(D). For every place v ∈ V , set
G′

v = A×
v = GLrv(Dv). For every finite place v of F, we set Kv = GLrv (Ov),

where Ov is the ring of integers of Dv. We fix then a Haar measure dgv on G′
v

such that vol(Kv) = 1. For every infinite place v, we fix an arbitrary Haar
measure dgv on G′

v. LetA be the ring of adèles of F. With these conventions,
the group G′(A) of adèles of G′(F) is the restricted product of the G′

v with
respect to the family of compact subgroups Kv. We consider the Haar
measure dg on G′(A) which is the restricted product of the measures dgv

(see [RV] for details). We consider G′(F) as a subgroup of G′(A) via the
diagonal embedding.

4.1. Discrete series. Let Z(F) be the center of G′(F). For every place v,
let Zv be the center of G′

v. For every finite place v of F, let dzv be a Haar
measure on Zv such that the volume of Zv ∩ Kv is one. The center Z(A)
of G′(A) is canonically isomorphic with the restricted product of the Zv

with respect to the Zv ∩ Kv. On Z(A) we fix the Haar measure dz which is
the restricted product of the measures dzv. On Z(A)\G′(A) we consider the
quotient measure dz\dg. As G′(F) ∩ Z(A)\G′(F) is a discrete subgroup
of Z(A)\G′(A), on the quotient space Z(A)G′(F)\G′(A) we have a well
defined measure coming from dz\dg. The measure of the whole space
Z(A)G′(F)\G′(A) is finite.

Through all these identifications, Z(F) is a subgroup of Z(A). Fix
a unitary smooth character ω of Z(A), trivial on Z(F).

Let L2(Z(A)G′(F)\G′(A);ω) be the space of classes of functions f
defined on G′(A) with values in C such that

(i) f is left invariant under G′(F),
(ii) f satisfy f(zg) = ω(z) f(g) for all z ∈ Z(A) and almost all g ∈ G′(A),
(iii) | f |2 is integrable over Z(A)G′(F)\G′(A).
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We consider the representation R′
ω of G′(A) by right translations in

the space L2(Z(A)G′(F)\G′(A);ω). We call a discrete series of G′(A)
any irreducible subrepresentation of any representation R′

ω for any unitary
smooth character ω of Z(A) trivial on Z(F).

Every discrete series of G′(A) with the central character ω appears in
R′

ω with a finite multiplicity. Every discrete series π of G′(A) is isomorphic
with a restricted Hilbertian tensor product of (smooth) irreducible unitary
representations πv of the groups G′

v like in [Fl1]. Each representation πv is
determined by π up to isomorphism and is called the local component of π
at the place v. For almost all finite places v, πv has a non-zero fixed vector
under Kv. We say then πv is spherical. In general, an admissible irreducible
representation σ of G′(A) decomposes similarly into a restricted tensor
product of smooth irreducible representations σv of G′

v and σv is spherical
for almost all v (see [Fl1]).

Let R′
ω,disc be the subrepresentation of R′

ω generated by the discrete
series. If π is a discrete series we call the multiplicity of π in the discrete
spectrum the multiplicity with which π appears in R′

ω,disc.

4.2. Cuspidal representations. Let L2(Z(A)G′(F)\G′(A);ω)c be the sub-
space of all the classes f in L2(Z(A)G′(F)\G′(A);ω) satisfying

∫

N(F)\N(A)

f(ng)dn = 0

for almost all g ∈ G′(A) and for all unipotent radicals N of a proper para-
bolic F-subgroup of G′(F).

The space L2(Z(A)G′(F)\G′(A);ω)c is stable under R′
ω and decom-

poses discretely in a direct sum of irreducible representations. Such an
irreducible subrepresentation is called cuspidal. It is automatically a dis-
crete series.

We let now n vary. For all n ∈ N∗ let G′
n be the group of adèles of

GLn(D) and G′
n,v the local component of G′

n at a place v. Let DS′
n be the

set of classes of discrete series of G′
n .

If (n1, n2, . . ., nk) is an ordered set of positive integers such that n1 +
n2 + . . .+nk = n, we call a standard Levi subgroup of G′

n(F) a subgroup
formed by block diagonal matrices with blocks of given sizes n1, n2, . . ., nk
in this order.

A standard Levi subgroup of G′
n(A) will be by definition a subgroup

defined by the adèle group L(A) of a standard Levi subgroup L of G′
n(F).

Let L be like in the previous paragraph. For every place v of F, one has
dv|nid for all 1 ≤ i ≤ k. If Lv is the subgroup of G′

v formed by block
diagonal matrices with k blocks of sizes n1d/dv, n2d/dv, . . ., nkd/dv in this
order, then L(A) is the restricted product of the Lv with respect to Lv ∩ Kv.
We naturally identify L with the ordered product ×k

i=1G′
ni

.
Let ν denote here the character |det|F on G′

n, product of local characters
νv = |det|v where | |v is the normalized absolute value on Fv.



410 A.I. Badulescu

4.3. Automorphic representations. Let us recall some facts from [La].
Let L = ×k

i=1G′
ni

be a standard Levi subgroup of G′
n. For 1 ≤ i ≤ k,

let ρi be a cuspidal representation of G′
ni
(A) and ei a real number. Set

ρ = ⊗k
i=1ν

eiρi .
Then for each place v, the induced representation Πv = ind

G ′
v

Lv
ρv is of

finite length. For every place v where all the ρi,v are spherical, Πv has
a unique subquotient πv which is a spherical representation. An irreducible
subquotient of ind

G ′
n(A)

L(A) ρ is said to be a constituent of ind
G ′

n(A)

L(A) ρ. Then an
irreducible admissible representation σ of G′

n is a constituent of ind
G ′

n
L ρ if

and only if for all v, σv is an irreducible subquotient of Πv and for almost
all v, σv = πv. The notion of a cuspidal representation differs between [La]
and here: here we allow only what would be in the [La] language a unitary
cuspidal representation. Using the Proposition 2 in [La], an automorphic
representation A of G′

n will be here by definition a constituent of ind
G ′

n(A)

L(A) ρ

for some ρ as above. One would like to prove then that the couples (ρi, ei)
are all determined by A up to permutation. This has been shown in [JS]
in the case where D = F, and in the present paper we will show it for
general D. For the case D = F, we will then call the non-ordered multi-
set {νe1ρ1, ν

e2ρ2, . . ., ν
ekρk} the cuspidal support of A. For the classical

definition of automorphic representations we refer to [BJ]; here we used an
equivalent one, cf. [La, Proposition 2]. Let us point out that a discrete series
is always a (unitary) automorphic representation.

In the particular case D = F some other facts are known. However, we
make the following convention: for the case of a general division algebra D
we keep the notation adopted above, while for the particular case D = F
we consider another class of groups Gn = GLn(F). All the definitions adapt
then to Gn by setting D = F and we will write DSn for the set of discrete
series of Gn(A).

4.4. Multiplicity one theorems for Gn . We recall in this subsection three
facts about Gn . There is the multiplicity one theorem: every discrete series
of Gn(A) appears with multiplicity one in the discrete spectrum. And the
strong multiplicity one theorem: if π and π ′ are two discrete series of Gn
such that πv = π ′

v for almost all place v, then π = π ′. This results may be
found in [Sh] and [P-S] (when D = F). We will prove them in this paper
for general G′

n.
One also knows that the local component of a cuspidal representation

of Gn at any place is generic and unitary, hence an irreducible product∏m
i=1 νeiσi where σi are square integrable representations and ei ∈ ]− 1

2 , 1
2 [

(see [Sh] and [Ze]).

4.5. The residual spectrum of Gn . We recall now the Mœglin–Waldspur-
ger classification of the discrete series for groups Gn(A). Let m ∈ N∗
and ρ ∈ DSm be a cuspidal representation. If k ∈ N∗, then the induced
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representation
∏k−1

i=0 (ν
k−1

2 −iρ) has a unique constituent π which is a discrete
series (i.e. π ∈ DSmk). One has πv = Lg(ρv, k) for all place v (we used
the definition of Lg(ρv, k) of Sect. 3.5 since ρv is generic). We set then
π = MW(ρ, k). Discrete series π of groups Gn(A), n ∈ N∗, are all of this
type, k and ρ are determined by π and π is cuspidal if and only if k = 1.
These are the results of [MW2]. We will prove in the sequel the same
classification holds for G′

n(A)

Let us prove, for future purposes, a proposition generalizing the strong
multiplicity one theorem.

Proposition 4.1. Let σi ∈ DSni , i ∈ {1, 2, . . ., k1}, ∑k1
i=1 ni = n and τj ∈

DSmj , j ∈ {1, 2, . . ., k2}, ∑k2
j=1 mj = n. Assume that for almost all finite

places v the local components of the (irreducible) products σ = ∏k1
i=1 σi

and τ = ∏k2
j=1 τj at the place v are equal. Then (σ1, σ2, . . ., σk1) equals up

to a permutation (τ1, τ2, . . ., τk2).

Proof. By the Theorem 4.4 in [JS], the cuspidal supports of the automorphic
representations σ and τ are equal. We call a line the set of representations
{νkρ}k∈Z, where ρ is a cuspidal representation of some Gm(A). We call
a shifted line the set of representations {νk+ 1

2 ρ}k∈Z, where ρ is a cuspidal
representation of some Gm(A). Thanks to the Mœglin–Waldspurger clas-
sification we know that the set of the elements of the cuspidal support of
a given σi or τj is either included in a line, or in a shifted line. So we
may then “separate the supports” and reduce the problem to the case where
there exists a line or a shifted line T such that the set of elements of the
cuspidal supports of all the σi and all the τj are included in T . Then there
exists a cuspidal representation ρ such that σi = MW(ρ, pi) for all i and
τj = MW(ρ, qj) for all j. And moreover the pi and the qj are either all odd,
or all even. Let X be the cuspidal support of σ and τ in this case. We show
that X determines the σi up to permutation.

If the pi are all odd, the result is a consequence of the following combi-
natorial lemma:

Lemma 4.2. Let A be a multiset of integers which may be written as a re-
union with multiplicities of sets of the form B = {−k,−k + 1,−k + 2, . . .,
k − 2, k − 1, k}. Then the sets B are determined by A.

Proof. Let f : Z→ N be the multiplicity map: f (a) is the multiplicity of a
in A. The number f (a) is also the number of sets B containing a. If a ≥ 1
and a set B contains a, then it contains also a−1. So f is decreasing onN and
for all p ∈ N, the number of sets {−p,−p+1,−p+2, . . ., p−2, p−1, p}
in A is exactly f(p) − f(p + 1). ��

If the pi are even, the proof is essentially the same. This finishes the
proof of the Proposition 4.1. ��
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4.6. Transfer of functions. For each finite place v let H(G′
n,v) be the

Hecke algebra of locally constant functions with compact support on G′
n,v.

Let H(G′
n) be the set of functions f : G′

n(A) → C such that f is a product
f = ∏

v fv over all places of F, where fv is C∞ with compact support
when v is infinite, fv ∈ H(G′

n,v) when v is finite and, for almost all finite
places v, fv is the characteristic function of Kv. We write then f = ( fv)v.
As the local components of an automorphic representation π are almost
all spherical, the product of traces

∏
v trπv( fv) has a meaning for all f =

( fv)v ∈ H(G′
n) and we may set tr(π( f )) = ∏

v trπv( fv). We adopt similar
notation and definitions for the groups Gn.

Let v ∈ V . We fix measures on the maximal tori of Gnd,v and G′
n,v in

a compatible way and define the orbital integrals Φ on Gnd,v and Φ′ on G′
n,v

for regular semisimple elements with respect to these choices (see Sect. 2
of [Ba1] for example). If fv ∈ H(Gnd,v) and f ′

v ∈ H(G′
n,v) we say that fv

and f ′
v correspond to each-other, and write fv ↔ f ′

v, if:

– fv and f ′
v are supported in the set of regular semisimple elements, and

– for all g ↔ g′ we have Φ( fv, g) = Φ′( f ′
v, g′), and

– for all regular semisimple g ∈ Gnd,v which does not correspond to any
g′ ∈ G′

n,v we have Φ( fv, g) = 0.

It is known that for every f ′
v ∈ H(G′

n,v) supported on the regular semisimple
set there exists fv ∈ H(Gnd,v) such that fv ↔ f ′

v. Also, if fv ↔ f ′
v then

tr(π( fv)) = 0 for all representation π induced from a Levi subgroup of
Gnd,v which does not transfer (Sect. 2 of [Ba1] for example).

For f = ( fv)v ∈ H(Gnd) and f ′ = ( f ′
v)v ∈ H(G′

n) we write f ↔ f ′
and say that f and f ′ correspond to each other if

(i) ∀v /∈ V we have fv = f ′
v and

(ii) ∀v ∈ V we have fv ↔ f ′
v.

For every f ′ = ( f ′
v)v ∈ H(G′

n) such that for all v ∈ V the support of f ′
v

is included in the set of regular semisimple elements of G′
v there exists

f ∈ H(Gn) such that f ↔ f ′. If f ∈ H(Gnd), we say f transfers if there
exists f ′ ∈ H(G′

n) such that f ↔ f ′.

5. Global results

5.1. Global Jacquet–Langlands, multiplicity one and strong multipli-
city one for inner forms. For all v ∈ V , denote LJv (resp. |LJ|v) the
correspondence LJ (resp. |LJ|), as defined in Subsect. 2.7, applied to Gnd,v

and G′
n,v.

If π ∈ DSnd we say π is D-compatible if, for all v ∈ V , πv is dv-com-
patible. Then LJ(πv) �= 0 and |LJ|v(πv) is an irreducible representation
of G′

n (Proposition 3.2(c)). ��
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Theorem 5.1. (a) There exists a unique map G : DS′
n → DSnd such that

for all π ′ ∈ DS′
n, if π = G(π ′), one has |LJ|v(πv) = π ′

v for all
places v ∈ V, and πv = π ′

v for all places v /∈ V. The map G is
injective. The image of G is the set DSD

nd of D-compatible discrete series
of Gnd(A).

(b) We have the multiplicity one theorem for discrete series of G ′
n(A):

if π ′ ∈ DS′
n, then the multiplicity of π ′ in the discrete spectrum is

one.
(c) We have the strong multiplicity one theorem for discrete series of G′

n (A):
if π ′, π ′′ ∈ DS′

n, and if π ′
v = π ′′

v for almost all v, then π ′
v = π ′′

v for
all v.

(d) For all π ′ ∈ DS′
n, for all places v ∈ V, π ′

v ∈ ΠU′ (see Sect. 3.4).

Proof. We will use the results of [AC]. The authors compare the trace
formulas of Gnd and G′

n. We will restate the result here.
Let F∗∞ be the product ×i F∗

i where i runs over the set of infinite
places of F. Let µ be a unitary character of F∗∞. We use the embed-
ding of F∗∞ in A× trivial at finite places to realize it as a subgroup of the
center Z(A).

Let L(Gnd) be the set of F-Levi subgroups of Gnd which contain the
maximal diagonal torus.

Let

Idisc,t,µ,Gnd( f )

=
∑

L∈L(Gnd)

∣∣W L
0

∣∣∣∣W Gnd
0

∣∣−1 ∑

s∈W(aL)reg

∣∣ det(s − 1)
a

Gnd
L

∣∣−1
tr
(
MGnd

L (s, 0)ρL,t(0, f )
)

where, in the order of the appearance:

– t ∈ R+;
– |W L

0 | is the cardinality of the Weyl group of L;

– |W Gnd
0 | is the cardinality of the Weyl group of Gnd;

– aL is the real space Hom(X(L)F,R) where X(L)F is the lattice of ra-
tional characters of L; W(aL) is the Weyl group of aL of L; aGnd

L is
the quotient of aL by aGnd ; W(aL)reg is the set of s ∈ W(aL) such that
det(s − 1)

a
Gnd
L

�= 0;

– MGnd
L (s, 0) is the intertwining operator associated to s at the point 0; it

intertwines representations indGnd
L σ and indGnd

sL sσ , where σ is a represen-
tation of L;

– ρL,t is the induced representation with respect to any parabolic subgroup
with Levi factor L from the direct sum of discrete series π of L such that π
is µ-equivariant and the imaginary part of the Archimedean infinitesimal
character of π has norm t [AC, pp. 131–132];

– f is an element of H(Gnd).
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For this definition see p. 198, and the formula (4.1) p. 203, in [AC]. It is
the “µ formula”, and not the original definition-equality (9.2) p. 132, which
does not contain any µ.

Now let us compute the terms. It turns out that W(aL)reg is empty un-
less L is conjugated to a Levi subgroup given by block diagonal matrices
with blocks of equal size. Let L be the Levi subgroup given by block diag-
onal matrices with l blocks of size m, lm = nd. If we identify W(aL)
withSl, then W(aL)reg is the set of l-cycles. So the cardinality of W(aL)reg

is (l − 1)! and for any s ∈ W(aL)reg, | det(s − 1)
a

Gnd
L

| = l. We also have
|W L

0 | = (m!)l and |W Gnd
0 | = (nd)!. So the coefficient of the character at-

tached to L in the linear combination over L(Gnd) is (m!)l

(nd)! l . Now, if L ′ is
conjugated with L , the contribution of L ′ to the sum is the same as that
of L [AC, p. 207]. Let us compute the number of Levi subgroups L ′ con-
jugated to L , and containing the diagonal torus. The diagonal torus is then
a maximal torus of L ′, and so the center of L ′ is contained in the diagonal
torus. As L ′ is the centralizer of its center there will be exactly as many L ′
as the non-ordered partitions of {1, 2, . . ., nd} in l subsets of cardinality m.
This number is l!−1Cnd−m

nd Cnd−2m
nd−m Cnd−3m

nd−2m. . .Cm
2m (product of binomial coef-

ficients), which is (nd)!
l!(m!)l (for a more theoretical formula for the same result

see [AC, p. 207]).
So we may rewrite the formula: for all l|nd, if Ll is the Levi subgroup

of Gnd given by block diagonal matrices with l blocks of equal size nd
l , then

Idisc,t,µ,Gnd( f ) =
∑

l|nd

1

l! l

∑

s∈W(aL)reg

tr
(
MGnd

Ll
(s, 0)ρLl,t(0, f )

)
.

In [AC] it is shown moreover, pp. 207–208, that for any Ll, the (l − 1)!
elements s ∈ W(aL)reg give all the same contribution to the sum. So, in the
end, if s0 is the cycle (1, 2, . . ., l), the definition of Idisc,t,µ,Gnd( f ) turns out
to be simply:

∑

l|nd

1

l2
tr
(
MGnd

Ll
(s0, 0)ρLl,t(0, f )

)
.

Let us turn now to the operator MGnd
Ll

(s0, 0)ρLl,t(0, f ). A discrete series ρ

of Ll is an ordered product ⊗l
i=1ρi , where each ρi is a discrete series of Gnd

l
.

Let Stabρ be the subgroup of Sl which stabilizes the ordered multiset
(ρ1, ρ2, . . ., ρl) for the obvious action. Let Xρ be a set of representatives of
Sl/Stabρ in Sl. Let Vρ be the subspace ⊕x∈Xρ

×l
i=1 ρx(i) of ρLl,t . Then Vρ

is stable under the operator MGnd
Ll

(s0, 0). But, if the ρi are not all equal,
MGnd

Ll
(s0, 0) permutes without fixed point the subspaces ×l

i=1ρx(i). So the
trace of the operator induced by MGnd

Ll
(s0, 0) on Vρ is zero. Then in the

formula only the contributions from representations ρ = ⊗l
i=1ρi of Ll such

that all the ρi are equal remain.
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So

Idisc,t,µ,Gnd( f ) =
∑

ρ∈DSnd,t,µ

tr(ρ( f ))(5.1)

+
∑

l|nd, l �=1

1

l2

∑

ρ∈DS nd
l

, t
l
,µl

tr
(
MGnd

Ll
(s0, 0) ρl(0, f )

)
,

where DSk, t
l ,µl

is the set of discrete series ρ of Gk(A) such that ρ is µ′-
equivariant for some character µ′ of F∗∞ such that µ′l = µ and the norm of
the imaginary part of its infinitesimal character is t

l , and ρl is the induced
representation ρ × ρ × . . . × ρ from Ll. In the last formula we used the
multiplicity one theorem for Gk , k|nd. The representation ρ being unitary,
the representation ρl is irreducible and hence MGnd

Ll
(s0, 0) acts as a scalar

on ρl. As it is also a unitary operator, the scalar is some complex number λρ

of module 1.
The analogous definition of Idisc,t,µ,G ′

n
( f ′) is given in [AC] for the groups

G′
n and f ′ ∈ H(G′

n):

Idisc,t,µ,G ′
n
( f ′)

=
∑

L∈L(G ′
n)

∣∣W L
0

∣∣∣∣W G ′
n

0

∣∣−1 ∑

s∈W(aL)reg

| det(s − 1)
a

G′
n

L

|−1tr
(
M

G ′
n

L (s, 0)ρL,t(0, f )
)

where the symbols have the same definition as for Idisc,t,µ,Gnd( f ) when
replacing Gnd by G′

n and f by f ′. All the computation made for Gnd to
simplify the formula, up to Formula (5.1) itself, are combinatorial and work
exactly the same for G′

n (replacing nd with n). We get then an analogous
formula to (5.1), taking in account we do not have multiplicity one (yet)
for G′

n(A):

Idisc,t,µ,G ′
n
( f ′) =

∑

ρ′∈DS′
n,t,µ

mρ′ tr(ρ′( f ′))(5.2)

+
∑

l|n, l �=1

1

l2

∑

ρ′∈DS′
n
l , t

l ,µl

ml
ρ′ tr

(
M

G ′
n

L ′
l
(s0, 0) ρ′l(0, f ′)

)
,

where mρ′ is the multiplicity of ρ′ in the discrete spectrum (ml
ρ′ is the power l

of the positive integer mρ′) and the other symbols are defined as for Gnd in
the formula (5.1).

One of the main results of [AC] is the fundamental equality (Equa-
tion (17.8), p. 198):

Idisc,t,µ,Gnd( f ) = Idisc,t,µ,G ′
n
( f ′)(5.3)

for any f ↔ f ′.
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We have an easy lemma.

Lemma 5.2. Let l|nd and ρ ∈ DS nd
l

. Let f ′ ∈ H(G′
n) and f ∈ H(Gnd) such

that f ↔ f ′. If l does not divide n, or if l|n and ρ is not D-compatible, then
tr(M(s0, 0)ρl( f )) = 0.

Proof. Assume l does not divide n. Then d does not divide nd
l . By the

class field theory the smallest common multiple of the integers dv is d,
so there exists a place w such that dw does not divide nd

l . Then ρl
w is not

dw-compatible. The same, if ρ is not D-compatible, there exists a place w
such that ρw is not dw-compatible and hence ρl

w is not dw-compatible.
In both cases we have then trρl

w( fw) = 0 and as the operator M(s0, 0)
acts as a scalar, the result follows. ��

Another lemma:

Lemma 5.3. Assume the multiplicity one theorem is true for all G′
k, k < n.

Then

(a)

Idisc,t,µ,G ′
n
( f ′) =

∑

ρ′∈DS′
n,t,µ

mρ′trρ′( f ′)

+
∑

l|n, l �=1

1

l2

∑

ρ′∈DS′
n
l , t

l ,µl

tr
(
M

G ′
n

L ′
l
(s0, 0) ρ′l(0, f ′)

)
,

where mρ′ is the multiplicity of ρ′ in the discrete spectrum.
(b) For all f ↔ f ′, one has

∑

ρ∈DSD
nd,t,µ

trρ( f ) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

tr
(
MGnd

Ll
(s0, 0) ρl(0, f )

)
(5.4)

=
∑

ρ′∈DS′
n,t,µ

mρ′ trρ′( f ′) +
∑

l|n, l �=1

1

l2

∑

ρ′∈DS′
n
l , t

l ,µl

tr
(
M

G ′
n

L ′
l
(s0, 0) ρ′l(0, f ′)

)
,

where DSD
? is by definition the subset of D-compatible representations

in DS?.

Proof. (a) Comes straight from the formula (5.2).
(b) We used (a) and the equality (5.3). But the Gnd side has been modi-

fied due to Lemma 5.2. Lemma 5.2 allows also the replacement of DS?
by DSD

? . ��
Let us finish now the proof of Theorem 5.1 by induction on n. So, among

other things, we will use the formula (5.4). Let us point out, not to recall it
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all the time, that the correspondence G, once assumed or proven, preserves
the quantities t and µ.

First assume n = 1. Then we get from the relation (5.4):

∑

ρ∈DSD
d,t,µ

trρ( f ) =
∑

ρ′∈DS′
1,t,µ

mρ′ trρ′( f ′)(5.5)

for all f ↔ f ′, where mρ′ is the multiplicity of ρ′ in the discrete spectrum.
Let us fix a representation σ ′ ∈ DS′

1. Then we have σ ′ ∈ DS′
1,t,µ for some

t and µ. We will show there exists σ ∈ DSD
d,t,µ such that |LJ|v(σv) = σ ′

v

for all v ∈ V and σv = σ ′
v for all v /∈ V , and also that mσ ′ = 1. Let S

be a finite set of places of F containing all the places in V , all the infinite
places and all the places v such that σ ′

v is not a spherical representation. For
any π ∈ DSD

d,t,µ or π ∈ DS′
1,t,µ write πS for the tensor product ⊗v∈Sπv and

πS for the restricted tensor product ⊗v/∈Sπv. Let DSD
d,t,µ,σ ′ (resp. DS′

1,t,µ,σ ′)

be the set of π ∈ DSD
d,t,µ (resp. π ∈ DS′

1,t,µ) such that πS = σ ′S. Then we
have for all f ↔ f ′:

∑

ρ∈DSD
d,t,µ,σ ′

trρ( f ) =
∑

ρ′∈DS′
1,t,µ,σ ′

mρ′trρ′( f ′).

This statement is inferred from the equation (5.5) by a standard argument
one may find well expounded in [Fl2]. According to the strong multiplicity
one theorem applied to Gd , the cardinality of DSD

d,t,µ,σ ′ is either zero or 1.
The cardinality of DS′

1,t,µ,σ ′ is finite by [BB]. As fv = f ′
v for v /∈ S, we may

cancel in this equality
∏

v/∈S trσ ′
v( f ′

v), by choosing f ′
v such that this product

is not zero. We get

∑

ρ∈DSD
d,t,µ,σ ′

∏

v∈S

trρv( fv) =
∑

ρ′∈DS′
1,t,µ,σ ′

mρ′
∏

v∈S

trρ′
v( f ′

v)

for functions such that fv ↔ f ′
v for all v ∈ V and fv = f ′

v for all
v ∈ S\V . On the right side we have a finite non-empty set (containing
at least σ ′) of distinct characters on a finite product of groups. The linear
independence of characters on these groups implies the linear independence
of characters on the product, and so there exist functions f ′

v ∈ H ′(G′
1,v)

for v ∈ S, supported on the set of regular semisimple elements, such that
the right side of the equality does not vanish on ( f ′

v)v∈S. Then DSD
d,t,µ,σ ′ is

not empty and hence contains one element. Let us call this element σ . As σ
is D-compatible, for every v ∈ V we have that |LJ|v(σv) is an irreducible
unitary representation u′

v of G′
1,v such that tr(σv( fv)) = tr(u′

v( f ′
v)) for

all fv ↔ f ′
v. So by the linear independence of characters on the group

×v∈SG′
1,v we must have u′

v = σ ′
v for all v ∈ V and σv = σ ′

v for all v ∈ S\V .
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This obviously implies mσ ′ = 1 which is the claim (b). Now G(σ ′) is de-
fined. If G(σ ′) = G(σ ′′) = σ then we have σ ′

v = σ ′′
v = σv for all v /∈ V and

σ ′
v = σ ′′

v = |LJ|v(σv) for all v ∈ V , which shows that G is injective.
Let us show the surjectivity of G onto DSD

d . We start again from the
equality (5.5)

∑

ρ∈DSD
d,t,µ

trρ( f ) =
∑

ρ′∈DS′
1,t,µ

trρ′( f ′)

for all f ↔ f ′ (the multiplicities on the left side have disappeared). Consider
σ ∈ DSD

d,t,µ and let S be a finite set of places containing all the places in V ,
all the infinite places and all the places v such that σv is not spherical. Let
DSD

d,t,µ,σ (resp. DS′
1,t,µ,σ ) be the set of π ∈ DSD

d,t,µ (resp. π ∈ DS′
1,t,µ) such

that πS = σ S. By the same arguments as before (simplification of the trace
formula as expounded in [Fl2]), we have for all f ↔ f ′:

∑

ρ∈DSD
d,t,µ,σ

trρ( f ) =
∑

ρ′∈DS′
1,t,µ,σ

trρ′( f ′).

But by strong multiplicity one theorem on Gd , DSD
d,t,µ,σ contains the unique

element σ . As σ is D-compatible, there exist f ↔ f ′ such that trσ( f ) �= 0.
So DS′

1,t,µ,σ is not empty. Consider σ ′ ∈ DS′
1,t,µ,σ . Then G(σ ′) is defined.

By multiplicity one theorem on Gd applied to places outside S, G(σ ′) has
to be σ .

We have seen that σ ′
v = G(σ ′)v for all v /∈ V . The strong multiplicity

one theorem for Gd implies then the strong multiplicity one theorem for
G′

1 ((c)). The claim (d) is obtained now by transfer under G−1 and Propos-
ition 3.10(b).

Thus, we finished the proof of the theorem for n = 1.

Let us now assume the theorem has been proven for all k < n and call Gk
the transfer map at level k. This hypothesis enables us to apply Lemma 5.3
and implies the relation (5.4) which we recall:

∑

ρ∈DSD
nd,t,µ

trρ( f ) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

tr
(
MGnd

Ll
(s0, 0) ρl(0, f )

)
(5.6)

=
∑

ρ′∈DS′
n,t,µ

mρ′ trρ′( f ′) +
∑

l|n, l �=1

1

l2

∑

ρ′∈DS′
n
l , t

l ,µl

tr
(
M

G ′
n

L ′
l
(s0, 0) ρ′l(0, f ′)

)
.

Moreover, using the part (d) of the theorem for Gk, k < n, the induc-
tion hypothesis implies that the representations ρ′l are irreducible (Propos-

ition 3.9(b)). So M
G ′

n
L ′

l
(s0, 0) is again a scalar and as it is unitary the scalar is
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a complex number λρ′ of module 1. So the equation is actually, using again
the induction to transfer the representations in DS′

n
l , t

l ,µl
:

∑

ρ∈DSD
nd,t,µ

trρ( f ) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

λρtr(ρl(0, f ))(5.7)

=
∑

ρ′∈DS′
n,t,µ

mρ′trρ′( f ′) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

λG−1
n
l

(ρ)tr(ρ
l(0, f ))

for f ↔ f ′.
Now the proof goes as for the case n = 1 with a minor modification

in the end. Choose a representation σ ′ ∈ DS′
n,t,µ. Fix a finite set S of

places of F which contains all the places in V , all the infinite places and
all the places v for which σ ′

v is not spherical. By the theorem of multipli-
city one for Gnd the set A of σ ∈ DSD

nd,t,µ such that σ S = σ ′S is empty
or contains only one element. If we apply Proposition 4.1 to the repre-
sentations ρl and all the places out of S, then we conclude that the set
B of representations γ = ρl (where l|n and l �= 1) such that γ S = σ ′S
is empty or contains one element. Let DS′

n,t,µ,σ ′ be the set of τ ′ ∈ DS′
n,t,µ

such that τ ′S = σ ′S. Then DS′
n,t,µ,σ ′ is not empty (contains σ ′) and finite

([Ba3]; we do not quote [BB] again since the representations may not be
cuspidal).

By the same argument in [Fl2], already quoted for the case n = 1, we
obtain then

∑

σ∈A

∏

v∈S

trσv( fv) +
∑

γ∈B

λγ − λG−1
n
l

(γ)

l2

∏

v∈S

trγv( fv) =
∑

ρ′∈DS′
n,t,µ,σ ′

mρ′
∏

v∈S

trρ′
v( f ′

v)

if fv ↔ f ′
v for all v ∈ V and fv ↔ f ′

v for all v ∈ S\V .
If A is not empty and σ is the unique element of A, then the local

components of σ are unitary and we can transfer them. If B is not empty
and γ is the unique element of B, then the local components of γ are unitary
and we can transfer them. In any possible case we do so. But the coefficient
λγ −λ

G−1
n
l

(γ)

l2
cannot be a non-zero integer because its module is less than 1

2 . So
the linear independence of characters on the group ×v∈SG′

v implies that B
was empty, A was not empty, on the right side there is only σ ′ and mσ ′ = 1.
The injectivity is proven like for n = 1.

Let us prove the surjectivity of G. Fix σ ∈ DSD
nd,t,µ and let S be a set

of places of F which contains all the places in V , all the infinite places
and all the places v for which σv is not spherical. We start again with the
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relation (5.7):

∑

ρ∈DSD
nd,t,µ

trρ( f ) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

λρtr(ρl(0, f ))

=
∑

ρ′∈DS′
n,t,µ

mρ′trρ′( f ′) +
∑

l|n, l �=1

1

l2

∑

ρ∈DSD
nd
l

, t
l
,µl

λG−1
n
l

(ρ)tr(ρ
l(0, f ))

for f ↔ f ′. As before, we may restrict this relation to representations
which have the same local component as σ outside S.

By strong multiplicity one theorem for Gnd, the set of π ∈ DSD
n,t,µ such

that πS = σ S contains the unique element σ . By the Proposition 4.1, no
representation γ = ρl (where l|n and l �= 1) can verify γ S = σ S. The
relation becomes then

trσ( f ) =
∑

ρ′∈DS′
n,t,µ,σ

mρ′ trρ′( f ′)

where DS′
n,t,µ,σ is the set of ρ′ ∈ DS′

n,t,µ such that ρ′S = σ S. As σ is
D-compatible, there exist f ↔ f ′ such that trσ( f ) �= 0, and so there exists
at least one representation σ ′ ∈ DS′

n,t,µ,σ . Then G(σ ′) is defined and, by
strong multiplicity one theorem on Gnd(A), G(σ ′) must be σ . This proves
the surjectivity.

Claims (c) and (d) may be proven like for n = 1. ��
Corollary 5.4. The intertwining operators MGnd

Ll
(s0, 0) and M

G ′
n

L ′
l
(s0, 0) are

given by the same scalar. In particular, the computations in [KS] transfer
to G′

n(A).

Proof. This is the consequence of λγ − λG−1
n
l

(γ) = 0 implied by the end of
the proof of the theorem. ��

5.2. A classification of discrete series and automorphic representations
of G′

n . If L = ×k
i=1G′

ni
is a standard Levi subgroup of G′

n, we call essen-
tially square integrable (resp. essentially cuspidal) representation of L
a representation π ′ = ⊗k

i=1ν
ai ρ′

i where, for each i, ρ′
i is a discrete series

(resp. cuspidal representation) of G′
ni

and ai is a real number.
We adopt the same definitions for representations π = ⊗k

i=1ν
ai ρi of

standard Levi subgroups of Gnd. Such a representation π is said to be
D-compatible if all the ρi are D-compatible.

Proposition 5.5. Let ρ ∈ DSm be a cuspidal representation. Let sρ,D be the
smallest common multiple of sρv,dv

, v ∈ V (cf. Sect. 3.5). Then
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(a) MW(ρ, k) is D-compatible if and only if sρ,D|k.
(b) G−1(MW(ρ, sρ,D)) = ρ′ ∈ DS′

msρ,D
d

is cuspidal (in particular G−1 sends
cuspidal to cuspidal).

Proof. (a) This is an easy consequence of the discussion in Sect. 3.5 and
the definition of sρ,D.

(b) Assume ρ′ is not cuspidal. Then there exists an essentially cuspidal
representation τ ′ of a proper standard Levi subgroup L ′ of G′

n such that π ′ is
a constituent of the induced representation to G′

msρ,D
d

from τ ′. Set τ = G(τ ′).
So τ is a D-compatible essentially square integrable representation of L(A)
where L is a proper standard Levi subgroup of Gmsρ,D corresponding to L ′.
By the Theorem 4.4 of [JS], τ has the same cuspidal support as MW(ρ, sρ,D).
As it is a D-compatible essentially square integrable representation and lives
on a smaller subgroup, this contradicts the minimality of sρ,D. ��
Remark 5.6. It will be proved in the appendix that all the cuspidal repre-
sentations of G′

n(A) are obtained like in Proposition 5.5. But at this point
this proof cannot be made, so for now we will call these representations
basic cuspidal. Later, using the next proposition, Grbac will prove in the
appendix that basic cuspidal and cuspidal is the same thing. Therefore, the
reader may drop the word “basic” in the next proposition and have a clean
classification.

Let us call basic cuspidal a cuspidal representation obtained as ρ′ =
G−1(MW(ρ, sρ,D)) in the part (b) of the Proposition. We then set s(ρ′) = sρ,D

and νρ′ = νsρ,D . If L = ×k
i=1G′

ni
is a standard Levi subgroup of G′

n , we call
basic essentially cuspidal representation of L a representation ⊗k

i=1ν
ai ρ′

i
where, for each i, ρ′

i is a basic cuspidal representation of G′
ni

and ai is a real
number.

We now give a classification of discrete series of groups G′
n . The part (a)

generalizes [MW2] and the part (b) generalizes the Theorem 4.4 in [JS].

Proposition 5.7. (a) Let ρ′ ∈ DS′
m be a basic cuspidal representation.

Let k ∈ N∗. The induced representation
∏k−1

i=0 (ν
k−1

2 −i
ρ′ ρ′) has the unique

constituent π ′ which is a discrete series. We write then π ′ = MW′(ρ′, k).
Every discrete series π ′ of a group G′

n, n ∈ N∗, is of this type, and k
and ρ′ are determined by π ′. The discrete series π ′ is basic cuspidal if
and only if k = 1. If π ′ = MW′(ρ′, k), then G(ρ′) = MW(ρ, sρ,D) if and
only if G(π ′) = MW(ρ, ksρ,D).

(b) Let (Li, ρ
′
i ), i = 1, 2, be such that Li is a standard Levi subgroup

of G′
n and ρ′

i is a basic essentially cuspidal representation of Li(A)
for i = 1, 2. Fix any finite set of places V ′ containing the infinite
places and all the finite places where ρ′

1 or ρ′
2 is not spherical. If,

for all places v /∈ V ′, the spherical subquotients of the induced rep-
resentations from ρ′

i,v to G′
n are equal, then the couples (Li, ρ

′
i) are

conjugated.



422 A.I. Badulescu

(c) If π ′ is an automorphic representation of G′
n, then there exists a couple

(L, ρ′) where L is a standard Levi subgroup of G′
n and ρ′ is a basic

essentially cuspidal representation of L(A) such that π ′ is a constituent
of the induced representation from ρ′ to G′

n(A). The couple (L, ρ′) is
unique up to conjugation.

Proof. (a) Let G(ρ′) = MW(ρ, sρ,D). The discrete series MW(ρ, ksρ,D)
is D-compatible (Proposition 5.5(a)). We will show directly that

G−1(MW(ρ, ksρ,D)) is a constituent of
∏k−1

i=0 (ν
k−1

2 −i
ρ′ ρ′).

It is enough to show that, for every place v ∈ V , |LJ|v(MW(ρ, ksρ,D)v)

is a subquotient of the local representation
∏k−1

i=0 (ν
k−1

2 −i
ρ′ ρ′

v). By Propos-
ition 2.1, it is enough to show that the esi-support of |LJ|v(MW(ρ, ksρ,D)v)

is the reunion of the esi-supports of representations ν
k−1

2 −i
ρ′ ρ′

v. As in Sect. 3.5,
we may write the generic representation ρv as a product of essentially square
integrable representations

∏m
j=1 νej σj and we have seen then that

ρ′
v = |LJ|v(Lg(ρv, sρ,D)) =

m∏

j=1

νej |LJ|v(u(σj, sρ,D))

and

|LJ|v(Lg(ρv, ksρ,D)) =
m∏

j=1

νej |LJ|v(u(σj, ksρ,D)).

Fix an index j. If σj transfers to σ ′
j (case (a) of the Proposition 3.2),

we know that |LJ|v(u(σj, sρ,D)) = ū(σ ′
j, sρ,D)) and |LJ|v(u(σj, ksρ,D)) =

ū(σ ′
j, ksρ,D). One may easily verify that the esi-support of ū(σ ′

j, ksρ,D) is the
reunion of the esi-supports of ν( k−1

2 −i)sρ,D ū(σ ′
j, sρ,D) for i ∈ {0, . . ., k − 1}.

If σj does not transfer (case (b) of the Proposition 3.2), one has to use the
formula (3.9) in Sect. 3.5 involving σ ′

j+ and σ ′
j−, but then the proof goes

exactly the same as for the case when σj transfers.

So
∏k−1

i=0 (ν
k−1

2 −i
ρ′ ρ′) has a constituent π ′ which is a discrete series. The

strong multiplicity one theorem for discrete series of G′
n (Proposition 5.1(c))

implies this induced representation has no other constituent which is a dis-
crete series.

Let π ′ ∈ DS′
n be a discrete series and let us show it is obtained in

this way. Set G(π ′) = MW(ρ, p). We have sρ,D|p since MW(ρ, p) is
D-compatible (Proposition 5.5(a)). So, if we set ρ′ = G−1(MW(ρ, sρ,D)),
ρ′ is a basic cuspidal, and we have π ′ = MW′(ρ′, p

sρ,D
). The strong multi-

plicity one theorem for Gnd implies p and ρ are determined by π ′, so
k = p

sρ,D
and ρ′ are determined by π ′. It is clear that π ′ is basic cuspidal if

and only if p = sρ,D, if and only if k = 1.
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(b) G(ρ′
1) = ρ1 is a tensor product of the form ⊗p1

i=1ν
αi MW(ξi, sξi ,D)

and G(ρ′
2) = ρ2 is a tensor product of the form ⊗p2

j=1ν
βj MW(τj , sτj ,D),

where ξi and τj are cuspidal. As the induced representations to Gnd from ρ1
and ρ2 have equal spherical subquotient at all finite places which are
not in V ∪ V ′, we know that the essentially cuspidal supports of ρ1 and
ρ2 are equal (Theorem 4.4 in [JS]). As ξi and τj are cuspidal, it fol-
lows from the formulas for ρ1 and ρ2 that the multisets {(αi, ξi)} and
{(βj, τj )} are equal and so the tensor products are the same up to per-
mutation.

(c) The existence is proven in (a). The unicity in (b). ��

5.3. Further comments. The question whether the transfer of discrete
series could be extended to unitary automorphic representations or not
seems natural. Let us extend in an obvious way the notion of D-compatible
from discrete series to unitary automorphic representations of Gnd(A). Let
us formulate two questions.

Question 1. Given a unitary automorphic representation a′ of G′
n(A), is it

possible to find a unitary automorphic representation a of Gnd(A) such that
av = a′

v for all v /∈ V and |LJ|v(av) = a′
v for all v ∈ V?

Question 2. Given a D-compatible unitary automorphic representation a
of Gnd(A), is it possible to find a unitary automorphic representation a′ of
G′

n(A) such that av = a′
v for all v /∈ V and |LJ|v(av) = a′

v for all v ∈ V?

These questions are independent and the answer is in general “no” for
both.

Consider the first question. Roughly speaking the counterexample comes
from the fact that there exist unitary irreducible representations of an inner
form of GLn over a local field which do not correspond to a unitary repre-
sentation of GLn. The problem is to realize such a representation as a local
component of a unitary automorphic representation. Here is the construc-
tion, based on Lemma 3.11.

Let dimF D = 16. Let G′ = GL3(D). Assume there is a finite place v0
of F such that the local component of G′(A) at the place v0 is G′

v0
	

GL3(Dv0) with dimFv0
Dv0 = 16. It is possible to choose such a D by

the global class field theory. Let ρ′ be a cuspidal representation of G′(A)
such that ρ′

v0
is the Steinberg representation of G′

v0
. Then G(ρ′) is cusp-

idal. Indeed, its local component at the place v0 has to be the Steinberg
representation of GL12(Fv0) (the only unitary irreducible elliptic represen-
tations being the trivial representation and the Steinberg representation). In
particular sρ′ = 1.

Let τ ′ = MW ′(ρ′, 16). Let St′3 be the Steinberg representation of
GL3(Dv0) and St′4 the Steinberg representation of GL4(Dv0). Then τ ′

v0
=

u′(St′3, 16).
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Let τ ′′ be the global representation defined by: τ ′′
v = τ ′

v for all v �= v0

and τ ′′
v0

= ν− 3
2 u′(St′3, 4) × ν− 1

2 u′(St′4, 3) × ν
1
2 u′(St′4, 3) × ν

3
2 u′(St′3, 4). Let

us show that τ ′′ is an automorphic representation. We have τ ′′
v0

< τ ′
v0

by
Lemma 3.11(ii). So τ ′′

v0
is a subquotient of ×16

i=1ν
17
2 −i St′3. So τ ′′ is a con-

stituent of ×16
i=1ν

17
2 −iρ′. As ρ′ is cuspidal, τ ′′ is automorphic. All the local

components of τ ′′ are unitary. It is true by definition for τ ′′
v , v �= v0, and

by Lemma 3.11(i) for τ ′′
v0

. So τ ′′ is a unitary automorphic representation.
It cannot correspond to a unitary automorphic representation of GL192(A)
because by Lemma 3.11(iii) there is a transfer problem at the place v0.

Consider now the second question. Let dimF D = d2 = 4. Let G′ =
GL3(D). Assume there is a finite place v0 of F such that the local component
of G′(A) at the place v0 is G′

v0
	 GL3(Dv0) with dimFv0

Dv0 = 4. For
all i ∈ N∗, write Sti for the Steinberg representation of GLi(Fv0) and St′i for
the Steinberg representation of GLi(Dv0). Let ρ be a cuspidal representation
of GL3(A) such that ρv0 = St3. Set τ = MW(ρ, 2). We have sρ,D = 2 (since
sρ,D always divides d and here d = 2 and sρ,D �= 1). So τ is D-compatible
and τ ′ = G−1(τ) is a cuspidal representation. We have τv0 = u(St3, 2). Let π
be the representation St4×St2 of GL6(Fv0). Then π is tempered. We also have
π < τv0 , so π is a subquotient of ν

1
2 St3 × ν− 1

2 St3. So the representation ξ

defined by ξv = τv if v �= v0 and ξv0 = π is a constituent of ν
1
2 ρ × ν− 1

2 ρ,
hence an automorphic representation. All its local components are unitary.
It is a D-compatible representation because π is 2-compatible. Let us show
that the representation ξ ′ defined by ξ ′

v = |LJ|v(ξv) for all places v of F is
not automorphic. For every place v �= v0, we have ξ ′

v = τ ′
v. As τ ′ is cuspidal,

it is enough to show that ξ ′ �= τ ′ by Theorem 5.7(b) applied to τ ′ and the
cuspidal support of ξ ′. So this comes to show that |LJv0 |(u(St3, 2)) �=
|LJv0 |(π). Using the formulas we have for the transfer (Proposition 3.7)
we find |LJv0 |(u(St3, 2)) = u(St′1, 3) and |LJv0|(π) = St′2 × St′1. If 12
is the trivial representation of GL2(Dv0), we have u(St′1, 3) = 12 × St′1
hence ξ ′

v0
�= τ ′

v0
.

6. L-functions and ε′-factors

In this section we examine the local transfer of L-functions and ε′-factors.
The results are simple computations using [GJ] and [Ja] included here for
the completeness.

Let F be again the non-Archimedean local field (of any characteristic)
and D a division algebra of dimension d2 over F. For all n, recall that
Gn = GLn(F) and G′

n = GLn(D).
Suppose the characteristic of the residual field of F is p and its cardinality

is q. Let OF be the ring of integers of F and πF be a uniformizer of F.
Fix an additive character ψ of F trivial on O and non-trivial on π−1

F O. For
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irreducible representations π of Gn or G′
n, we adopt the notation L(s, π)

and ε′(s, π,ψ) for the L-function and the ε′-factor, as defined in [GJ].
In this section we will specify ν, because confusion may appear. For

all n ∈ N∗, νn (resp. ν′
n) will denote the absolute value of the determi-

nant on Gn (resp. G′
n); 1n (resp. 1′

n) will denote the trivial representa-
tion of Gn (resp. G′

n); let Stn = Zu(11, n) (resp. St′n = T u(1′
1, n)) be the

Steinberg representation of Gn (resp. G′
n). One has Stn = |i(1n)| and

St′n = |i ′(1′
n)|. The character of the Steinberg representation is constant

on the set of elliptic elements, equal to (−1)n−1. In particular, we have
C(Std) = 1′

1. This implies that s(1′
1) = d (here s(1′

1) is the invariant defined
in Sect. 2.4, nothing to do with the complex variable s). For all n ∈ N∗, one
has C(Stnd) = St′n.

We bring together facts from [GJ] in the following theorem:

Theorem 6.1. (a) We have L(s, 1′
1) = (1 − q−s− d−1

2 )−1,

L(s, 1′
n ) =

n−1∏

j=0

L

(
s + d

n − 1

2
− dj, 1′

1

)
=

n−1∏

j=0

(1 − q−s+dj− dn−1
2 )−1

and

ε′(s, 1′
n, ψ) =

n−1∏

j=0

ε′
(

s + d
n − 1

2
− dj, 1′

1, ψ

)

=
dn−1∏

j=0

ε′
(

s + dn − 1

2
− j, 11, ψ

)
.

(b) We have L(St′n) = L(s + d n−1
2 , 1′

1) = (1 − q−s− dn−1
2 )−1 and

ε′(s, St′n, ψ) =
n−1∏

j=0

ε′
(

s + d
n − 1

2
− dj, 1′

1, ψ

)

=
dn−1∏

j=0

ε′
(

s + dn − 1

2
− j, 11, ψ

)
.

(c) If ρ′ is a cuspidal representation of G′
x , then L(s, ρ′) = 1 unless x = 1

and ρ′ is an unramified character of D×. If x = 1 and ρ′ is an unramified
character of D×, then ρ′ = ν′

1
t for some t ∈ C and we have L(s, ρ′) =

(1 − q−s−t− d−1
2 )−1.

(d) Let σ ′ = T(ρ′, k) be an essentially square integrable representation
of G′

xk where ρ′ is a cuspidal representation of G′
x. Then L(s, σ ′) =

L(s, ρ′).
In particular, L(s, σ ′) = 1 unless x = 1 and ρ′ is an unramified
character of D×. If x = 1 and ρ′ is an unramified character of D×

then ρ′ = ν′
1

t for some t ∈ C and then σ ′ = ν′
n

t+d n−1
2 St′n. We have

L(s, σ ′) = (1 − q−s−t− d−1
2 )−1 in this case.
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We have, in general,

ε′(s, σ ′, ψ) =
k−1∏

j=0

ε′(s + js(σ ′), ρ′, ψ)

(in this formula, s(σ ′) is the invariant defined in Sect. 2.4).
(e) Let σ ′

i ∈ D
′u
ni

, i ∈ {1, 2, . . ., k}, ∑k
i=1 ni = n. Let a1 ≥ a2 ≥ . . . ≥ ak

be real numbers. Set S′ = ×k
i=1ν

′ai
ni
σ ′

i and π ′ = Lg(S′).
Then

L(s, π ′) =
k∏

i=1

L(s, σ ′
i )

and

ε′(s, π ′, ψ) =
k∏

i=1

ε′(s, σ ′
i , ψ).

In particular, if ρ′
1, ρ

′
2, . . ., ρ

′
p is the cuspidal support of π ′, then

ε′(s, π ′, ψ) =
p∏

i=1

ε′(s, ρ′
i, ψ).

Proof. (a) This is shown in the Proposition 6.11 in [GJ], where the formula
is slightly wrong. The reader may verify that the good formula for the L-
function in [GJ, Proposition 6.9], is with (d − 1) instead of (n − 1), as
indicated by the proof of this proposition. Then this typo error is propagated
to [GJ, Proposition 6.9], where the reader may easily verify that the right
formula obtained, after correcting the Proposition 6.9, is our formula. For
the ε′-factor our formula fits the [GJ] one.

(b) The ε′-factor of St′n equals the ε′-factor of 1′
n as they are both sub-

quotients of the same induced representation ([GJ], Corollary 3.6).
Let us check the L-function. For the particular case D = F, the com-

putation of the L-function is Theorem 7.11 (4), [GJ]. Let us give a general
(different) proof by induction on n.

For n = 1 we have St′n = St′1 = 1′
1 and the result is implied by (a).

For any n > 1, the representation St′n is a subquotient of the induced

representation from ν′
1
− d(n−1)

2 1′
1 ⊗ ν′ d

2
n−1 St′n−1. We know that

L
(
ν′

1

d(n−1)
2 1′

1

) = (1 − q−s− d−1
2 + d(n−1)

2 )−1

and, by the induction hypothesis, we have

L
(
s, ν′ d

2
n−1St′n−1

) = (1 − q−s− dn−1
2 )−1.
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By [GJ], Corollary 3.6, L(s, St′n) is equal to one of these two functions or
to their product. But, by [GJ], Proposition 1.3 and Theorem 3.3 (1) and (2),
the poles of L(s, St′n) cannot be greater than d(n−1)

2 − dn−1
2 = − d−1

2 , so there
is no positive pole (this trick comes from the original proof: an L-function
of a square integrable representation cannot have a pole with a positive real

part). So L(s, St′n) = L(s, ν′ d
2
n−1 St′n−1) = (1 − q−s− dn−1

2 )−1.

(c) The first assertion is a consequence of Lemma 4.1, Proposition 4.4
and Proposition 5.11 of [GJ] (Proposition 5.11 is not enough, since the
authors assume m > 1 at the beginning of the Sect. 5). The second assertion
is a direct consequence of the part (a) of the present theorem.

(d) For the particular case of Gn this is explained after Proposition 3.1.3
of [Ja]. The same proof applies to G′

n , using the calculation for St′1, i.e. the
part (b).

(e) This is proven in [Ja] for Gn , but the same proof applies to G′
n . ��

Theorem 6.2. Let C be the local Jacquet–Langlands correspondence be-
tween Gnd and G′

n. Then, for all σ ∈ Du
nd, we have L(s, σ) = L(s, C(σ))

and ε′(s, σ,ψ) = ε′(s, C(σ), ψ).

Proof. Let us show it first for the Steinberg representation and its twists. We
have C(Stnd) = St′n. Theorem 6.1(a) and (b) implies the statement in this
case. This implies then the statement for all the twist of Stnd with characters.

Lemma 6.3. For all σ ∈ Du
nd, we have ε′(s, σ,ψ) = ε′(s, C(σ), ψ).

Proof. The proof is standard, using an easy global correspondence (true in
all characteristics) and the previous calculus for the Steinberg representa-
tions. See for example [Ba2, p. 741] : Les facteurs ε′. ��

Let us complete the proof of the theorem with the calculation of
L-functions. If σ ∈ Du

nd or D
′u
n which is not a twist of the Steinberg

representation, then Theorem 6.1(d) implies that its L-function is trivial
and so its ε′-factor is equal to its ε-factor. As C(σ) is a twist of the Steinberg
representation if and only if σ itself is a twist of the Steinberg representation,
the statement has been now proven for all σ ∈ Du

nd. ��
Corollary 6.4. Let σ ′

i ∈ D
′u
ni

, i ∈ {1, 2, . . ., k}, ∑k
i=1 ni = n. Let a1 ≥

a2 ≥ . . . ≥ ak be real numbers. Set S′ = ×k
i=1ν

′ai
ni
σ ′

i . Let C−1(σ ′
i ) =

σi ∈ Du
dni

and set S = ×k
i=1ν

ai
ni d

σi . Then L(s, Lg(S′)) = L(s, Lg(S)) and
ε′(s, Lg(S′), ψ) = ε′(s, Lg(S), ψ).

Proof. This is implied by the previous theorem and the part (e) of The-
orem 6.1. ��
Corollary 6.5. Assume the characteristic of F is zero. If u ∈ Irru

nd is such
that LJn(u) �= 0. Then ε′(s, u, ψ) = ε′(s, |LJ|n(u), ψ).
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Proof. It is enough to prove it for u = u(σ, k), σ ∈ Du
p , k, p ∈ N∗, such

that |LJpk|(u) = u′ �= 0. If we are in the case (a) of the Proposition 3.2,
then u and u′ are like in the Corollary 6.4. In particular, their L functions
are equal too. If we are in the case (b) of the Proposition 3.2, then |i(u)|
and |i ′(u′)| are like in the Corollary 6.4. Now, the ε′-factor depends only on
the cuspidal support (Theorem 6.1(e)). So the ε′-factor is the same for an
irreducible representation and its dual. But in general we do not get equality
for the L-functions in this case. ��

Appendix A. The residual spectrum of GLn over a division algebra1

A.1. Introduction. In this appendix the residual spectrum of GLn over
a division algebra is decomposed. The approach is the Langlands spectral
theory as explained in [MW3] and [La2]. However, the results in the paper,
obtained using the Arthur trace formula of [AC], classify the entire discrete
spectrum of GLn over a division algebra. Hence, the problem reduces to
distinguishing the residual representations in the discrete spectrum. This
simplifies the application of the Langlands spectral theory since it reduces
the region of the possible poles of the Eisenstein series to a cone well inside
the positive Weyl chamber. Having in mind the classification of the discrete
spectrum and the multiplicity one theorem, we obtain the classification of
the cuspidal spectrum as a consequence of the decomposition of the residual
spectrum. In fact, it turns out that the only cuspidal representations are the
basic cuspidal ones.

The idea of writing this appendix was born during our stay at the Erwin
Schrödinger Institute, Vienna in December 2006 and February 2007. I would
like to thank Joachim Schwermer for his kind invitation. My gratitude goes
to Goran Muić for many useful conversations and constant help. I am grateful
to Colette Mœglin for sharing her insight and advices on the normalization
of the standard intertwining operators. Also, I would like to thank Marko
Tadić for the support and interest in my work. I thank Ioan Badulescu for
explaining his results and including this appendix to the paper. And finally,
I would like to thank my wife Tiki for bringing so much joy into my life.

A.2. Normalization of intertwining operators. Let F be an algebraic
number field (a global field of characteristic zero) and D a central division
algebra of dimension d2 over F. Let Fv denote the completion of F at
a place v and A the ring of adèles of F. We use the global notation of
Sects. 4 and 5. Let G′

r be the inner form, defined via D, of the split general
linear group Grd = GLrd . Let V be the finite set of places where D is
non-split. As in the paper, we assume that D splits at all infinite places, i.e.
V consists only of finite places.

1 Neven Grbac, University of Zagreb, Department of Mathematics, Unska 3, 10000
Zagreb, Croatia (e-mail: neven.grbac@zpm.fer.hr)
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Recall from Sect. 5.2 the description of the basic cuspidal represen-
tations of G′

r(A). Let ρ be a cuspidal representation of Gq(A) and sρ,D
the smallest positive integer such that the discrete spectrum representation
σ ∼= MW(ρ, sρ,D) of Gqsρ,D(A) is compatible at every place. Then,

σ ′ ∼= G−1(σ) ∼= ⊗v|LJ|v(σv)

is a basic cuspidal representation of G′
r (A). Observe that σ ′

v
∼= σv at all places

v �∈ V . The goal of this appendix is to show that all cuspidal representations
of G′

r(A) are obtained in this way. In fact, we show that all the remaining
representations in the discrete spectrum belong to the residual spectrum and
apply the multiplicity one theorem.

In the sequel we always assume that the cuspidal representations are
such that the poles of the attached Eisenstein series and L-functions are real.
There is no loss in generality since this can be achieved simply twisting by
the imaginary power of the absolute value of the determinant. Hence, our
assumption is just a convenient choice of the coordinates. Furthermore, as in
the paper, along with the notation × for the parabolic induction, we use the
notation indG

M when we want to point out the Levi factor M of the standard
parabolic subgroup in G.

Consider first a cuspidal representation σ ′⊗σ ′ of the Levi factor L ′(A) ∼=
G′

r(A)×G′
r(A) of a maximal proper standard parabolic subgroup in G′

2r(A),
where σ ′ is basic cuspidal as above. Let s = (s1, s2) ∈ aL ′,C and w the unique
nontrivial Weyl group element such that wL ′w−1 = L ′.

Lemma A.1. Let v �∈ V be a split place. The normalizing factor for the
standard intertwining operator

A((s1, s2), σv ⊗ σv,w)

acting on the induced representation

indG2rd(Fv)

Grd(Fv)×Grd(Fv)

(
νs1σv ⊗ νs2σv

)

is given by

r((s1, s2), σv ⊗ σv,w)(A.1)

=
∏sρ,D

j=1 L(s1 − s2 − sρ,D + j, ρv × ρ̃ v)∏sρ,D
j=1 L(s1 − s2 + j, ρv × ρ̃ v) · ε(s1 − s2, σv × σ̃v, ψv)

,

where the L-functions and ε-factors are the local Rankin–Selberg ones of
pairs. Then, the normalized intertwining operator N((s1, s2), σv ⊗ σv,w),
defined by

A((s1, s2), σv ⊗ σv,w) = r((s1, s2), σv ⊗ σv,w)N((s1, s2), σv ⊗ σv,w),

is holomorphic and non-vanishing for Re(s1 − s2) ≥ sρ,D.
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Proof. This lemma is a weaker form of Lemma I.10 of [MW2] where the
holomorphy and non-vanishing is proved in a certain region slightly bigger
than the closure of the positive Weyl chamber for any unitary representation.
We just show that the normalizing factor defined in [MW2] is the same as
here.

By [MW2],

r((s1, s2), σv ⊗ σv,w) = L(s1 − s2, σv × σ̃v)

L(1 + s1 − s2, σv × σ̃v)ε(s1 − s2, σv × σ̃v, ψv)
.

(A.2)

But, σv is a quotient of the induced representation

ν
sρ,D−1

2 ρv × ν
sρ,D−3

2 ρv × . . . × ν− sρ,D−1
2 ρv,

where ρv, being unitary and generic as the local component at v of a cuspidal
representation ρ, is a fully induced representation of the form

νe1,vδ1,v × νe2,v δ2,v × . . . × νemv,vδmv,v

with ei,v real, |ei,v| < 1/2 and δi,v ∈ Du . We may arrange the indices in
such a way that e1,v ≥ e2,v ≥ . . . ≥ emv,v.

This shows that σv is the Langlands quotient and we can apply the
formulas for the Rankin–Selberg L-function and ε-factor of the Langlands
quotient. Having in mind that ρv is fully induced, we obtain

L(s, σv × σ̃v) = L(s, ρv × ρ̃ v)
sρ,D(A.3)

×
sρ,D−1∏

j=1

L(s + sρ,D − j, ρv × ρ̃ v)
j L(s − sρ,D + j, ρv × ρ̃ v)

j

and the ε-factor is of the same form, but since it has no zeroes nor poles we
do not need to refine its form. Inserting the formula for the L-function into
Equation (A.2) gives after cancellation the normalizing factor (A.1). ��
Lemma A.2. Let v ∈ V be a non-split place. Then the standard intertwining
operator

A((s1, s2), σ
′
v ⊗ σ ′

v, w)

is holomorphic and non-vanishing for Re(s1 − s2) ≥ sρ,D.

Proof. Sections 3.2, 3.3 and 3.5 give rather precise form of the local com-
ponent σ ′

v of a basic cuspidal representation of GL′
r(A). By Sect. 3.5, it is

a fully induced representation of the form

σ ′
v
∼= νe1,v |LJ|v(u(δ1,v, sρ,D)) × . . . × νemv,v |LJ|v(u(δmv,v, sρ,D)),
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where ei,v are real, |ei,v| < 1/2 and δi,v ∈ Du . More precisely, ei,v and δi,v
are defined by

ρv
∼= νe1,vδ1,v × . . . × νemv,v δmv,v.

The precise formula for |LJ|v(u(δi,v, sρ,D)) is given in Proposition 3.7 and
Equation (3.9). If δi,v is compatible, then

|LJ|v(u(δi,v, sρ,D)) = u(δ′
i,v, sρ,D),

and the highest exponent of ν appearing in the corresponding standard
module is sρ,D−1

2 . If δi,v is not compatible, then, by the choice of sρ,D, we
have

|LJ|v(u(δi,v, sρ,D)) =
b∏

i=1

νi− b+1
2 u′(δ′

i,+,v, sρ,D/s(δi,v))

×
s(δi,v)−b∏

j=1

ν j− s(δi,v)−b+1
2 u′(δ′

i,−,v, sρ,D/s(δi,v)),

where δ′
i,±,v ∈ D ′u are certain unitary discrete series representations. See

Sect. 3.3 for the unexplained notation. In this case the highest exponent of ν
appearing among the standard modules is either

b − 1

2
+ s(δi,v)

sρ,D/s(δi,v) − 1

2
<

sρ,D − 1

2

or

s(δi,v) − b − 1

2
+ s(δi,v)

sρ,D/s(δi,v) − 1

2
≤ sρ,D − 1

2
,

where the upper bounds are obtained using the fact that 0 ≤ b < s(δi,v) (see
Sect. 3.3).

The description of σ ′
v shows that the induced representation

νs1σ ′
v × νs2σ ′

v

is a product of possibly twisted representations of the form u(·) and u′(·)
which are the Langlands quotients of the standard module induced from
a discrete series representation. In other words there is a unitary discrete
series representation δ′

v of the appropriate Levi factor L ′
0(Fv) of G′

2r(Fv)
and s ∈ aL ′

0,C such that, by the Langlands classification, the standard inter-
twining operator

A(s, δ′
v, w0) : ind

G ′
2r (kv)

L ′
0(kv)

(s, δ′
v) → ind

G ′
2r (kv)

w0(L ′
0)(kv)

(w0(s),w0(δ
′
v))
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is holomorphic and its image is the induced representation νs1σ ′
v × νs2σ ′

v.
Therefore, by the decomposition property of the intertwining operators ac-
cording to the reduced decomposition of the Weyl group element ww0, the
standard intertwining operator A((s1, s2), σ

′
v ⊗ σ ′

v, w) fits into the commu-
tative diagram

ind
G ′

2r (kv)

L ′
0(kv)

(s, δ′
v)

��

A(s,δ′
v,ww0)

��
A(s,δ′

v,w0)
νs1σ ′

v × νs2σ ′
v

��

A((s1,s2),σ
′
v⊗σ ′

v,w)

ind
G ′

2r (kv)

ww0(L ′
0)(kv)

(ww0(s),ww0(δ
′
v)) ←↩ νs2σ ′

v × νs1σ ′
v,

where the upper horizontal arrow is surjective. Observe that the right
vertical arrow is in fact just the restriction of the intertwining operator
A(w0(s),w0(δ

′
v), w) to the subrepresentation νs1σ ′

v × νs2σ ′
v. This follows

by the analytic continuation from the fact that the integrals defining the two
intertwining operators are over the same unipotent subgroups and hence
agree in the domain of convergence. The diagram implies the lemma if we
prove that, for Re(s1 − s2) ≥ sρ,D, the left vertical arrow is holomorphic
and non-vanishing.

By the Langlands classification it suffices to check that the real parts of
all the differences between exponents of ν appearing in the parts of I(s, δ′

v)
corresponding to νs1σ ′

v and νs2σ ′
v are strictly positive. However, we already

checked that the highest exponent appearing among the standard modules
in the expressions for |LJ|v(u(δi,v, sρ,D)) is at most sρ,D−1

2 . Therefore, in the
worst case we obtain the difference

Re(s1 − s2) + ei,v − e j,v − 2 · sρ,D − 1

2
> 0

since ei,v − e j,v > −1. ��
Remark A.3. The proof of the previous lemma follows the idea of the proof
of Lemma I.8 of [MW2]. Since the results of this paper based on the trace
formula reduce the question of determining the residual spectrum to the
point Re(s1 − s2) = sρ,D and give bounds on the exponents of the local
component at a non-split place of a cuspidal representation of an inner
form, we do not require the full power of Lemma I.8, and hence the proof
becomes simpler. However, its analogue for inner forms could have been
obtained using first the transfer of the Plancherel measure for discrete series
representations (see [MS]) to define the normalization using L-functions for
the split group. For the classical hermitian quaternionic groups we used this
technique to obtain the parts of the residual spectra in [Gr1], [Gr2], [Gr3],
[Gr4].
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Corollary A.4. The normalizing factor for the global standard intertwining
operator

A((s1, s2), σ
′ ⊗ σ ′, w)

acting on the induced representation

ind
G ′

2r (A)

L ′(A)
(νs1σ ′ ⊗ νs2σ ′)

is given by

r((s1, s2), σ
′ ⊗ σ ′, w)(A.4)

=
∏sρ,D

j=1 LV (s1 − s2 − sρ,D + j, ρ × ρ̃ )
∏sρ,D

j=1 LV (s1 − s2 + j, ρ × ρ̃ ) · εV (s1 − s2, σ
′ × σ̃ ′)

,

where the L-functions and ε-factors are the partial Rankin–Selberg ones
with respect to the finite set V of non-split places of D. Then, the normalized
intertwining operator N((s1, s2), σ

′ ⊗ σ ′, w) defined by

A((s1, s2), σ
′ ⊗ σ ′, w) = r((s1, s2), σ

′ ⊗ σ ′, w)N((s1, s2), σ
′ ⊗ σ ′, w)

is holomorphic and non-vanishing for Re(s1 − s2) ≥ sρ,D. Moreover, the
only pole of the standard intertwining operator A((s1, s2), σ

′ ⊗ σ ′, w) in
the region Re(s1 − s2) ≥ sρ,D is at s1 − s2 = sρ,D and it is simple.

Proof. The global normalizing factor is obtained as a product over all places
of the local ones. Note that, for our purposes, at a non-split places the normal-
izing factor is taken to be trivial. Then the holomorphy and non-vanishing
of the normalized intertwining operator in the region Re(s1 − s2) ≥ sρ,D
follows from the local results of the previous two lemmas.

The analytic properties of the Rankin–Selberg L-functions are well-
known. The global Rankin–Selberg L-function L(z, ρ × ρ̃ ) has the only
poles at z = 0 and z = 1 and they are both simple. It has no zeroes
for Re(z) ≥ 1. Writing ρv at a non-split place v ∈ V as a fully induced
representation from the discrete series representation as in the proof of the
previous lemma shows that the local Rankin–Selberg L-function equals

L(z, ρv × ρ̃v) =
mv∏

i, j=1

L(z + ei,v − e j,v, δi,v × δ̃ j,v).

Since the local L-functions attached to unitary discrete series representations
are holomorphic in the strict right half-plane, and ei,v − e j,v > −1, the L-
function L(z, ρv × ρ̃v) is holomorphic for Re(z) ≥ 1. Local L-functions
have no zeroes.

Therefore, the partial L-function LV (z, ρ × ρ̃ ) is holomorphic for
Re(z) ≥ 1 except for a simple pole at z = 1. It has no zeroes for Re(z) ≥ 1.
The ε-factor has neither zeroes nor poles. Since for Re(s1 − s2) ≥ sρ,D real
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parts of all the arguments of the L-functions in the global normalizing factor
(A.4), except Re(s1−s2−sρ,D+1) ≥ 1, are strictly greater than one, it has no
zeroes and the only pole occurs for s1−s2 = sρ,D. Since the normalized inter-
twining operator is holomorphic and non-vanishing for Re(s1 − s2) ≥ sρ,D,
it turns out that the only pole in the region Re(s1 − s2) ≥ sρ,D of the
global standard intertwining operator is at s1 − s2 = sρ,D and it is simple.

��

A.3. Poles of Eisenstein series. Let σ ′ be as above and k > 1 an integer.
Let π ′ ∼= σ ′ ⊗ . . . ⊗ σ ′ be a cuspidal representation of the Levi factor
M′(A) ∼= G′

r(A)× . . .×G′
r(A) of a standard parabolic subgroup of G′

kr(A),
with k copies of G′

r(A) and σ ′ in the products. We fix an isomorphism
a∗M′,C

∼= Ck using the absolute value of the reduced norm of the determinant
at each copy of G′

r and denote its elements by s = (s1, s2, . . ., sk) ∈ a∗M′,C.
By the results of the paper, the study of the residual spectrum is reduced to
the point

s0 =
(

sρ,D(k − 1)

2
,

sρ,D(k − 3)

2
, . . .,−sρ,D(k − 1)

2

)
,

i.e. we have to prove that the unique discrete series constituent of the induced
representation

ind
G ′

kr (A)

M′(A) (s0, π
′) = ν

sρ,D(k−1)

2 σ ′ × ν
sρ,D(k−3)

2 σ ′ × . . . × ν− sρ,D (k−1)

2 σ ′,

which is denoted in the paper by MW ′(σ ′, k), is in the residual spectrum.
Of course, the case k = 1 is excluded since it gives just the (basic) cuspidal
representation σ ′.

Lemma A.5. Let

E(s, g;π ′, fs)

be the Eisenstein series attached to a ‘good’ (in the sense of Sects. II.1.1
and II.1.2 of [MW3]) section fs of the above induced representation from
a cuspidal representation π ′. Then, its only pole in the region Re(si −si+1) ≥
sρ,D, for i = 1, . . ., k − 1, is at s0 and it is simple. The constant term map
gives rise to an isomorphism between the space of automorphic forms
A(σ ′, k) spanned by the iterated residue at s0 of the Eisenstein series and
the irreducible image MW ′(σ ′, k) of the normalized intertwining operator

N(s0, π
′, wl),

where wl is the longest among Weyl group elements w such that
wM′w−1 ∼= M′.

Proof. By the general theory of the Eisenstein series explained in
Sect. V.3.16 of [MW3], its poles coincide with the poles of its constant
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term along the standard parabolic subgroup with the Levi factor M′ which
equals the sum of the standard intertwining operators

E0(s, g;π ′, fs) =
∑

w∈W(M′)
A(s, π ′, w) fs(g),

where W(M′) is the set of the Weyl group elements such that wM′w−1 ∼= M′.
Hence, the poles of the Eisenstein series are determined by the poles of the
standard intertwining operators.

By Corollary A.4, in the region Re(si −si+1) ≥ sρ,D, for i = 1, . . ., k−1,
the only possibility for the pole is at s 0. However, it indeed occurs only for the
intertwining operators corresponding to the Weyl group element inverting
the order of any two successive indices, i.e. the longest element wl in W(M′).
Since the iterated pole is simple in every iteration, the iterated residue of the
constant term, up to a non-zero constant, equals the normalized intertwining
operator

N(s0, π
′, wl),

as claimed.
The irreducibility of its image follows from the uniqueness of the discrete

series constituent in the considered induced representation obtained in Prop-
osition 5.6 (a). The square integrability follows from the Langlands criterion
(Sect. I.4.11 of [MW3]). ��
Remark A.6. The proof of the lemma shows that MW ′(σ ′, k), for k > 1,
is at every place an irreducible quotient of the corresponding induced rep-
resentation.

Theorem A.7. The residual spectrum L2
res(G

′
n) of an inner form G ′

n(A) of
the split general linear group decomposes into a Hilbert space direct sum

L2
res(G

′
n)

∼=
⊕

r|n
1≤r<n

⊕

σ ′∈DS′
r

(basic)cuspidal

A(σ ′, n/r),

where A(σ ′, n/r) ∼= MW ′(σ ′, n/r) are the spaces of automorphic forms
obtained in the previous lemma.

Proof. The results of Sect. 5 classify the discrete spectrum DS′
n of the inner

form G′
n(A) using the trace formula. The basic cuspidal representations are

proved to be cuspidal. Hence, it remains to show that the representations
of the form MW ′(σ ′, k), for k > 1 and a basic cuspidal representation σ ′,
are in the residual spectrum. However, this is precisely the content of the
previous Lemma A.5. ��
Corollary A.8. The cuspidal spectrum of an inner form G′

n(A) consists of
the basic cuspidal representations.
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Proof. Theorem A.7 shows that in the discrete spectrum DS′
n of an inner

form G′
n(A) obtained in Sect. 5 all the representations not being basic

cuspidal belong to the residual spectrum. Hence, the multiplicity one of
Theorem 5.1 for inner forms implies the corollary. ��
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